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1 Introduction

The steadily increasing demand for various socio-economic and health statis-
tics for small geographical areas or geo-demographic groups has led to the
implementation of small area estimation programs at some government agen-
cies as well as to a flurry of research on related statistical methods.

Small area estimation typically involves the use of auxiliary information
to improve upon traditional design-based methods for inference from survey
data. These design-based methods rely only on the survey data from the
domain of interest for inference about that domain, rather than seeking to
model and exploit relationships between the survey data from all domains
and the auxiliary information available. They are typically referred to in the
small area literature as direct methods. The auxiliary information for small
area estimation methods is often drawn from administrative records and
censuses. In the literature, the term small area is described as a domain for
which the survey data alone cannot provide reliable direct estimates (Rao
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and Molina, 2015) either because the sample size is too small or because
there is no sample at all for the domain. Small area estimation refers to
techniques to “borrow strength” from auxiliary variables, typically through
modeling. Though this definition of small area estimation links it directly
to the use of data from surveys, it is not necessary to have survey data
to develop techniques for estimation of population characteristics of small
domains. Some techniques that derive estimates from administrative records
without using survey data will be mentioned briefly. A broader definition
of small area estimation also includes these techniques. In this chapter, we
adopt this broader definition, though we focus primarily on techniques using
survey data and administrative records.

Administrative records arise from the operation of government programs,
not for the purpose of estimating population characteristics. Hence, their
content, coverage, accuracy, reference period, definition of variables, etc., are
determined by their use in program operation, not by their use for statistical
purposes. Nonetheless, valuable information for statistical inference can often
be extracted from administrative records. Due to advances in computing,
government agencies can process administrative records and link them with
sample survey and census records for statistical purposes in a fraction of the
time and costs required for field data collection. Brackstone (1987) discussed
potential uses of administrative records in the production of a wide range of
official statistics and pointed out their merits and demerits.

There are various ways administrative records can be used to produce
small area statistics. There are methods that are purely based on adminis-
trative registers, commonly referred to as register-based methods, and use
no survey data at all. Such use of administrative records in small area esti-
mation can be traced back to eleventh century England and seventeenth cen-
tury Canada; see Brackstone (1987). Zhang and Fosen (2012) constructed
register-based small area employment rates and evaluated the progressive
measurement errors in the small area estimates, using historic data from
the Norwegian Employer Employee Register (NEER). For a good review of
register-based small area methods, the readers are referred to Zhang and
Giusti (2016).

Demographers have been using administrative records such as birth, death,
migration, housing records, etc., in conjunction with the population census
for estimating population for small areas for a long time now. For a compre-
hensive review of demographic methods for small area estimation, see Ghosh
and Rao (1987) and Rao (2003).
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Zanutto and Zaslavsky (2002) developed a small area method using cen-
sus data and administrative records in conjunction with the nonresponse
follow-up survey to impute small area detail while constraining aggregate-
level estimates to agree with unbiased survey estimates. They applied their
method in the 1995 U.S. Decennial Test Census where small area estimation
was necessary because nonresponse follow-up was conducted in only a sample
of blocks, leaving the data incomplete in the remaining blocks.

The above methods do not directly model survey data. Area-level and
unit level models, which will be discussed in more length Section 3, use
modeling to capture the relationship between the auxiliary data and the
survey data. Such models have been widely studied in the literature and
have been applied by government agencies, as will be seen in Section 3.

The accessibility of different administrative data from different sources
has brought new opportunities for statisticians to develop innovative SAE
methods that can cut down costs and improve the quality of estimates. Hun-
dreds of papers were written in the last three decades and conferences and
workshops are now being organized every year to disseminate research in the
small area estimation research community. A recent comprehensive review
of various methods in small area estimation can be found in Rao and Molina
(2015). In this chapter, we attempt to illustrate the benefit of model-based
methods that extract information from administrative records using sample
survey and census data. In practice, there may be a need to use complex
hierarchical models to capture spatio-temporal variations. We, however, stay
with more basic models for the sake of simplicity in exposition.

The chapter is organized as follows. Section 2 discusses the preparation of
data, including the identification and processing of administrative records for
use in small area estimation models. Section 3 discusses small area estimation
models, including both area level models in subsection 3.1 and unit-level
models in subsection 3.2. Section 4 illustrates the concepts discussed in the
previous sections with an application involving 1993 county poverty rates
for school-aged children, with covariates drawn from adminsitrative records.
Section 5 concludes, with exercises provided in Section 6.

2 Data Preparation

Small area estimation models are most effective when good auxiliary informa-
tion is available–that is, additional information that can be used in conjuction
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with the survey data to improve inference. This information is often drawn
from administrative records, though censuses, other surveys, or past esti-
mates from the same survey can also be used in modeling. The challenges in
the identification and preparation of covariates from administrative records
are not always emphasized in the literature. This section highlights some of
the practical considerations for implementing a small area estimation pro-
gram using administrative records. We focus here on the issues surrounding
preparation of data from administrative records for use in small area estima-
tion models, and on the qualities that make for good covariates. Examples
from small area estimation programs used to produce official statistics are
used as illustrations.

Data from administrative records often have the advantages that they
cover large parts of the population and are relatively inexpensive. The data
are collected for other purposes, so no additional cost for data collection
or additional respondent burden need be incurred, although there are some
costs for obtaining the proper agreements to use the data and for prepar-
ing them. However, administrative records may not accurately represent the
population for which inference is desired, or measure the quantity of interest
directly. For example, about 88% of the U.S. population is included in tax
records from the Internal Revenue Service (IRS), the agency that collects
taxes in the U.S. Selected data items of from tax records are provided to
the Census Bureau for its use in statistical purposes 1. These data can be
used, for instance, to tabulate covariates that can aid in the estimation of
poverty rates accross different geographic groups. Federal tax records have
the advantage that the laws governing them are uniform across the country
and hence there is consistency in the definition of tabulations obtained from
them across different geographic areas. However, these records alone cannot
be used to generate reliable estimates of poverty for two reasons. First, low
income households are not required to file tax returns in the U.S. Second, the
pseudo poverty rate that can be derived from IRS records differs in definition
from that which can be obtained by household surveys (National Research
Council, 2000a). Nonetheless, covariates derived from IRS records serve as
very valuable predictors for estimating poverty in the U.S. Census Bureau’s
Small Area Income and Poverty Estimates (SAIPE) Program, which esti-

1These data are kept in the strictest confidentiality under the requirements in IRS publi-
cation 1075,“Tax Information Security Guidance For Federal, State, and Local Agencies”
(http://www.irs.gov/pub/irs-pdf/p1075.pdf) as well as with the Census Bureau’s
own confidentiality standards
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mates poverty rates for several age groups for the U.S. at the state, county,
and school district levels. This is because covariates for use in small area
models do not need to cover the entire target population or directly measure
the quantity of interest. For a covariate to be useful in a small area estima-
tion model it need only be strongly related to the quantity of interest and
consistently defined across domains.

Inconsistencies in what data represent from place to place can lead to
measurement error and to incorrect inference. When such inconsistencies
are severe and cannot be adequately adjusted for, data from administrative
records may not be suited for inclusion in a small area model. For instance,
SAIPE considered the use of data from the National School Lunch Program,
which provides free and reduced-price lunches (FRPL) for children in schools,
for estimating poverty rates at the school district level. However, due to a
high level of incompleteness of the data for many states, and inconsisten-
cies about what quantities were reported by each state, the data were not
included in estimation at the school district level. Although there were partic-
ular states for which the FRPL data were more accurate and complete, they
could not be used for those states because of concerns about using different
methodologies for different states, both due to the difficulty in implementa-
tion and perceived fairness (National Research Council, 2000a). Additional
reasons for not including FRPL in SAIPE modeling are cited in Cruse and
Powers (2006).

