AMSC/CMSC 466 Tobias von Petersdorff

1 Numerical Integration

1.1 Introduction

We want to approximate the integral
b
I:= / f(x)dx
a
where we are given a, b and the function f as a subroutine which can evaluate f(x) for any given x.

We want to evaluate f at points xi, ..., X, and construct out of the function values an approximation Q which should be close
to the exact integral /.

We can do this using interpolation:

e construct the interpolating polynomial p(x)
o let Q:= [” f(x)dx

e by writing Q in terms of the function values we obtain a quadrature rule of the form
0= Wlf(xl)+"‘+wnf(xn)

In the special case that the function f(x) is a polynomial of degree< n— 1 we obtain p(x) = f(x) since the interpolating
polynomial is unique, and hence Q = I. Therefore the quadrature rule is exact for all polynomials of degree< n— 1.

1.2 Midpoint Rule, Trapezoid Rule, Simpson Rule

We consider some special cases with n = 1,2, 3 points:

Midpoint Rule: Letn =1 and pick the midpoint x| := (a+5b)/2 . Then p(x) = f(x;) (constant function) and

QM = (b—a)f(x1)

Trapezoid Rule: Letn =2 and pick the endpoints: x| := a, x, := b. Then p(x) is a linear function and Q is the area of
the trapezoid:

QTrap — (b—a)f(a) ";f(b)

Simpson Rule: Let n =3 and pick the endpoints and midpoint: x; :=a, xp := (a+b) /2, x3 := b. Then p(x) is a quadratic
function and we obtain

QSimpson = (b—a) f(xl) +4f(6x2> —|—f()C3)

Proof: Let us consider the interval [a,b] = [—r,r] where r = (b —a) /2. We know that

b
0= /a p(x)dx = wif(x1) +waf(x2) +wsf(x3)

and we want to find wy,wy,w3. We also know that we must have Q = I for f(x) = 1, f(x) = x, f(x) = x* yielding the
equations

.
W1'1+W2-1+W3'1: ldx =2r

r
wi-(=r)+w2-04+w3-r=[ xdx=0

—r

Wi 4wy 04wy -2 = xzdx:%r3

—r
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Solving this system for wi,wy, w3 yields w; = w3 = _%, Wy =

Wi

r.

The midpoint rule is guaranteed to be exact for polynomials of degree 0. But actually it is also exact for all polynomials of
degree 1: On the interval [—r,r| consider f(x) = ¢+ c1x. Then the term ¢ is exactly integrated by the midpoint rule. For
the term c; - x the exact integral is zero, and the midpoint rule also gives zero for this term.

The Simpson rule is guaranteed to be exact for polynomials of degree< 2. But actually it is also exact for all polynomials of
degree< 3: On the interval [—r,r] consider f(x) = co+cjx+ c2x% + ¢3x3. Then the term co + c1x + c2x2 is exactly integrated
by the Simpson rule. For the term c3 - x> the exact integral is zero, and the Simpson rule also gives zero for this term.

1.3 Errors for the Midpoint Rule, Trapezoid Rule, Simpson Rule

1-0= [ ()~ p)as

and we know for the interpolating polynomial that

Note that we have for the quadrature error

1709 =01 < o (e [0 ) x0) - )

t€a,b]

yielding
1
\I—Q!g'(max ) / |(x—x1) - (x—xp)| dx. (1)
n!

t€la,b

Error for Trapezoid Rule: Here we need to compute ff |(x —a)(x —b)|dx. Let us consider the interval [a,b] = [—r,r]:

b r
/a |(x—a)(x—b)|dx:[r|(x+r)(x—r)|dx:/ (P —x))dx = [r x—%xﬂ ., gr3

As r=(b—a)/2 and n = 2 the formula (1) becomes

—a)p
M- max ‘f”(x)‘

_ Trap
‘I 0 ‘S 12 t€la,b]

Error for Midpoint Rule: We want to exploit that the Midpoint Rule is exact for polynomials of degree 1 and consider
the interpolating polynomial 5(x) which interpolates f at the nodes x;,x; (which is the tangent line):

p(x) = flxo] + f[x0,%0] (x — x0) = p(x) + f[x0,X0](x —x0)
b b b
| pax= [ s finxl- [ —x0)dx=0-+0

