Error Propagation and Roundoff Error

In general our problem has a certain number of input valyes. . , z,, and a certain number of output valugs. . . , ym,
and some (possibly complicated) formulas describe how the output values depend on the input values. Let us consider
simplest case of one input and one output value where weihave (x).

Error propagation

If we only have an approximatiof of our input valuer available (e.g., because of measurement errors), the best thing we
can do is to computg := f(z). For the resulting relative error we obtain

iy _ @~ f@) G- _ef@)i-u
y 7(@) f(x) f) =

= crey

where the magnification facter; := J’f(()) is called thecondition number of the functionf atz. The condition number

determines how sensitive a problem is to small perturbations of input valugs.| 1§ not much larger than 1 we call the

problemwell-conditioned, in the case ofc| > 1 we call the problenill-conditioned. For example, the functiofi(x) = %

has the condition numbey; = ””(%;2) = —1 and is therefore well conditioned.

Error propagation for arithmetic operations

If we multiply two numbers to compute:= zy we get for perturbed input valugsy the resultz := 2y = x(1 +,)y(1 +
ey) = 2(1 + e, + ey + e28y). Hence we have, = ¢, + ¢y + .6y = g, + €4

For the quotient = z/y we obtaire, ~ ¢, + ¢1/, = £, — &, Using the above result fgfi(x) = 1/z.

(1+€z)+y(1+€y) (z+y) _

For the additiorr = x + y we haves, z+y€$ + x+ysy This also covers subtraction sinegy
can have arbitrary signs. However, for the case:t’rmndy have the same sign we observe that < max{|e,/|, |e,|}.

Machine numbers and algorithms in machine arithmetic

Instead of arbitrary real numbers i we only have a finitely many machine numbers available. As long,gs <
|z| < Zmae (i.€., no underflow or overflow) we can approximate a real numbeith a machine numbefi(x) such that

‘W < ey. Heree), denotes the so-called machine accuracy (aka unit roundoff).

An algorithm in machine arithmetic is a functigh = f(fc) which takes an input machine numbgr performs certain
operations in machine arithmetic and finally gives an output machine nujniewe want to computey = f(x) for some

2 € R we would use this algorithm and compute= f(&) with # = fI(x). What is the best accura@;—y ’we can hope to
achieve?

Theideal algorithm would computey := f(z) exactly (or at least with lots of extra precicion), and then approximate the
resulty by the closest machine numbgr= fi(y), i.e., we would us¢(z) := fI(f(z)). If we compare this witly = f(x)

we obta|n|“f x\ < e, ’ ) < leflem and‘y y‘ < |eflenr 4+ enr. This expression is called thaavoidable error. As

the algorlthmf uses machine numbers for input and output we must accept a relative error ©f;siaeboth the input and
output values, and this means that the relative error in the result can be as higlz @s+ <,,. Hence the ideal algorithm



would achieve for well-conditioned functions an error of not much moreharand for ill-conditioned functions we would
obtain an error of ordee:s|e ;.

The ideal algorithm is usually impossible to implement or too costly (but note that IEEE 754 requires that the elemental
operationst-, —, -, /, Jare implemented in that way). However, we can expect that the actual implementation performs no
much worse than the ideal algorithm: We call an algoritmamerically stable if it yields in machine arithmetic a result

A~

g = f(&) such that‘ %‘ < C(|eflem + enr) whereC' is not much larger thaih (say, not larger thah0).

There are two ways to show that an algorithm is numerically stable: forward error analysis and backward error analysis.

Forward Error Analysis

We try to find upper bounds for the absolute values of the relative error at each stage of the algorithm, moving forwal
through the algorithm. We start with bounds for the errors in the given data. When a fuifia8aapplied, we multiply

the error bound by the condition numbeg|. When two values are added, subtracted, multiplied, divided we use the above
formulas for error propagation. Each time a result is rounded wezagfto the error bound.

Example: Considery = f(z) := 1 — cosz for x = 10~> and double precision machine numbers. We find that

cf = {256 ~ ;53 = 2, hence the function is well-conditioned and the unavoidable erteffisy; + e ~ 3 - 10716,

Consider thdirst algorithm

yp:=cosz, yYy:=1—1

Evaluating this in machine arithmetic givés:= fi(x), g1 := cosz, g1 = fl((h), § == 1 — 41, g := fl(y). For

the relative errors we obtaiff=2| < ey, ’yly;l?“) < crea with ¢ = |2 o 1010, 2w
yi(=1)

1—y1

%

< ci1em + em,

‘%?’§‘2<@5M~+6M>thcQ= ~ 2 -10'° and finally

u’ <co(crem+em) +em %2€M+2'1010€M+€M ~2-107°
Y

which is much larger than the unavoidable error. This algorithm is numerically unstable.

To find a better algorithm we can use that cosz =1 — cos(% + £) = 1 — cos(%)? + sin(%)? = 2sin(%)?. This yields
thesecond algorithm

yri=wx/2, ypr=siny, ys:=y3, ya:=2ys
Note that multiplication by 2 and division by 2 is exact in machine arithmetic, so the first and last step introduce no roundo
error. We only have to find the condition numbers= ylcy% ~ 1 andc, = ”;—2?/2 = 2 for the second and third steps and
2

obtain in the same way as abo| ;y’ < co(eren +en) +en ~ 2en + 2en + ey &~ 5- 10716, This is not much more
than the unavoidable error, and this algorithm is numerically stable.

Backward Error Analysis

The exact computation is= f(x). The algorithm in machine arithmetic givgs= f (). If we can find a numbet, close
to & such thatj = f(x.) we have

J—y T — T,
——| < ey
y’ d

*



If < e wheree is not much larger than,; we have therefore shown that the algorithm is numerically stable.

T—Tx
Tx

Example: Fory = f(z) = 2? straightforward evaluation gives = fl(z), § = %2, § = fl(§). We know that
9 = §(1 +¢) with |¢] < epr. Hencej = z2 for v, = Viv1+e = 2vV1+¢. Since|% <epyandyl+em1+5
we have approximatively%\ <em+ %aM. Since this is not much larger thap; we have shown that the algorithm is

numerically stable.