A key consideration in preparing administrative records data for use in
small area estimation models is to what level the auxiliary data can be ob-
tained. This often depends on confidentiality concerns. It may be possible
to obtain the data at the unit level (i.e., person, family, household, or firm
level), or it may only be possible to obtain aggregate summaries. It should be
noted that most unit-level small area level models require that the unit-level
covariates be known for both the sampled and non-sampled units in the pop-
ulation, so that just having unit-level covariates for the sample will typically
not suffice. In the area-level case, when the auxiliary variables come in the
form of estimates from other surveys, care must be taken to account for their
sampling error–see Section 3.1.

Linking or matching data from administrative records to the survey data
poses challenges. Exact matching involves linking two records from the same
unit, whereas statistical matching involves linking files based on similar char-
acteristics. The error due to linking can be hard to ascertain, though a mea-
sure of error is available for many statistical and exact matching techniques
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(Winkler, 2007). The error due to linkage is typically not incorporated in
small area models.

For area-level models, which model aggregate data summaries for the do-
mains of interest rather than unit level data, it is not necessary to match
at the unit level. However, computing such summaries sometimes involves
allocating units to domains. This can be challenging for smaller areas of
aggregation. For instance, geocoding involves identifying addresses with ge-
ographic locations. Addresses from the IRS need to be geocoded so that they
can be allocated to the small areas of interest to produce summary statistics
at the state, county, or school-district levels for small area models. Geocod-
ing of tax records from the IRS to sub county areas can be difficult, especially
in some rural areas. This is primarily because some rural addresses are not in
city-style format–i.e. street number and street name. At the inception of the
SAIPE program, the Census Bureau had not yet developed accurate geocod-
ing for sub-county areas, so the IRS administrative records were not used
for the estimation of poverty at the school district level (National Research
Council, 2000a). Starting with the 2005 data, SAIPE altered its methodology
at the school-district level to incorporate IRS data (Bell et al., 2016). There
were still many tax exemptions that could not be geocoded, so Maples and
Bell (2007) developed an algorithm to allocate these among school districts.
Maples (2008) developed a methodology for estimating associated coefficients
of variation.

Timing plays a big role in the inclusion of administrative records into
small area models. One important consideration is the frequency with which
the administrative records are produced, and whether that meets the needs
of the small area estimation program. Usually, administrative records are
released periodically– often annually or even less frequently– and sometimes
data are updated later to make additions and/or corrections. Ideally, data
from administrative records should cover a similar time frame as the survey
of interest. However, this is not always possible, since often the reference
periods of both sources are different. For instance, for the current SAIPE
methods for estimating poverty at the state, county, and school district levels,
the primary data source, the American Community Survey (ACS), collects
data over the course of a year and asks individuals about their income in the
12 months preceding the time of response, spanning 23 months of income
overall. IRS records, on the other hand, refer to the income in a particular
calendar year (Luery, 2010).

Time delays in the release of administrative records can affect the timing
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of the release of the related small area estimates and/or the choice of which
time period to use for the covariate from administrative records. In some
cases, a decision is made to use lagged administrative records in order to
expedite production of small area estimates. The Census Bureau’s Small
Area Health Insurance Estimates (SAHIE) Program estimates numbers and
proportions of health insurance coverage by counties and states. The SAHIE
program uses Medicaid records from the Centers for Medicare and Medicaid
Services (CMS) as well as Childrens Insurance Program (CHIP) participation
counts obtained from states and counties. Historically, SAHIE models had
a one to two year time lag in their Medicaid/CHIP covariates. In 2013 and
2014, however, many states expanded their Medicaid eligibility due to the
enactment of the Patient Protection and Affordable Care Act (ACA). In
response, for its 2014 estimates SAHIE started projecting the administrative
records to the year of estimation. For comparability, SAHIE re-released
estimates for 2013 using the same methodology (see Powers et al., 2016 and
Bauder et al., 2018).

Once some potential sources of administrative records have been identified
for inclusion in small area models, relevant covariates can be derived, typi-
cally from aggregate summaries or transformations of the data. For instance,
from the IRS data the SAIPE program computes a tax return pseudo-poverty
rate for children for each state, computed as the number of child exemptions
for returns determined to be in poverty, divided by the total number of child
tax exemptions. It also computes an estimate of the proportion of people
who do not file taxes and are under the age of 65 (i.e., the “non-filer rate”).

When there are known inconsistencies for covariates among domains,
whenever possible they should be addressed. The Supplemental Nutritional
Assistance Program (SNAP, formerly known as the Food Stamp Program)
provides subsidies for low-income households for food purchases. The SNAP
eligibility criteria are broadly the same for all states except Hawaii and
Alaska, which include some individuals with higher household incomes. For
these two states the Census Bureau adjusts the data to exclude recipients
who would not be eligible under the other states’ criteria. It makes other
adjustments for monthly outliers based on time series analysis. Some of
these outliers arise from issuance of emergency SNAP benefits in response
to natural disasters, particularly hurricanes. SNAP data are used to de-
rive predictors for both the SAIPE state and county models and for SAHIE
models.

In some cases, many alternative possible covariates from administrative
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records are available, and extensive analysis is needed to find the covari-
ates that will be used in the final model. This is usually done with model
selection tools such as the Akaike Information Criterion (AIC), checks of sig-
nificance of coefficients, residual analysis, and other model diagnostics. For
poverty mapping for Chilean comunas, the Ministerio de Desarrollo (Ministry
of Development) had many options to choose from for auxiliary variables. In
order to select the variables included in the final model, the ministry used a
stepwise procedure along with model diagnostics from the statistical software
Stata (Casa-Cordero Valencia et al., 2016). Before the statistical analysis was
performed, the initial pool of potential variables was first narrowed down by
subject matter experts that helped determine the relevance and reliability
of the auxiliary data. Timeliness of the records was also an important con-
sideration. This illustrates an important point–it is important to ascertain
the quality of the administrative records before considering them for model
inclusion. Even a statistically significant covariate may have measurement
error, and this can lead to errors in inference.

After covariates from administrative records have been identified and se-
lected for use in a small area estimation model, their quality should be period-
ically re-evaluated. External factors such as changes in legislation or program
administration may affect the predictive ability of a covariate over time. An
example was mentioned above related to the effect of changes of healthcare
legislation on the Medicaid/CHIP administrative records. Another example
relates to the use of the SNAP covariate in SAIPE state models for poverty.
In 1997, the Welfare Reform Act went into effect, which among other things,
gave states more freedom to administer the SNAP program (which prior to
2008 was called the Food Stamp Program). This might have led to inconsis-
tencies in the administration of the program that reduced the comparability
of the SNAP data across states. That year, the SNAP covariate became
statistically insignificant in the state poverty models. SAIPE continued to
monitor the significance of the covariate, and after it was also insignificant
for 1998, the covariate was removed. The covariate eventually regained its
significance and was reintroduced for the 2004 estimates (Bell at al., 2016).

In addition to periodically evaluating existing models, statisticians should
also always be looking for new sources of covariates from administrative
records. We should emphasize that administrative records for use in small
area estimation will always have some error. The statistician should attempt
to reduce the sources of error as much as possible, and exclude covariates from
administrative records that are of poor quality and/or are not consistent in
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what they measure across domains, as was illustrated in this section. Errors
in covariates that can be estimated or modeled could be incorporated into
small area estimation models. In most cases, it is hard to estimate the error
inherent in administrative records, whether the error is considered random
or deterministic. This will be discussed more in Section 3.

3 Small area estimation models for combin-

ing information

We can envision different possible situations related to the availability of ad-
ministrative data. For example, data from the administrative records can be
available in one or any combination of the following forms: (i) summaries
available for geographical areas that contain one or more small areas, (ii)
summaries for the small areas, (iii) summaries available for geographical ar-
eas fully contained in the small areas of interest, (iv) unit level records.
Hierarchical modeling is not necessarily simple, but it is flexible in combin-
ing information from different sources such as surveys, administrative records
and census data that are available at different levels of geography. The ex-
act nature of hierarchical modeling depends on the nature and availability
of data from different sources. In this section, we discuss the modeling and
estimation, and we comment on possible issue(s) associated with the use of
administrative data in small area estimation.

