Nonlinear equations

Norms for R"

Assume that X is a vector space. A norm ||| is a mapping X — R with ||z|| > 0 such that for all z,y € X,
aeR

o [z =0 = z=0

o [Jozl = |af ||z

o llz+yl <zl + vl
We define the following norms on the vector space R™:
o llzlly = fza| +- -+ [an]

1/2
2 2

o oy = (ol + - +laal’)

o llollog = max{lzal, ... [wal}

A matrix A € R™*"™ corresponds to a linear mapping from R™ to R™. If ||z|| denotes a vector norm for z € R"
we can define the matrix norm ||A|| as follows:

Ax
14 = sup 1220 _ G jaa
B P
[lz|l=1

Note that S = {x € R™ | ||z|| = 1} is a compact set, hence there exists a point x € S with ||Az| = sup zer» ||Az]|,
llzll=1

and we can write “max” instead of “sup”.

1
Lemma 1. For E € R™*"™ with |E|| <1 the matriz I + E is invertible and ||(I + E)™"|| < TTED

1E]
Proof: |lz|| = [|(1 + E)x — Ex|| < [[(1 + E)z|| + | E[| [[«]|, hence |(I + E)z| = (1 = [E]]) [l]-

Convergence orders for iterative methods

We want to approximate x, € R™. An iterative method gives a sequence zq, r1, T2, X3, . - ..

We say the method converges if klim Tk = T4. We can specify more precisely how quickly it converges by
— 00
looking at quotients
241 — 2|
[k — 2. [|”

[39%hi

for a > 1. This leads to so-called “g-orders” of convergence (where “q” stands for quotient):

e the method converges with g-order 1 or g-linearly if there exists C' < 1 such that for all k

ki1 — 2| < Oz — 2|

e the method converges with g-order 2 or g-quadratically if limy_, ., xx = x, and there exists C such that
for all k&
2
Jorss — ]l < C g — .

the method converges g-superlinearly if

N T [
k—o0 ||:z:k—x*||

Example: We consider a nonlinear equation f(x) =0 where x € D C R. Assume



e f(z.)=0

e the derivatives f’ and f” exist around z, and are continuous
o f'(z) #0
Then there exists € > 0 such that

e for |y — x.| < € the Newton method converges g-quadratically

o for |xg — 2| < € and |z1 — z.| < € the secant method converges with g-order o = @ ~ 1.618. Hence
it converges g-superlinearly.

In many cases we cannot prove that the error improves for every single step from k to k + 1, but we still have
upper bounds
[ —z.|| < B

where Ej, converges with a certain g-order to zero. This leads to so-called “r-orders” of convergence:

e a method converges with r-order 1 or r-linearly if ||z — x.|| < Ey where Ej, converges with q-order 1 to
0

e a method converges with r-order 2 or r-quadratically if ||z — x.|| < Ey where Ej, converges with g-order
2to00

e a method converges r-superlinearly if ||z — .| < Ej, where Ej, converges with superlinearly to 0
Example: We consider a nonlinear equation f(z) = 0 where

e f is continuous on the interval [ag, bo]

* f(aog) - f(bo) <0
Then the bisection method gives a sequence of intervals [ag, bi]. Let cx = (ag + br)/2. Then the sequence ¢y,
converges r-linearly to a point z, with f(z.) = 0:

by — ag

|Ck_$*‘§Ek:W

Note that in general we do not have g-linear convergence of ¢ for the bisection method.

Derivatives

Let X and Y denote normed vector spaces. Consider a mapping f from D C X to Y. We say that f is Frechet
differentiable at a point xg € D if there exists a linear mapping A: X — Y such that

1f () = fzo) — Az — 20|

— 0 T — X0
|z — o

Lipschitz conditions

We say a function [ satisfies a Lipschitz condition with constant L on D if

If(@) =fWl <lly—=|  forallz,yeD

Lemma 2. Assume

o D is convex
o Vf(z) exists and is continuous on D

o IVf@)| <L forzeD
Then f satisfies a Lipschitz condition on D with constant L on D.