Hence we have using the interpolation error for p(x)

b

1=0l=| [ ()= plo)ax

yielding

3
11— gMian) < (=), max |9
t€la,b]
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Error for Simpson Rule: We want to exploit that the Simpson Rule is exact for polynomials of degree 3 and consider
the interpolating polynomial j(x) which interpolates f at the nodes xi,x;,x3,x; (wWhich also has the correct slope in the
midpoint):

p(x) = p(x) + flxr, 22,23, 202] (x — x1) (x — x2) (x — x3)
b b b
/Hﬁ(x)dx:/a p(x)dx+f[x1,x2,x3,x2]-/a (x—x1)(x—x2)(x—x3)dx=Q+0

since the function (x —xj)(x —x2)(x — x3) is antisymmetric with respect to the midpoint x,. Hence we have using the
interpolation error for j(x)

b 1 b
-0 =| [ ) - ptas| < g (max [r90]) - [ 63500205
We consider the interval [a,b] = [—r,r] with r = (b —a)/2. Then we have for the integral
b r r x3 7’5 ' 4
/ | (x—2x1) (x = x2)*(x —x3) | dx = / |(x+r)x(x—r)|dx = / (P —x})x’dx = [#3 - 5] =15 P

yielding

5
‘I_QSimpson < (b ) . max ‘f(zt) (x)‘ )
= 9032 refa)

1.4 Higher Order Rules

It is tempting to construct rules with higher n = 3,4,5,... which use an interpolating polynomial of degree n — 1.

For equidistant nodes we have already seen that interpolating polynomials of large degree will have very large oscillations,
and may not even converge to the function for n — . For the integral Q = fab p(x)dx things are not quite as bad since
integrating over the oscillations cancels out some of the errors. However, for larger values of n some of the “weights” w; will
become negative, and ‘w j’ will increase with increasing n. This means that in machine arithmetic there will be substantial
subtractive cancellation.

For interpolation we have seen that one can avoid these problems by carefully placing the nodes in a nonuniform way so that
they are more closely clustered together at the endpoints. For interpolation a good choice are the so-called Chebyshev nodes
(which are the zeros of Chebyshev polynomials).

This choice of nodes is also useful for numerical integration. Instead of the zeros of Chebyshev polynomials one can also
choose the extrema of Chebyshev polynomials, and in this case there is an efficient algorithm to compute Q (Clenshaw-Curtis
quadrature).

Another choice are the so-called Gauss nodes for Gaussian quadrature. These nodes are also more closely clustered near
the endpoints, but they are chosen to maximize the polynomial degree for which the rule is exact.

1.5 Composite Rules

For a practical integration problem it is better to increase the accuracy by first subdividing the interval into smaller subinter-
vals with a partition
a=xg<x1<--<xy_1<xy=b
and interval sizes
l’lj Z:Xj _xj—1~
Then we apply one of the basic rules (midpoint, trapezoid or Simpson rule) on each subinterval and add everything together.
This is called a composite rule. For example, the composite trapezoid rule is defined by

QTrap : QTrap 4t QTrap

[x0,x1] [xv—1.xn]

where Q[x] ] =3 (f(xj—1)+ f(x;)). Similarly we can define the composite midpoint rule and the composite Simpson
rule.
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Work: For the composite trapezoid rule with N subintervals we use N + 1 function evaluations.
For the composite midpoint rule with N subintervals we use N function evaluations.
For the composite Simpson rule with NV subintervals we use 2N + 1 function evaluations.

1.6 Error for Composite Rules

The error of the composite trapezoid rule is the sum of the errors on each subinterval:

N N
Trap Trap Trap
Q Zl (I[Xjflvxj] B xj 1,x,]) Z [xj—1.x] — Q[x, 1%
J= Jj=1
N N
I — QTrap Z . Trap Z max ’ f// ( l‘)‘ h3
- [X/ 1 Xj x, 1 x,] - )Cj lJCj] J

Similarly we can obtain estimates for the composite midpoint rule and the composite Simpson rule.

1.7 Subintervals of equal size

The simplest choice is to choose all subintervals of the same size 7 = (b —a)/N. In this case we obtain for the composite
trapezoid rule

T N 1 1 N
‘I [Ovin Z — < max ’f” }> W< — (max‘f” |> n Z
S12 \ 1] 12 s}
Trap i (b—a)3 ] 11
o= Tyl

If f”(x) is continuous for x € [a, b] we therefore obtain with C = (bfza r -max(, ) | f"(t)| that

Trap C
I — N
‘ Ov N
This shows that the error tends to zero as N — oo,
Similarly we obtain for the composite midpoint rule
3
Midpt 1 (b - d) 1
11— . t
-0 < g T a0

Midpt
where we also have ‘I Oy 1P

C
<W'

For the composite Simpson rule we obtain in the same way

CETI . ‘ 0 (t)‘

I — Simpson
‘ Ov _90 32 Nt [a.b]

In this case we have ‘I QSlmpmn

midpoint rule.

< %, so the composite Simpson rule will converge faster than the composite trapezoid or