3.1 Area-level models

Area level models improve upon direct survey estimators by assuming a re-
lationship between the small area parameters of interest and covariates via
hierarchical models. They have the advantage that only area-level aggregate
summaries of the covariates from administrative records are needed – unit
level covariates either for the sample or the population need not be available.
Some early applications of area level models in small area estimation can
be found in Efron and Morris (1973, 1975) and Carter and Rolph (1974).
These authors used area level covariates implicitly in forming groups of sim-
ilar small areas. However, they did not explicitly use any area level covariate
in modeling and did not use complex survey data.

Let θi be the population characteristic of interest for area i, and yi the
direct survey estimate of θi, with sampling variance Di (i = 1, · · · ,m). In

9



the context of estimating per-capita income for small places (population less
than 1,000), Fay and Herriot (1979) considered the following generalization
of the Efron-Morris and Carter-Rolph Bayesian models:

Level 1 (Sampling Distribution): yi
ind∼ N(θi, Di), (1)

Level 2 (Prior Distribution): θi
ind∼ N(x′iβ,A), (2)

where xi is a p× 1 vector of known auxiliary variables derived from adminis-
trative records or other sources; Di is the known sampling variance of yi; β is
a p× 1 vector of unknown regression coefficients and A is an unknown prior
variance (i = 1, . . . ,m). The Fay-Herriot model is a special case of a multi-
level or hierarchical model where the first level captures the errors of the
direct survey estimates yi due to sampling and the second level, often called
the linking model, links the true small area parameters θi to a set of auxiliary
variables. In practice, the Di’s need to be estimated, typically using survey
data. This is indeed one of the most challenging problems in the application
of an area level model. We will discuss estimation of Di subsequently.

The Fay-Herriot model given by (1) and (2) is a special case of the general
linear mixed model (see, e.g., equation (5.2.1), page 98, of Rao and Molina
2015), and can be expressed as

yi = θi + ei = x′iβ + vi + ei, (3)

where model or linking errors {vi} and sampling errors {ei} are independent

with vi
iid∼ N(0, A) and ei

iid∼ N(0, Di) (i = 1, · · · ,m). Note that vi can be
viewed as a leftover random effect due to area i that is not explained by the
auxiliary variables.

The Best Predictor (BP) of θi when the parameters are known is ob-
tained by minimizing the mean squared prediction error (MSPE) defined as
MSPE(θ̂i) = E(θ̂i−θi)2, where the expectation E is with respect to the linear
mixed model (3). The BP of θi is given by

θ̂BPi = (1−Bi)yi +Bix
′
iβ, (4)

with
MSPE(θ̂BPi ) = (1−Bi)Di = g1i(A), say, (5)

where Bi = Di/(Di + A) is known as the shrinkage factor. For domains or
small areas with smaller sampling variances, more weight is placed on the
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direct estimator yi. Note that, under the squared error loss function, the
Bayes estimator of θi, that is, the conditional mean of θi given yi (known as
the posterior mean of θi) is identical to the BP of θi. Moreover, the associ-
ated measure of uncertainty for the Bayes estimator, that is, the conditional
variance of θi given yi (known as the posterior variance of θi) is identical to
MSPE(θ̂Bi ).

When β is unknown but A is known, the Best Linear Unbiased Predictor
(BLUP) of θi is obtained by minimizing the MSPE(θ̂i) among all linear un-
biased predictors, that is, predictors of the form θ̂i =

∑m
j=1 lijyj that satisfy

the unbiasedness condition: E(θ̂i − θi) = 0, where the expectation is with
respect to the linear mixed model (3). Using Henderson’s theory (Henderson
1953), the BLUP of θi can be obtained as

θ̂BLUPi = (1−Bi)yi +Bix
′
iβ̂
WLS (6)

where β̂ is the weighted least square estimator of β given by

β̂WLS ≡ β̂WLS(A) =

(
m∑
j=1

(1−Bj)xjx
′
j

)−1 m∑
j=1

(1−Bj)xjyj.

Note that (6) is identical to (4) except with β replaced by β̂WLS. It is straight-
forward to show that

MSPE(θ̂BLUPi ) = g1i(A) + g2i(A), (7)

where g2i(A) = B2
i x
′
i

(∑m
j=1(1−Bj)xjx

′
j

)−1
xi is the additional variability

in BLUP that is due to the estimation of β. Under standard regularity
conditions, g1i(A) = O(1), but g2i(A) = O(m−1), for large m. Thus, in the
standard small area higher-order asymptotic sense, g1i(A) contributes more
to MSPE(θ̂BLUPi ) than g2i(A) does.

Note that the normality of the linking and sampling models is not needed
to justify (6) as the BLUP of θi, though it is required to justify (4) as the
BP. Under normality and assuming a non-informative flat prior on β, θ̂BLUPi

and MSPE(θ̂BLUPi ) are identical to the hierarchical Bayes estimator of θi and
the corresponding posterior variance, respectively.

In practice, A is unknown. In small area applications, different estimators
of A such as ANOVA, the Fay-Herriot method of moments, maximum like-
lihood and residual maximum likelihood methods have been considered. An
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Empirical Best Linear Unbiased Predictor (EBLUP), say θ̂EBLUPi , is obtained
when A is replaced by an estimator, say Â. Notice that θ̂EBLUPi is a weighted
average of the direct estimator yi and the regression synthetic estimator x′iβ̂,
where β̂ = β̂WLS(Â). Different well-known estimators of A are equivalent in
terms of mean squared error (MSE), up to the order O(m−1). However, in
the higher-order asymptotic sense, the REML estimator of A has the least
bias (o(m−1)), compared to the bias of other standard estimators (O(m−1)).

It is well-known that the REML, ML and method-of-moments estimators
of A can yield zero estimates, in which case the EBLUP reduces to the
regression synthetic estimate for all areas; in other words the direct estimate
yi does not get any weight in the EBLUP formula, even for the largest area.
In order to get around this problem, Yoshimori and Lahiri (2014a), building
on earlier papers by Lahiri and Li (2009) and Li and Lahiri (2010), proposed
the following general class of adjusted maximum likelihood estimators of A
that includes most of the standard likelihood-based estimators of A available
to date:

Âh = argmaxA∈[0,∞]h(A)LRE(A),

where LRE(A) is the residual likelihood of A and h(A) is a general adjustment
term. They suggested a choice of h(A) that produces a strictly positive esti-
mate of A while maintaining the same bias and mean squared error properties
of REML, up to the order O(m−1).

The problem of finding an accurate estimator of the MSPE of EBLUP
that captures additional variability due to the estimation of A is a challeng-

ing problem. An estimator M̂SPEi of MSPEi is called second-order unbiased

or nearly unbiased if E(M̂SPEi −MSPEi) = o(m−1), under regularity con-
ditions. For the ANOVA estimator, ÂANOV A of A, Prasad and Rao (1990)
showed that

MSPE(θ̂EBLUPi ) = g1i(A) + g2i(A) + g3i(A) + o(m−1), (8)

where g3i(A) =
2D2

i

(A+Di)3
AVar(ÂANOV A), where AVar(ÂANOV A) is the asymp-

totic variance of ÂANOV A, up to the order O(m−1). Interestingly, (8) holds for
the general class of adjusted maximum likelihood estimators of A proposed by
Yoshimori and Lahiri (2014a), under regularity conditions. Prasad and Rao
(1990) noticed that a second-order unbiased estimator of MSPE(θ̂EBLUPi ) is
not obtained if we substitute Â for A. By correcting the bias of g1i(ÂANOV A),
up to the order O(m−1), they obtained the following second-order unbiased
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estimator of MSPE(θ̂EBLUPi ):

M̂SPE(θ̂EBLUPi ) = g1i(Â) + g2i(Â) + 2g3i(Â) + o(m−1), (9)

The same formula works for the REML estimator of A and the adjusted
maximum likelihood estimator of Yoshimori and Lahiri (2014a), but we need
additional bias corrections for the ML and adjusted maximum likelihood
method of Li and Lahiri (2010). Second-order unbiased estimators based on
jackknife and parametric bootstrap methods have been also proposed; see
Jiang and Lahiri (2006) and Rao and Molina (2015), for a comprehensive
review and comparison of these MSPE estimators.