Taylor remainder terms

For a function f: D — R with D C R we have estimates

[f(z+h) = flz)] < ( max If’(U)|> [l it f e CY(D)

u€conv(x,y)

ot b) = @) = fanl < (_mox (7] 3P iff e CPD)

uEconv(z,y) 2

We would like to have analogous estimates for a function f: D — R™ with D C R™. Assume thatf € C*(D).
Then the derivative exists in the Frechet sense:

flx+h)=fx)+ Df(x)(p) + R, Rl =o([n]]) forh—0

where Df(z): R® — R™ is a linear mapping h — Df(x) (h). Since linear mappings correspond to matrices in
R™ "™ we use the notation

fi(x) Ofi(z) -+ Onfi(z)
f(z) = : , Df(x)=f'(2) = : :

y=Df(x)(h) <= yz—zc?fz

n

il < | D103 f@)] ) 17l » Iyllo <, max D10 fi@)] | Ikl

Jj=1 j=1
IDf(2)l| = max | 0;fi(x)
e\ S

with 9; = %. Assume that D is convex and x,y € D. Let h := y — x and conv(z,y) C D denote the line
segment betwen z and y. We have by the fundamental theorem of calculus and the chain rule for

F(t):= f(z +th), F'(t) = Df(z +th) (h)

1 1
fly) = f(z)=F(1) - F(0) = /0 F'(t)dt = /0 f'(z +th)hdt

1f(y) = f(@)]] S/O 1f"(z + thll [|A]] di < ( max IIf( )I) ly — |-

ueco

This shows that the Lipschitz constant for f in D is bounded by max,ecp || f/(u)]|.

Note that we first choose a vector norm, e.g., ||v||,, = maxj—1 . ,|v;|. For A € R"*" this induces a matrix
norm:

IIAIIOOZHIﬁ1aLX [ Av]| —miaXZIAUI-
i

I @l = 1 ma x [|f'( |—maXZ|3fz-

We can read this as an estimate for the Taylor remainder term of order 1: f(y) = f(z) + Ry, ||Ra|| < -+ -
Now we want to consider the next Taylor term and remainder: f(y) = f(z) + f'()(y — ) + Ra:

1
Ry = f(y) — f(z) = f'(x)(y —2) = /0 [f' (@ +tly —2)) = f'(2)] (y — z) dt.
Assume that f’ satisfies a Lipschitz condition for =,y € D:

£ () = f @I <vlly =zl forz,y € D,



then we obtain
' 2 g 2
IRall < [ty =l dt = ly ]

Now we assume that f € C?(D): For a fixed u € R" let G(x) := Df(x) (u). Then DG(z) (v) = D?f(z) (u,v)

where
n

y=D’f(2)(u,v) <= gi= Y (Onfs)ujvx

jk=1

n n
il < [ 3 il ) e ol Iyl < o {2 10l |l ol

=1,...,

J,k=1 Jik=1

|D*f ()|, = max Z 10j fil

T \gk=1

Now we have for any u € R and h=y — «

G(t) = Df(z +th) (u),  G'(t) = D>f(x + th) (u, h)
Df(y) — Df(a)] (u) = G(1) — G(0) = / G/ (1)t = / D2 (x + th) {u, by dt
0 0

1
D)~ DI@ Wl < [ [5G+ )|l Il e, 1D5w) = D5 < (ma[027)] ) Iy~ o]

Local convergence results for fixed point iteration

Assume that D is open so that z, € D implies that a ball Bs C D.

Theorem 3. Assume g: D — R™ with D C R", and g(x.) = x, for v, € D. If g € CY(D) and ||¢'(x.)]| < 1
then the fized point iteration x*+1 := g(z*) is locally convergent: There exists § > 0 so that for HJ;O — x*| <46
there holds limy_, o0 2% = .

Proof: Since ¢’ is continuous there exists § > 0, ¢ < 1 so that [|¢’(x)|| < ¢ for € Bs := {x | ||z — .|| < ¢}
Assume that ¥ € Bs. Then

|2+ = 2| = [|g(=*) — g(z2)]| < (max ||g'(u>|) l2* = .|| < g} — .|
u€Bs

Hence z**!' € Bs. Then z° € B; implies ka — x*H <g* on — z,|| and therefore limy,_, oo 2% = ..

