
Error Propagation and Roundoff Error

In general our problem has a certain number of input valuesx1, . . . , xn and a certain number of output valuesy1, . . . , ym,
and some (possibly complicated) formulas describe how the output values depend on the input values. Let us consider the
simplest case of one input and one output value where we havey = f(x).

Error propagation

If we only have an approximatioñx of our input valuex available (e.g., because of measurement errors), the best thing we
can do is to computẽy := f(x̃). For the resulting relative error we obtain

εy :=
ỹ − y
y

=
f(x̃)− f(x)

f(x)
≈ (x̃− x)f ′(x)

f(x)
=
xf ′(x)
f(x)

x̃− x
x

= cfεx

where the magnification factorcf := xf ′(x)
f(x) is called thecondition number of the functionf at x. The condition number

determines how sensitive a problem is to small perturbations of input values. If|cf | is not much larger than 1 we call the
problemwell-conditioned, in the case of|cf | � 1 we call the problemill-conditioned. For example, the functionf(x) = 1

x

has the condition numbercf = x(−x−2)
x−1 = −1 and is therefore well conditioned.

Error propagation for arithmetic operations

If we multiply two numbers to computez := xy we get for perturbed input values̃x, ỹ the result̃z := x̃ỹ = x(1 + εx)y(1 +
εy) = z(1 + εx + εy + εxεy). Hence we haveεz = εx + εy + εxεy ≈ εx + εy.

For the quotientz = x/y we obtainεz ≈ εx + ε1/y ≈ εx − εy using the above result forf(x) = 1/x.

For the additionz = x+ y we haveεz = x(1+εx)+y(1+εy)−(x+y)
x+y = x

x+yεx + y
x+yεy. This also covers subtraction sincex, y

can have arbitrary signs. However, for the case thatx andy have the same sign we observe that|εz| ≤ max{|εx|, |εy|}.

Machine numbers and algorithms in machine arithmetic

Instead of arbitrary real numbers inR we only have a finitely many machine numbers available. As long asxmin ≤
|x| ≤ xmax (i.e., no underflow or overflow) we can approximate a real numberx with a machine numberfl(x) such that∣∣∣fl(x)−x

x

∣∣∣ ≤ εM . HereεM denotes the so-called machine accuracy (aka unit roundoff).

An algorithm in machine arithmetic is a function̂y = f̂(x̂) which takes an input machine numberx̂, performs certain
operations in machine arithmetic and finally gives an output machine numberŷ. If we want to computey = f(x) for some

x ∈ R we would use this algorithm and computeŷ = f̂(x̂) with x̂ = fl(x). What is the best accuracy
∣∣∣ ŷ−yy ∣∣∣we can hope to

achieve?

The ideal algorithm would computẽy := f(x̂) exactly (or at least with lots of extra precicion), and then approximate the
resultỹ by the closest machine numberŷ := fl(ỹ), i.e., we would usêf(x̂) := fl(f(x̂)). If we compare this withy = f(x)
we obtain

∣∣ x̂−x
x

∣∣ ≤ εM ,
∣∣∣ ỹ−yy ∣∣∣ ≤ |cf |εM and

∣∣∣ ŷ−yy ∣∣∣ ≤ |cf |εM + εM . This expression is called theunavoidable error. As

the algorithmf̂ uses machine numbers for input and output we must accept a relative error of sizeεM for both the input and
output values, and this means that the relative error in the result can be as high as|cf |εM + εM . Hence the ideal algorithm
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would achieve for well-conditioned functions an error of not much more thanεM , and for ill-conditioned functions we would
obtain an error of order|cf |εM .

The ideal algorithm is usually impossible to implement or too costly (but note that IEEE 754 requires that the elementary
operations+,−, ·, /,√ are implemented in that way). What is the best property which we can reasonably expect of our

algorithm ŷ = f̂(x̂)? Since the machine numberx̂ corresponds to all real numbersx with
∣∣ x̂−x
x

∣∣ ≤ εM , and the machine

numberŷ corresponds to all real numbersy with
∣∣∣ ŷ−yy ∣∣∣ ≤ εM we can hope that among these values ofx, y there existx∗, y∗

such thaty∗ = f(x∗) (with the exact functionf ).

This leads to the followingdefinition: We call a computation̂y = f̂(x̂) numerically stable if we havey∗ = f(x∗) for some

nearby valuesx∗, y∗ with
∣∣∣ x̂−x∗x∗

∣∣∣ ≤ ε ,
∣∣∣ ŷ−y∗y∗

∣∣∣ ≤ ε whereε is not much larger thanεM . In order to approximatey = f(x)

we usex̂ := fl(x), ŷ := f̂(x̂) and obtain that
∣∣x−x∗

x

∣∣ ≤ ε + εM ,
∣∣∣y−y∗y ∣∣∣ ≤ |cf |(ε + εM ) and

∣∣∣ ŷ−yy ∣∣∣ ≤ |cf |(ε + εM ) + ε.

That means that a numerically stable algorithm yields errors which are not much larger than the unavoidable error.

In many cases we can actually choosey∗ = ŷ: If the computed result̂y = f̂(x̂) coincides with an exact function valuef(x∗)
such that

∣∣∣ x̂−x∗x∗

∣∣∣ is not much larger thanεM then the computation is numerically stable.

Example

Considery = f(x) := 1−cosx for x = 10−5 and double precision machine numbers. We find thatcf = x sinx
1−cosx ≈

x·x
x2/2

= 2,

hence the function is well-conditioned and the unavoidable error is|cf |εM + εM ≈ 3 · 10−16.

Consider thefirst algorithm

y1 := cosx, y := 1− y1

Evaluating this in machine arithmetic giveŝx := fl(x), ỹ1 := cos x̂, ŷ1 := fl(ỹ1), ỹ := 1 − ŷ1, ŷ := fl(ỹ). For

the relative errors we obtain
∣∣ x̂−x
x

∣∣ ≤ εM ,
∣∣∣ ỹ1−y1

y1

∣∣∣ ≤ c1εM with c1 =
∣∣∣x(− sinx)

cosx

∣∣∣ ≈ 10−10,
∣∣∣ ŷ1−y1

y1

∣∣∣ ≤ c1εM + εM ,∣∣∣ ỹ−yy ∣∣∣ ≤ c2 (c1εM + εM ) with c2 =
∣∣∣y1(−1)

1−y1

∣∣∣ ≈ 2 · 1010 and finally∣∣∣∣ ŷ − yy
∣∣∣∣ ≤ c2 (c1εM + εM ) + εM ≈ 2εM + 2 · 1010εM + εM ≈ 2 · 10−6

which is much larger than the unavoidable error. This algorithm is numerically unstable.

To find a better algorithm we can use that1 − cosx = 1 − cos(x2 + x
2 ) = 1 − cos(x2 )2 + sin(x2 )2 = 2 sin(x2 )2. This yields

thesecond algorithm

y1 := x/2, y2 := sin y1, y3 := y2
2, y4 := 2y3

Note that multiplication by 2 and division by 2 is exact in machine arithmetic, so the first and last step introduce no roundoff
error. We only have to find the condition numbersc1 = y1 cos y1

y1
≈ 1 andc2 = y22y2

y2
2

= 2 for the second and third steps and

obtain in the same way as above
∣∣∣ ŷ−yy ∣∣∣ ≤ c2 (c1εM + εM ) + εM ≈ 2εM + 2εM + εM ≈ 5 · 10−16. This is not much more

than the unavoidable error, and this algorithm is numerically stable.
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