Yoshimori and Lahiri (2014b) broadened the class of adjusted maximum
likelihood estimators by introducing an area specific adjustment term hi(A),
and proposed a simple second-order efficient prediction interval for θi of the

form: θ̂EBLUPi (Âhi)±zα/2
√
g1i(Âhi), where zα/2 is the 100(1−α/2) percentile

of the standard normal deviate, and θ̂EBLUPi (Âhi) is the EBLUP obtained
from the BLUP when A is replaced by Âhi . The average length of this pre-
diction interval is always smaller than that of the confidence interval based on
the direct estimator and the coverage error is of the order o(m−1), lower than
the empirical Bayes confidence interval proposed by Cox (1976). Parametric
bootstrap prediction intervals of θi based on EBLUP are also available; see
Chatterjee et al. (2008) and Li and Lahiri (2010). Such prediction intervals
have the same order of coverage error, but they are computationally intensive.
Moreover, it is not known if the average length of a parametric bootstrap pre-
diction interval is smaller than that of the direct confidence interval. Hall
and Maiti (2006) also proposed a parametric bootstrap confidence interval,
but it is based on a synthetic estimator.

One can assign prior distributions to β and A for a hierarchical Bayesian
approach. If no prior information is available, then these parameters would
typically be assigned non-informative priors (see, for instance, Berger 1985).
Datta et al. (2005) and Ganesh and Lahiri (2008) considered non-informative
priors for A with good frequentist properties that yield a proper posterior
distribution of θi. Note that the posterior mean of A, an estimator of A
under the hierarchical Bayesian approach, is strictly positive like the adjusted
maximum likelihood estimators. One advantage of the hierarchical Bayesian
approach is that it can capture different sources of uncertainties. Hierarchical
Bayes implementations for the Fay-Herriot model can be implemented by
numerical integration, Monte Carlo, Markov Chain Monte Carlo (MCMC)
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or by certain approximations such as Laplace approximation or Adjustment
for Density maximization (ADM); see Datta (2009), Morris and Tang (2011),
Rao and Molina (2015).

Although many developments in area-level models have occurred since
Fay and Herriot’s seminal 1979 paper, the Fay-Herriot model is still quite
useful in practice and in fact it is used for the production of official small
area statistics by government agencies. For instance, SAIPE uses a hierarchi-
cal Bayes implementation for the production of state level poverty estimates.
SAIPE switched from a frequentist method to a Bayesian method because
estimation of the model variance, which was previously done via maximum
likelihood, sometimes resulted in estimates of zero, which would imply that
all the weight in EBLUP is placed on the synthetic estimate for all areas,
an undesirable result. For estimation at the county level, SAIPE uses a Fay-
Herriot model on log-transformed estimates of poverty counts, where the
estimation of the parameters is done by maximum likelihood via an iterative
method which alternates between estimating A via maximum likelihood and
β via weighted least squares. Poverty mapping of Chilean comunas by the
Ministerio de Desarrollo is also done via a Fay-Herriot model, featuring a
variance stabilizing transformation. The issue of the potential for zero esti-
mates for the model variance can be handled by using the adjusted maximum
likelihood estimator of Li and Lahiri (2010).

Area level summaries from administrative records could be potentially
useful in a situation where no survey data are available for some of the areas.
For example, the CPS sample design generally does not produce any data for
a majority of U.S. counties, and so EBLUP methodology as described above
cannot be used to draw inference for these counties. However, from the
EBLUP methodology one may derive synthetic estimates for counties with
no data, using only the regression term of (6). Back in the 1990’s, the U.S.
Census Bureau found using administrative record covariates useful in small
area estimation models for poverty. This permitted estimates for counties
with no survey data. This implicitly assumes that regression coefficients
for the linking model do not change across counties. A possible alternative
solution might be to incorporate a spatial correlation into the Fay-Herriot
linking model (see Vogt 2010). An estimate derived from such a model not
only uses administrative data summaries but also uses survey estimates from
neighboring areas. However, with this appeal of the spatial models comes
the complexity in defining spatial neighborhood and in estimation of spatial
correlation. More general spatial models have been used in the small area
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literature (see, e.g., Rao and Molina 2015). However, the potential utility
of spatial models to improve small area estimation for areas with no survey
data needs further evaluation.

The sampling variance Di is assumed to be known, but must be estimated
in practice. Often, direct estimates of the sampling variance are available
from the survey used as the primary data source. However, these direct
estimates may be unreliable, or in some cases unavailable. In such cases
alternative estimates must be explored. Some approaches for this are the
use of generalized variance functions (GVF’s, see Wolter, 2007), or simpler
approaches that make assumptions about uniformity over larger levels of
aggregation to obtain “smoothed” sampling variance estimates for small ar-
eas. As an example of the former, at the inception of SAIPE, the primary
data source for annual poverty estimates was the Current Population Survey
(CPS), later to be replaced by the American Community Survey (ACS), a
survey with much larger sample size. Sampling variances of CPS estimates
at the state-level were produced but were based on small sample sizes, and at
the county-level direct sampling variance estimates were not produced. For
this reason, SAIPE obtained sampling variances estimates via GVF’s – for
the state level, a GVF with random effects was developed by Otto and Bell
(1995), and for the county level, a much simpler GVF was developed (Bell,
2016). For poverty mapping for Chilean comunas, the smallest territorial
entity in Chile, the use of a variance-stabilizing transformation eliminated
the need for sampling variance estimates, but estimates of the design effect
were needed to compute the effective sample sizes for each small area. These
were computed at the regional level to avoid unstable estimates at smaller
levels of aggregation (Casa-Cordero Valencia et al., 2016), with the under-
lying assumption that these estimates were also valid under lower levels of
aggregation.

We note that administrative data could be potentially used in estimating
Di for small areas. For example, one can use area level summaries from
administrative records as covariates in the synthetic estimators of sampling
variances of small area proportions; see Liu (2009). The method first fits
the following logistic model using data only from large areas to obtain stable
estimates of model parameters:

logit(piw) = x′iβ + εi, i = 1, · · · , I, (10)

where for the ith large area piw is a direct estimate of proportion Pi and

xi is a vector of known covariates available in area i and εi
iid∼ N(0, σ2) (i =
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1, · · · , I). Using an estimate β̂ of β using data from the large areas, synthetic
estimates of Pi for all areas are obtained as:

p̃isyn =
exp(x′iβ̂)

1 + exp(x′iβ̂)
, i = 1, · · · ,m. (11)

Finally, smoothed estimates of Di’s are obtained as:

D̂i;syn =
p̃isyn(1− p̃isyn)

ni
deffiw, (12)

where deffiw is a suitable approximation of the design effect for area i (e.g.,
design effect estimate for a large area containing the small area i).

In order to capture variation due to the estimation of sampling variances
Di and at the same time to obtain smoothed sampling variances, Liu (2009)
considered a number of integrated hierarchical models for proportions, includ-
ing non-normal models. In the context of estimating small area proportions,
one such integrated Bayesian model – an extension of the Fay-Herriot model
– is given by:

Level 1 (Sampling Distribution): yi
ind∼ N

(
θi,

θi(1− θi)
ni

deffi

)
(13)

Level 2 (Prior Distribution): θi
ind∼ N(x′iβ,A). (14)

Assuming a non-informative prior on the hyperparameters β and A and using
Markov Chain Monte Carlo (MCMC), one can easily produce the hierarchical
Bayesian estimate of Pi and sampling variance of yi as the posterior means
of Pi and θi(1−θi)

ni
deffi, respectively. Liu (2009) (also see Liu et al. 2014) eval-

uated design-based properties of such hierarchical Bayesian methods using
Monte Carlo simulations. Ha et al. (2014) compared a number of inte-
grated hierarchical models in the context of estimating smoking prevalences
in the U.S. states. An early example of an integrated hierarchical modeling
approach in small area estimation for continuous variables can be found in
Arora and Lahiri (1997). For a review of variance modeling, readers are re-
ferred to Hawala and Lahiri (2018).

