Error Propagation and Roundoff Error

In general our problem has a certain number of input valyes. . , z,, and a certain number of output valugs. . . , ym,
and some (possibly complicated) formulas describe how the output values depend on the input values. Let us consider
simplest case of one input and one output value where weihave (x).

Error propagation

If we only have an approximatiof of our input valuer available (e.g., because of measurement errors), the best thing we
can do is to computg := f(z). For the resulting relative error we obtain

iy _ @~ f@) G- _ef@)i-u
y 7(@) f(x) f) =

= crey

where the magnification facter; := J’f(()) is called thecondition number of the functionf atz. The condition number

determines how sensitive a problem is to small perturbations of input valugs.| 1§ not much larger than 1 we call the

problemwell-conditioned, in the case ofc| > 1 we call the problenill-conditioned. For example, the functiofi(x) = %

has the condition numbey; = ””(%;2) = —1 and is therefore well conditioned.

Error propagation for arithmetic operations

If we multiply two numbers to compute:= zy we get for perturbed input valugsy the resultz := 2y = x(1 +,)y(1 +
ey) = 2(1 + e, + ey + e28y). Hence we have, = ¢, + ¢y + .6y = g, + €4

For the quotient = z/y we obtaire, ~ ¢, + ¢1/, = £, — &, Using the above result fgfi(x) = 1/z.

(1+€z)+y(1+€y) (z+y) _

For the additiorr = x + y we haves, z+y€$ + x+ysy This also covers subtraction sinegy
can have arbitrary signs. However, for the case:t’rmndy have the same sign we observe that < max{|e,/|, |e,|}.

Machine numbers and algorithms in machine arithmetic

Instead of arbitrary real numbers i we only have a finitely many machine numbers available. As long,gs <
|z| < Zmae (i.€., no underflow or overflow) we can approximate a real numbeith a machine numbefi(x) such that

‘W < ey. Heree), denotes the so-called machine accuracy (aka unit roundoff).

An algorithm in machine arithmetic is a functigh = f(fc) which takes an input machine numbgr performs certain
operations in machine arithmetic and finally gives an output machine nujniewe want to computey = f(x) for some

2 € R we would use this algorithm and compute= f(&) with # = fI(x). What is the best accura@;—y ’we can hope to
achieve?

Theideal algorithm would computey := f(z) exactly (or at least with lots of extra precicion), and then approximate the
resulty by the closest machine numbgr= fi(y), i.e., we would us¢(z) := fI(f(z)). If we compare this witly = f(x)

we obta|n|“f x\ < e, ’) < leflem and‘y y‘ < |eflenr 4+ enr. This expression is called thaavoidable error. As

the algorlthmf uses machine numbers for input and output we must accept a relative error ©f;siaeboth the input and
output values, and this means that the relative error in the result can be as higlz @s+ <,,. Hence the ideal algorithm

would achieve for well-conditioned functions an error of not much moreharand for ill-conditioned functions we would
obtain an error of ordee:s|e ;.

The ideal algorithm is usually impossible to implement or too costly (but note that IEEE 754 requires that the elemental
operations+, —, -, /, ./ are implemented in that way). What is the best property which we can reasonably expect of oul
algorithmyg = f(fc)? Since the machine numbercorresponds to all real numberswith \xx;x} < ey, and the machine
numbery corresponds to all real numbeysvith ‘%‘ < &7 we can hope that among these values,af there existr,, .

such thaty, = f(z.) (with the exact functiory).

This leads to the followinglefinition We call a computatioy = f(i) numerically stable if we havey, = f(z,) for some
nearby values:,, y. with <e, ‘% < e wheree is not much larger thasy,. In order to approximatg = f(x)

T—Tx
T x

we usei := fl(z), § := f(&) and obtain thatz=2=| < ¢ + &y, ‘y—yy* < lesl(e + enr) and‘%y‘ < legl(e + enr) + <.

That means that a numerically stable algorithm yields errors which are not much larger than the unavoidable error.

In many cases we can actually chogse= : If the computed resulj = f(ﬁ:) coincides with an exact function valyéz,)
such tha’t% is not much larger than,,; then the computation is numerically stable.

Example

Considery = f(z) := 1—cos x for z = 10~° and double precision machine numbers. We find¢hat % N5 = 2,
hence the function is well-conditioned and the unavoidable erfofjsy; + e ~ 3 - 10716,

Consider thdirst algorithm
Y1 :=coszx, y:=1—y
Evaluating this in machine arithmetic givés:= fi(z), g1 := cosz, 91 = fl(g1), § == 1 — 1, y := fl(y). For

the relative errors we obtaihi;—z\ < em, ’gl’yl) < ¢y With ¢ = |EESRD)| o 1010,)u) < cienm + e

Y1 cosx y1 -

‘%’ < e (crens +enr) With ¢ = | 4E1 | ~ 2101 and finally
y;y’ <cy(ciem+em) +em ~ 2 +2-100 + ey ~2-107°

which is much larger than the unavoidable error. This algorithm is numerically unstable.

To find a better algorithm we can use that cosz =1 — cos(5 + 5) = 1 — cos(%)? + sin(%)? = 2sin(%)% This yields
thesecond algorithm

y1:=x/2, yoi=sinyl, Y3 i=ys, Ya =293

Note that multiplication by 2 and division by 2 is exact in machine arithmetic, so the first and last step introduce no roundo

error. We only have to find the condition numbeys= ylcy% ~ landcy = W;—Qyz = 2 for the second and third steps and
2

obtain in the same way as abopb;—y‘ < co(ecren +en) +en ~ 2en + 2ep + ey = 5- 10716, This is not much more
than the unavoidable error, and this algorithm is numerically stable.