Remark: For a chosen vector norm (e.g., ||-||.,) and the induced matrix norm one may have ||¢'(z.)| > 1,
but for a different vector norm and the induced matrix norm one could still have ||¢’(z.)|| > 1. The spectral
radius p(A) := max{|\;(A)|} denotes the maximum absolute values of eigenvalues of A and satisfies [see e.g.
Stoer-Bulirsch Theorem (6.9.2)]

e p(A) < |JA|l for any choice of vector norm and induced matrix norm

e for any € > 0 there exists a vector norm so that its induced matrix norm satisfies | A|| < p(A) + €.

Therefore we can replace the condition [|¢’(z.)|| < 1 by |p(¢’(x«))| < 1 and the conclusion of the theorem still
holds.

Theorem: Assume ¢g: D — R"™ with D C R", and g(x.) = . for z,. € D. If ¢'(x,) = 0 and ¢’ is Lipschitz in
D then the fixed point iteration z%*1 := g(z*) is locally convergent of order 2: There exists § > 0 so that for
||x0 - x*H < § there holds limy_,o ¥ = z, and

41 — ] < € la* —a. .

Proof: Assume that we have || f'(y) — f'(z)|| <~y — z| for =,y € D.

o — .| = l9@*) - g(@) = g/ (@)@ @) < T [la* =2



Newton method

We have local convergence of order 2 as long as V f(z,) is a nonsingular matrix:

Theorem 4. Assume that f(z.) =0 and

e Vf exists and satisfies a Lipschitz condition in a neighborhood of x.
o Vf(x.) is nonsingular
Then there exists § > 0 such that for an initial guess xo with ||xg — x| < ¢
e the Newton iterates xy exist for k =1,2,3,... since V f(xr_1) is nonsingular
o lim xp = x.
k—oc0

e the convergence is of q-order 2

Note that we have with dy = 211 — 2 = =V f(2) " f(zr)
1
f(zk—&-l) - f(-Tk) = / Vf(l‘k +t- dk)dkdt
0
and using V f(zy)dr, = —f(z)) that

f(karl) = /O [Vf(itk +1- dk) - Vf(.’bk)] drdt

implying

1
L
1f (@rgn) | < / IV Sz +t-di) = Vi)l lldlldt < 5 ld ]
0
< Lt ||y ||

1 1
f(@rsr) = —/O [Vf(e +t-di) = V()] V() flar)dt = fer) = —/0 [V f(wr+t-di)Vf(ex)™ = 1] flag)dt

Newton-Kantorovich theorem

The Newton-Kantorovich theorem does not assume that a solution z, with f(x,) exists.

Theorem 5. Assume

o [If (@o)ll < Co, [V f(zo) ]| < C

o Vf(x) is Lipschitz with constant L for ||z — xol] < p

where

1—VI—2h
ho := CoC2L < =-_v-_ =9

DI =
AS)

\
Q
=~

Then

e there exists a unique solution x. € B,(zo) with f(z.) =0

e the Newton iterates ) are well-defined and converge to x,

1 : 1
5, and r-linear for hg = 5

e the convergence is r-quadratic for hg < 3



In preparation for the proof we consider the Newton method for the quadratic equation f(t) = t2 — 2t + 2hy = 0:
0

Lemma 6. Assume wy > 0 and hg < % and define wy, hy, fork=1,2,... by

WE hi

=— h =" 1
We+1 1— hk’ k+1 2(1 — hk)2 ( )
Then
— e 1—=/T—=2hg
o Wk wo

and the sum converges q-quadratically for hg < %, and g-linearly for hg = %

Proof: It is sufficient to consider the case wy = 1. Consider the quadratic equation f(t) = t2 — 2t + 2hg = 0
which has the two roots t+ = 1+ /1 —2hy with 0 < t_ < 1 < t4 for hy < % and 0 < t_ =t; =1 for
hy = % We define the sequence t; using the Newton method with g = 0. We have ¢ < txy1 < t_ for all k,
this implies that limg .o, = t_. In the case of hy < % we have quadratic convergence, in the case of hy = %
we have linear convergence. Note that for a quadratic function f(t) = t2 + a1t + ag and its tangent line p(t)
at t = ¢ we have f(t) — p(t) = (t — ¢)? (since it must be a quadratic function with leading coefficient 1 and

minimum 0 at ¢ = ¢). Hence for ¢ = t;, we have by the definition of the Newton method p(tx+1) = 0 and
(trhar — tr)? = f(tes1) — p(tis1) = f(try1) for all k so that

f(tr) (tk —tp—1)® 1 (tg —ty—1)?