The research on area-level models has been extensive. We describe here
a few extensions, though many others have been proposed in the literature.
For more information on area-level models, see also Molina and Rao (2015)
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or Pfeffermann (2013). Some extensions to area-level modeling are those
that use Generalized Linear Mixed Models, which can depart from the as-
sumptions of normality in the original Fay-Herriot model. These can be
appropriate in cases where the data are discrete, skewed, or when the model
errors are thought to be heteroscedastic. Small area estimation models via
GLMMs have been discussed by Ghosh et al., (1998) and Rao and Molina
(2015), among others. In the context of estimating poverty rates for Chilean
comunas, Ha (2013) developed an ADM approximation to the posterior dis-
tribution of small area proportions using a hierarchical Binomial-Beta model
that combines information from area level summary statistics derived from
different administrative records and complex survey data. Franco and Bell
(2015) discuss a binomial-logit normal model with multivariate and time
series extensions.

Another type of extension is subarea multi-level models, where each area
is divided into subareas, and the interest is in prediction both at the area
and subarea level. Fuller and Goyeneche (1998) introduced subarea-level
models with an application to SAIPE, where the subareas were the counties,
nested within states (areas). Subarea-level models have also been studied by
Torabi and Rao (2014), Rao and Molina (2015), and Kim et al. (2018). Er-
ciulescu et. al (2018) developed a hierarchical Bayes subarea-level model for
harvested acreage of crop commodities in U.S. counties (sub-areas) and agri-
cultural statistics districts (areas), with choices of covariates that included
administrative acreage data.

One straightforward but useful extension is the multivariate version of
the Fay-Herriot model. Multivariate Fay-Herriot models have been explored,
for instance, by Fay (1987), Datta, Fay, and Ghosh (1991), and Bell and
Huang (2012), among others. Multivariate area-level models allow for the
joint modeling of related characteristics. These could be different estimates
from the same survey or from different surveys. By jointly modeling related
characteristics, it is possible to improve the estimation by exploiting the
correlation among them. Moreover, when attempting to estimate functions
of more than one of the responses, jointly modeling properly accounts for the
correlations among model errors. For instance, one may want to estimate
the year to year change in a poverty rate, or some other characteristic based
on estimates of the same survey for two consecutive years (e.g., Arima et al.
2017).

When jointly modeling consecutive estimates from several years of data
collection, one may also choose to use time series extensions to area-level
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models. Time series extensions of the Fay-Herriot model are discussed in
Rao and Yu (1994), Ghosh et al. (1996), Datta et al. (1999), and Rao and
Molina (2015). Another growing area of research within small area estimation
is spatial and spatio-temporal models, which exploit the dependence among
data points across space. Note that space does not necessarily need to be
defined as geographic distance. See, for instance, Esteban et. al (2016), Rao
et. al (2016). These models may be explored to find alternative solutions to
the situation when survey data are unavailable for some areas for some time
points, as mentioned earlier.

In many area-level applications, summaries from different administrative
databases are used as covariates. These are likely to be subject to mea-
surement error, where such error may be defined as the difference between
the summary statistic and the value it is intended to measure. Ybarra and
Lohr (2008) stimulated a flurry of research activity on extending small area
methodologies to account for errors in the covariates when these errors are
random, as may arise when the covariates come from other surveys. In view of
this recent research productivity, one may naturally ask whether these ideas
can be applied to account for measurement error in covariates arising from
administrative records. To discuss this question, we assume that the Fay-
Herriot model (3) is the true model, but that we do not observe xi, but rather
a noisy estimate Xi of xi. Suppose that Xi = xi + ηi, ηi ∼ N(0, Ci). Under
these assumptions, two types of measurement error have been discussed in
the literature: functional (e.g., Ybarra and Lohr, 2007) and structural (e.g.,
Bell et al 2017). The former assumes that the true xi is a fixed but unknown
quantity. The latter assumes that xi is random and follows a model.

A naive model would simply ignore measurement error and treat the Xis
as if they were the true xis. The resulting predictor would be of the form

θ̂NVi = (1− B̂i,NV )yi + B̂i,NVX
′
iβ̂NV . (15)

where Bi is the same as in (4). The estimators of β and Bi are given the
subscripts NV because the model parameter estimates obtained assuming the
naive model is true do not converge to the true β and A in (3) .

The implied model in expression (15) models the relationship between
the true quantities θi and the noisy estimates Xi of the true quantity xi,
rather than modeling the relationship between the two true quantities θi and
xi, which is more reasonable. Prediction results will differ between the naive
models and measurement error models, except in special cases. The naive
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model also assumes homoscedasticity of the residuals yi − X ′iβ, which will
not hold when the Ci’s differ accross domains. Bell et. al (2017) compare
the effects on MSPE’s from using the naive, functional, or structural models,
assuming either the structural or functional models are true.

Expressions for Empirical Best Linear Unbiased Predictors (EBLUPs)
for functional and structural measurement error models can be found, for
instance, in Ybarra and Lohr (2008) and Bell et. al. (2017). We now point
out a few challenges in implementing these predictors when the Xi are drawn
from adminstrative records. First, applying measurement error models re-
quires estimates of the Ci. When the Xi’s are derived from administrative
records, it is not clear how one should define and estimate Ci in the presence
of a multitude of possibly unknown sources of errors. Holt (2007) noticed a
clear lack of statistical theories for assessing the uncertainty of register-based
statistics. Zhang (2012) discussed some possible theories for statistics based
on registers, but did not put forward any concrete suggestion for defining the
MSE of register-based statistics. Secondly, confidentiality aspects of most
administrative data in the U.S. limits the prospect for advancement of re-
search in understanding the theory of statistics derived from administrative
data. Finally, though measurement error models assume Ci is known, their
optimality properties are not guaranteed when Ci is estimated.

The literature on measurement error can shed some light on what hap-
pens when there is random error in covariates derived from adminsitrative
records provided that the measurement error model, whether functional or
structural, is reasonable for the inherent measurement error in the appli-
cation in question. Bell et al. (2017) show that the naive model discussed
above, which ignores measurement error, can lead to misstated mean squared
errors when either the structural or functional measurent error models are
true. Exceptions to this arise when the structural measurement error model
is true and occur for areas where Ci = C̄, where C̄ is the mean of the Cis, in
which case the predictions are the same for the structural and naive models.
It follows that if Ci is constant for all areas then the naive and the struc-
tural measurement error predictors give the same results for all areas, but
in other cases the results differ. However, the measurement error models
discussed above cannot currently be used to correct for measurement error
in the covariates drawn from administrative records even when it is reason-
able to assume a measurement error model holds, due to the difficulties in
determining the Cis.
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3.2 Unit-level models

As noted in the last section, uncertainty due to estimation of the sampling
variances of direct estimators cannot be incorporated in an area level model
without additional information on sample design and within area variation
information. In order to capture this additional uncertainty, we need obser-
vations within each area. Let ni be the sample size for the ith area and yij
be the value of the study variable for the jth unit (e.g., person, household,
farm, etc.) of the ith small area population (i = 1, · · · ,m; j = 1, · · · , ni).
One possible model is the following:

Level 1 (Sampling Distribution): yij|θi
ind∼ N(θi, σ

2
e), (16)

Level 2 (Prior Distribution): θi
ind∼ N(x′iβ, σ

2
v), (17)

i = 1, · · · ,m; j = 1, · · · , ni, where xi is a p × 1 vector of area specific
known auxiliary variables (some of them could be summaries from adminis-
trative records); σ2

e and σ2
v are within and between area unknown variance

components, respectively.
The model described by equations (16)-(17) can be written in the follow-

ing linear mixed model form:

yij = x′iβ + vi + eij, i = 1, · · · ,m; j = 1, · · · , ni, (18)

where area specific random effects {vi} and the random error {eij} are in-
dependent with vi ∼ N(0, σ2

v) and eij ∼ N(0, σ2
e). We are interested in

predicting the mixed effect θi = x′iβ + vi. Note that if σ2
e is known, we can

equivalently use the area level model, discussed in the previous subsection,
on the sample mean ȳi = n−1i

∑ni

j=1 yij with Di = σ2
e/ni and A = σ2

v .
The two-level model (16)-(17) or the linear mixed model (18) allows for

estimation of both the variance components and accounts for uncertainty
due to estimation of both the variance components. One advantage of the
model is that we do not need an auxiliary variable information at the unit
level, which would require complex linking procedures, especially when the
auxiliary information comes from administrative records.