RO T ) 2t), — 2 21—ty @)
We now want to show that for £ =0,1,2,... we have
thyr —th = w;lhk, 1—t, = wlzl (3)

We use induction: For £ = 0 we have ty5 =0,
tl — to = —f(O)/fI(O) = —2h0/(—2) = h() = U.)oho

andl—t():l:wgl as wy = 1.



Induction step: Assume that (3) holds.
We have

oy Bt —h) Qo = (e —t) D (1= t0) = (borr —te) = 1 =t
which is the second equation in (3) with k + 1 instead of k.

We get from (2) that

N Lk —te)? _ V(w/wr)® 01 hp 1 R Ly
k+2 k+1 = 21— tor1 2 Wl;+11 k+1 (Wk/wk+1) k+19 (1 _ hk)2 k+17tk+1

Note that

N N
Z@ Zthrl_tk =tNy1 — - = 1—\/1—2h0 as N — oo

k=0 % k=0
We use the following notation for open and closed balls:

By(zo) :={x | & —zoll <7}, Br(zo) :={z | [lz — zo] <}

The Newton method uses the iteration
Tht1 = Tk + di with dj, := —f’(mk)ilf(aik-)

Assumption: There are constants «,wy > 0 such that hg 1= awy < % and

2
£ (o) f(wo)|| < e (4)
1/ (o)™ (f'(y) = f'(@)|| Swolly —2l| forz,yeD (5)
— 1—+v1-=2h
B,(rg) C D with p:= —Y =20
wo
Then:
e there exists a unique solution x, € B,(z) with f(z.) =0
e the Newton iterates xj are well-defined and converge to x,
e the convergence is r-quadratic for hg < %, and r-linear for hg = 3
Induction: We claim that for £ =0,1,2,...:
(A wrlldill < b (6)
(By): @) (')~ @) <wrlly—2ll  forzyeD (7)
i € B(x0) (8)
where 2
WE L
= h = —
WE+1 1 _ hka k+1 2(1 — hk)2 (9)

Proof: For k = 0 the statements (6), (7) are just the assumptions (4), (5).
Induction step: Assume that (6), (7), (8) and we have to prove the corresponding statements for k + 1.
We first prove (8): From (Ax) and the Lemma we obtain that

k )
I
ks — 2ol < D ldil <Y j = p. (10)
=0 j=0 7



We then prove (6) for k + 1: Let My, := f'(z5) "' f/(v41), then f'(zgy1)~ 1 = M ' f/(v) " and

M7 o)™ () — P 2 (M e lly — 2

£/ (xre) ™" (f'(y) = f(@)]| <
1
< =l — ol = e Iy -
since
, . , (Br) (Ag)
My=1+E, E:=f'(z) (f'(xrs1) = f(2r)), 1B < wklldell < hs

1 1
<
L—|E[ = 1—hy
We now prove (6) for k + 1: With z;11 =z, + dg and f(xg) = —f'(2x)dr we have

I = [+ B) 7| <

A1 = —f (@r1) " F@rgn) = = (@rg1) 7 [F(@rgr) = flan) + fzw)] = —/0 F(@ear) [ (on + tdi) — f' ()] dyedt

(Brs1) [l 1 h
sl " [ wnsat el el de = G 5
0 Wi

1w
2 (wk/wk+1)2 2 (1 — hk)

Wit (|41 < 5 = Nk

This concludes the induction proof. We now obtain from (10) that xj is a Cauchy sequence and therefore has a
limit ., € B,(z9) C D. By taking the limit in f'(z;)(zk41 — k) = —f(2x) we obtain by the continuity of f’
and f that f(z.) = 0.

We skip the proof of the uniqueness.