The exchangeability assumption in the sampling error model (16), how-
ever, is rather strong. It is possible to relax the modeling assumption if the
auxiliary variables are available for all sampled units and some summary in-
formation about the auxiliary variables is available for the non-sampled units
in each small area. Such a situation was considered by Battese et al. (1988).

20



They proposed an EBLUP method to predict areas under corn and soybean
for 12 counties of north-central Iowa using the 1978 June Enumerative Survey
(JES) and satellite (LANDSAT) data.

Although satellite data may not be categorized as administrative records,
it will be instructive to discuss how Battese et al. (1988) linked LANDSAT
data to survey data. The unit for recording the satellite information is a
pixel (about 0.45 hectares), a term used for “picture element”, and the unit
of measurement for the survey data is a farmer. Thus the units of measure-
ments for these two databases are different, which could often be the case
when survey data are to be linked with administrative records. Before imple-
menting an EBLUP methodology, a data preparation step was thus needed
to define a common unit for which aggregates from both survey and satellite
data can be obtained.

Battese et al. (1988) considered segment (about 250 hectares), the pri-
mary sampling unit (PSU) of the JES, as the common unit for the two
databases. The areas under corn and soybean for each sampled segment
were determined by the USDA Statistical Reporting field staff by interview-
ing farm operators. Using USDA procedures, recordings from LANDSAT
during August and June 1978 were used to classify crop cover for all pixels
in 12 counties, and this information was used to obtain areas under corn and
soybean for all sampled and non-sampled segments in the 12 counties. There
can be, however, errors in assigning pixels to the right segment or classifying
a pixel to the right crop. There could also be potential errors in compiling
data at the segment level from the information obtained from the farmers in
JES. Battese et al. (1988) ignored such possible errors in developing their
EBLUP method.

Let Ni be the population size and yij be the value of the study variable for
the jth unit of the ith small area population (i = 1, · · · ,m; j = 1, · · · , Ni).
Suppose we are interested in estimating the finite population mean Ȳi =
N−1i

∑Ni

j=1 yij, or, equivalently, the finite population total NiȲi when Ni is

known. In Battese et al. (1988), Ni is the number of segments and Ȳi is the
average hectare of crop per segment for county i, the parameter of interest.

Battese et al. (1988) considered the following linear mixed model, com-
monly referred to as a nested error regression model:

yij = x′ijβ + vi + eij, (19)

i = 1, · · · ,m; j = 1, · · · , Ni, where xij is a p × 1 column vector of known
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auxiliary variables; {vi} and {eij} are all independent with vi
iid∼ N(0, σ2

v)

and eij
iid∼ N(0, σ2

e). Thus they assumed the model holds for all the units of
the finite population.

We can also write the model as a two-level model:

Level 1: yij|vi
ind∼ N(x′ijβ + vi, σ

2
e) (20)

Level 2: vi
iid∼ N(0, σ2

v), (21)

i = 1, · · · ,m; j = 1, · · · , Ni.
A model-dependent estimator of Ȳi can be written as

ˆ̄Yi = fiȳi + (1− fi) ˆ̄Yir, (22)

where fi = ni/Ni, the sampling fraction, and ˆ̄Yir is a model-dependent pre-
dictor of Ȳir = (Ni − ni)

−1∑
j /∈si yij, with si being the sample for area i

(i = 1, · · · ,m). For the Bayes or Best Predictor of Ȳir, we have

ˆ̄Yir = x̄′irβ + ṽi, (23)

where x̄ir = (Ni − ni)−1
∑

j /∈si xij, and ṽi ≡ ṽi(β, λ) = [1− Bi(λ)](ȳi − x̄′iβ),

with Bi ≡ Bi(λ) = λ/(λ+ ni), and λ = σ2
e/σ

2
v .

In an EB setting, one would estimate the hyperparameters using a classi-
cal method. For example, one can estimate β by the weighted least squares
estimator with estimated variance components and REML to estimate the
variance components. One can then use a resampling method (e.g., Jiang
et al. 2002) or Taylor series (e.g., Datta and Lahiri 1999, Das et al. 2004)
method to estimate the MSE. Confidence intervals can be obtained using the
parametric bootstrap method of Chatterjee, Lahiri and Li (2008).

In a HB setting, one would put a prior on the hyperparameters. Typically,
enough data will be available to estimate β and σ2

e so that one can use any
reasonable noninformative prior distribution. For example, one can assume
that apriori β and σe are independent and β and σe have improper uniform
priors in the p-dimensional Euclidean space and positive part of the real
line, respectively. The prior on σv is less clear cut. See Gelman (2006).
One suggestion is to put an improper uniform prior on σv. MCMC can be
applied to carry out the fully Bayesian data analysis for a variety of inferential
problems. See Molina and Rao (2015) for various extensions of the nested
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error model proposed by Battese et al. (1988) and the different estimation
methods.

Heteroscedasticity in the distribution of eij is common in real applications.
One solution proposed in the literature is to assume nested error regression
model (19) on some suitable transformations (e.g., logarithm) of the data of
study and auxiliary variables. As the heterogeneity problem persists even
after such transformations, Molina et al. (2014) suggested to replace σ2

e by
kijσ

2
e in the nested error regression model, where kij is known. In many real

applications, however, it is not easy to choose kij. In a poverty mapping
application, Elbers et al. (2003) discussed this problem of heteroscedasticity
at length and suggested certain complex modeling on the sampling variances.
The nested error regression modeling assumption on the transformed study
variable and/or the estimation of complex non-linear parameters such as the
poverty gap and poverty severity (see Foster et al. 1984) require availability
of auxiliary variables not only for the sampled units but also for all units in
the population, which limits the use of such models in many applications.

In an effort to provide a solution to the heteroscedasticity problem that
does not require transformations, Bellow and Lahiri (2012) considered a
nested error regression model (19) with σ2

e replaced by xδijσ
2
e , where xij is

a size variable available in a list frame, and δ is a parameter to be estimated
from the data.

Another potential solution that avoids transformation was suggested by
Gershunskaya and Lahiri (2018). The predictor of Ȳir is derived from a model
(denoted N2) that is obtained from the nested error regression model (19)
with the distribution of eij following a mixture of two normal distributions
with zero mean but different variances:

eij|zij
ind∼ (1− zij)N(0, σ2

1) + zijN(0, σ2
2), (24)

where the mixture part indicators zij are independently identically distributed
Bernoulli random binomial variables with a common success probability π
(probability of belonging to part 2). Gershunskaya and Lahiri (2018) ob-
tained the following empirical best predictor (EBP) of Ȳir:

ˆ̄Y N2
ir = x̄′irβ̂

N2 + v̂N2
i , (25)
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where

β̂N2 =

(
m∑
i=1

ni∑
j=1

wijxijx
′
ij

)−1 m∑
i=1

ni∑
j=1

wijxij(yij − v̂N2
i ) (26)

v̂N2
i =

σ2
v

DN2
i + σ2

v

(ˆ̄yN2
i − ˆ̄xN2′

i β̂N2) (27)

with

wij = σ̂−21 (1− ẑij) + σ̂−22 ẑij, ẑij = E(zij|yij, xij, φ̂)

DN2
i =

(
ni∑
j=1

wij

)−1
,

ˆ̄yN2
i =

(
ni∑
j=1

wij

)−1 ni∑
j=1

wijyij, ˆ̄xN2
i =

(
ni∑
j=1

wij

)−1 ni∑
j=1

wijxij,

and the hyperparameters φ = (β, σ2
1, σ

2
2, σ

2
v , π) are estimated using EM

algorithm.
Note that ˆ̄yN2

i accounts for outliers. While ˆ̄yN2
i resembles a “direct es-

timator,” unlike direct estimators, it depends on units from other areas
through the estimates of variances and the probabilities of belonging to
part 2 of the mixture. Each observation has its own conditional probability
P (zij = 1|yij, xij, φ̂) = E(zij = 1|yij, xij, φ̂) of belonging to part 2 of the mix-
ture so that the observations in the sample can be ranked according to these
probabilities. The estimate of β̂N2 (thus, the synthetic part of the estimator)
is outlier robust because the outlying observations would be classified with
a higher probability to the higher variance part of the mixture; hence, they
would be “down-weighted” according to the formula for β̂N2.

Gershunskaya and Lahiri (2018) proposed the following overall bias-corrected
EBP of Ȳir:

Ŷ N2+OBC
ir = Ŷ N2

ir + n−1sR
m∑
i=1

ni∑
j=1

ψb(e
N2
ij /s

R),

where eN2
ij = yij − x′ijβ̂N2 − v̂N2

i , sR is a robust measure of scale for the set
of residuals {eN2

ij , i = 1, · · · ,m; j = 1, · · · , ni}, and n =
∑

i=1 ni, the overall
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sample size. They considered sR = med|eN2
ij −med(eN2

ij )|/0.6745, and ψb is a
bounded Huber’s function with the tuning parameter of b = 5.

One potential problem in using unit level covariates from administrative
records is that covariate information could be missing for a number of units.
In such a case, one may consider a solution proposed by Bellow and Lahiri
(2012) although they encountered the problem in a covariate from a list
sampling frame. Following Bellow and Lahiri (2012), one can divide the
administrative records into two groups – group 1 where unit level covariates
are not missing and group 2 where unit level covariates are missing. One can
then apply an EBP or Bayesian method using the nested error model (19)
with the unit level covariate for group 1 and apply an alternative method
for group 2. For instance, one can use EBP or Bayesian approaches without
the covariates that are missing units or a simpler method such as a synthetic
method used by Bellow and Lahiri (2012). Estimates from these two groups
can then be combined in an appropriate way. More research is needed to
address the issue of missing unit level covariates.

4 An Application

We have mentioned the U.S. Census Bureau’s SAIPE program throughout
the chapter to illustrate concepts related to data preparation and modeling.
In fact, SAIPE is a good example of a successful implementation of a small
area program by a government agency. In this section, we use past data
similar to those used by SAIPE to show readers how one might analyze
survey data using covariates from administrative records to produce small
area statistics.

From Section 2, recall SAIPE produces poverty statistics for various age
groups at different levels of geographic aggregation in the U.S. – at the state
level, county level, and at the school district level. The estimates for related2

school-aged (aged 5-17) children in poverty at the school district level are
used for the allocation of funds by the U.S. Department of Education – over
$16 billion in the fiscal year 2014. The primary data source for SAIPE’s area
level models are estimates from the American Community Survey (ACS),
which samples approximately 3.5 million addresses per year. SAIPE uses
data from administrative records as a source of auxiliary information for all

2“Related” here refers to children in families.
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age groups and levels of geographic aggregation. The main sources of covari-
ates from administrative records are selected tax records obtained from an
interagency agreement with the IRS and data from the Supplemental Nutri-
tional Assistance Program (SNAP). For estimates for the over 65 population
SAIPE uses data from the Supplemental Security Income (SSI) program in-
stead of SNAP. Some of the issues associated with using these administrative
records as covariates were discussed in Section 2. SAIPE also uses estimates
from the 2000 Census long-form as covariates. The census long-form, a survey
that used to be part of the decennial census data collection, was discontin-
ued after 2000 and was replaced by the ACS. Research has been conducted
to explore replacing the 2000 Census long-form estimates by more current
estimates based on 5 years of ACS data collection (Huang and Bell, 2012,
Franco and Bell, 2015).

Much has been written about SAIPE over the years. See, for instance,
the recent book chapter by Bell et al. (2016), or the many other publications
available at the SAIPE website: https://www.census.gov/programs-surveys/
saipe/library.html. Here, we focus on how to analyze data for school-aged
children in poverty at the state level using data from the Current Popula-
tion Survey (CPS) and associated administrative records tabulations for the
year 1993. The CPS, sponsored jointly by the U.S. Census Bureau and the
Bureau of Labor statistics, is primarily designed to produce monthly esti-
mates related to labor force participation and employment, and is used to
produce national unemployment rates, among other statistics. It has a mul-
tistage probability sample design. For more information about the CPS,
see http://www.census.gov/programs-surveys/cps.html. As a histori-
cal note, SAIPE used data from the CPS from its inception until the year
2004. Starting in 2005, SAIPE began using data from the ACS due to its
larger sample size – the ACS sampled approximately 3 million addresses per
year at the time, whereas CPS sampled approximately 100,000 addresses in
2005. In the year 1993, CPS sampled about 60,000 addresses.

The data set we use here is from Bell and Franco (2017), available at
https://www.census.gov/srd/csrmreports/byyear.html. The compressed
set of files included there contains the text files cps93p.txt and CEN89RES.txt,
among others. The colums corresponding to the ages 5-17 in these files con-
tain the variables we use here, at the state level, for the year 1993. All but
the last variable listed below are in the cps93p.txt file. The last variable is
in the CEN89RES.txt file.
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• cps93 – The direct CPS estimated poverty rates for related children
ages 5-17.

• irspr93 – The pseudo-poverty rates tabulated from IRS tax data.
These are defined as the number of child tax exemptions for poor house-
holds divided by the total number of child tax exemptions.

• irsnf93 – The tax non-filer rates tabulated from IRS tax data, defined
as the difference between the estimated population and number of tax
exemptions under age 65, divided by the estimated population under
age 65.

• fs93 – The Food Stamp participation proportions. As pointed out in
Section 2, the Food Stamp Program changed its name to the Supple-
mental Nutritional Assistance Program (SNAP) in 2008 . This variable
is the average monthly number of individuals receiving food stamps over
a 12-month period, as a percentage of the population.

• smpsize – The CPS sample size (number of interviewed households).

• fnlse – The GVF estimates of sampling standard errors from the CPS.
These are computed using the GVF developed by Otto and Bell (1995),
using an iterative procedure that alternates between estimation of model
parameters via maximum likelihood and estimation of the sampling
standard errors.

• cen89rsd – The residuals obtained by fitting a Fay-Herriot model to
the estimates of children in poverty from the 1990 census, with anal-
ogous covariates to those used here but for the year 1989. These are
found in the “Age 5-17” column of the file CEN89RES.

In some years, the census residuals were replaced in the SAIPE production
model by the census estimates of children in poverty. See Bell et al. (2016)
for more details.

We conduct analysis in the spirit of Bell et al. (2007), which performs
analysis of ACS data and related covariates to produce county-level poverty
estimates. We use some of the same model selection and diagnostic tools as
in this technical report as an illustration of how such an analysis might be
done in practice. The data set we use in this chapter is for research purposes
only and may differ sightly from that used in actual SAIPE production.
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We fit a Fay-Herriot model, given by equations (1) and (2). Here, yi is
given by cps93 for each state, xi is given by an intercept term, and irspr93,
irsnf93, fs93, cenrsd, and Di is given by fnlse2, again, for each state. The
analysis here is done with the “sae” package in R (Molina and Marhueda,
2015), and we invite the reader to replicate the analysis as an exercise.

We first explore the relationships between the covariates and the response.
Figure 1 plots these against each other. All covariates appear to have a posi-
tive correlation with CPS direct estimates of poverty, though these relation-
ship appears to be stronger for the Food Stamp participation rate and the
IRS pseudo poverty rate. Both of those covariates are from administrative
records. Note that the true relationship between the covariates and the true
poverty rate is masked by the sampling variance of the CPS estimates.

We then fit the Fay-Herriot model to the CPS poverty rates using all com-
binations of the four covariates described above. The 15 models considered
are listed in Table 2.

The models are fit using using restricted maximum likelihood estimation
to estimate the model variance. Table 1 shows results for the regression
coefficients. Note that all regression coefficients are significant at the 0.05
significance level, and that, as suggested by Figure 1, all coefficients are
positive. Table 2 shows the estimated model variances and AIC’s for all
models. The lowest AIC and the lowest model variance corresponds to the
model including all covariates. This is not surprising since all the t-statistics
are significant and since the model with all covariates is the one that was used
for production. The largest estimated model variance is for the model with
the Census residuals as the only covariate. However, the census residual
covariate is intended to be used in conjunction with the other covariates.
Since a model similar to that used for the year 1993 was used to produce
them (using census poverty estimates and covariates corresponding to the
year 1989), the residuals reflect variation in the model not explained by the
administrative record covariates. This is only relevant when such covariates
are in the model. The next highest model variance and AIC is for the model
with only the IRS non-filer rate. A high model variance implies less shrinkage
towards the synthetic estimator, which contains the information from the
auxiliary variables, and thus a greater weight on the direct survey estimate.

In practice, one may also consider other model forms and transformations
of the data, but we do not pursue them here. We now look at some model
diagnostics for the model with all four covariates (M1234), which had the
lowest AIC and model variance. In particular, we study the standardized

28



10 15 20 25 30

10
20

30
40

50
(a)

IRS pseudo poverty rates

19
93

 C
P

S
 p

ov
er

ty
 r

at
es

8 10 12 14 16 18

10
20

30
40

50

(b)

IRS non−filer rates

19
93

 C
P

S
 p

ov
er

ty
 r

at
es

6 8 10 12 14 16 18

10
20

30
40

50

(c)

Food stamp participation rates

19
93

 C
P

S
 p

ov
er

ty
 r

at
es

−3 −2 −1 0 1 2 3

10
20

30
40

50
(d)

Census residuals

19
93

 C
P

S
 p

ov
er

ty
 r

at
es

Figure 1: CPS poverty rates for school-aged children plotted against (a)
IRS pseudo-poverty rates, (b) IRS non-filer rates (c) Food Stamp (SNAP)
participation rates, (d) Census 1990 residuals

residuals, defined here as:

ri =
(yi − x′iβ̂)√
var(yi − x′iβ̂)

.

When the parameters are known, var(yi−x′iβ) = Di+A, so we use Di+Â
as a somewhat naive approximation to var(yi − x′iβ̂). More accurate vari-
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Table 1: Regression prediction results for model with four regressors
Variable Coefficient S.E. t Pr > |t|
Intercept −3.477 2.224 −1.564 0.118
IRS pseudo-poverty rate 0.267 0.125 2.144 0.032
IRS non-filer rate 0.509 0.156 3.261 0.001
Food stamp participation rate 1.185 0.268 4.429 <0.001
Census residuals 1.261 0.413 3.050 0.002
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Figure 2: Model diagnostic plots: (a) Standardized residuals plotted against
model predictions (b) Quantile to quantile plot of standardized residuals (c)
Histogram of standardized residuals

ance estimates can also be calculated under this model, but for simplicity we
omit these calculations here. Figure 2(a) shows these standardized residuals
plotted against the model fitted values x′iβ̂. All values are between -3 and
3, indicating an absence of extreme outliers, and there does not appear to
be a systematic difference between the standardized residuals and the fitted
values. Under the model, these residuals should be normal and independent
of the fitted values, and Figure 2(a) does not appear to contradict this. Fig-
ures 2 (b)-(c), a quantile to quantile plot with a normal distribution and a
histogram of the residuals, also do not suggest severe deviations from the
normality assumption.

We now explore the differences between the direct estimators and the
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Table 2: Model Comparison
Model Regressors Model Variance AIC
M1 IRS pseudo poverty rate 12.803 316.638
M2 IRS non-filer rate 25.307 341.525
M3 Food Stamp participation rate 6.049 294.007
M4 Census residuals 30.631 345.437
M12 IRS pseudo poverty rate, 7.972 308.810

IRS non-filer rate
M13 IRS pseudo poverty rate, 6.051 295.332

Food Stamp participation rate
M14 IRS pseudo poverty rate, 9.741 311.074

Census residuals
M23 IRS non-filer rate, 3.449 290.033

Food Stamp participation rate
M24 IRS non-filer rate, 24.310 339.345

Census residuals
M34 Food Stamp participation rate, 5.468 289.568

Census residuals
M123 IRS pseudo poverty rate, 3.061 290.188

IRS non-filer rate,
Food Stamp participation rate

M124 IRS pseudo poverty rate, 4.418 300.373
IRS non-filer rate,
Census residuals

M134 IRS pseudo poverty rate, 4.85 289.749
Food Stamp participation rate,
Census residuals

M234 IRS non-filer rate, 3.257 285.264
Food Stamp participation rate,
Census residuals

M1234 IRS pseudo poverty rate, 1.703 282.601
IRS non-filer rate,
Food Stamp participation rate
Census residuals

model predictions. Figure 3 plots these against each other, along with the
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y = x line. Note the difference between the domain and the range – the di-
rect estimators have more extreme values. This is because shrinkage causes
smoothing; for instance, the two highest values for the direct estimates cor-
respond to smaller model predictions.
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Figure 3: Model predictors vs. direct estimates for 1993 school-aged children
in poverty based on CPS data, and y = x line

Figures 4 (a) and (b) displays the ratios of standard errors and coefficients
of variation of the modeled estimates over the direct estimates, respectively.
Note large reductions in both standard errors and coefficients of variations
can be achieved by modeling in this application. In fact, in all but one state,
the standard errors are lower for the model estimates than for the direct
estimates, with a median decrease of 57%, and range of decrease of −1% to
67%.

Of course, measurement error in the covariates, if present, would not be
captured or reflected in the results under this model. Nonetheless, this appli-
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Figure 4: Ratios of standard errors (a) and of coefficients of variation (b) of
modeled estimates over direct CPS estimates

cation illustrates that impressive improvement in inference can be achieved
through using administrative records in small area estimation models.

5 Concluding Remarks

We critically reviewed different statistical models and methods that can be
used to improve small area estimation by utilizing information extracted from
administrative records. While extensive research has been done in develop-
ing small area methodology that combines survey data with aggregate-level
statistics derived from administrative records, more research is still needed
to incorporate linkage errors that arise from probabilistically linking records
from different databases. Some early work in this area can be found in
Han and Lahiri (2018) and Han (2018). Sustained collaboration between re-
searchers in government agencies, industry, and academia may significantly
advance progress in this challenging research area.

We also need to emphasize that protecting data confidentiality associated
with administrative data is vital. One way to maintain confidentiality and
yet have usable auxiliary data is to develop more synthetic data that match
the key properties of the real data but are not themselves confidential or
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sensitive.

6 Exercises

Data for the following exercises are from Bell and Franco (2017) at
https://www.census.gov/srd/csrmreports/byyear.html. See Section 4
for more information on these data.

Exercise 1. Use the files cps93p.txt and CEN89RES.txt, as described
in Section 4, to perform the following analysis:

(a) Fit the full Fay-Herriot model to the data, using all of the available
covariates, and using REML to estimate the model parameters. Provide
summary results for the estimated model parameters. Determine whether
the estimated parameters associated with the different administrative data
sources are significant. These results should match those of Section 4.

(b) Compute estimated shrinkage coefficientsBi = Di

Di+Â
, for all the states.

Exercise 2. Use the data in cps97p.txt and CEN89RES.txt for ages 5-17
to answer the following questions:

(a) Fit the full Fay-Herriot model to the data, using all of the available
covariates, and using REML to estimate the model parameters. The descrip-
tion of the variables for the 1993 and the 1997 datasets is the same, and is
given in Section 4. Provide summary results for the estimated model pa-
rameters. Determine whether the estimated parameters associated with the
different administrative data sources are significant.

(b) What implications does the estimate of the model variance Â have
on the weights placed on the direct estimates? What are the shrinkage coef-
ficients for each of the states?

Exercise 3. Replicate the analysis in Exercise 1 and Exercise 2 using
a hierarchical Bayesian approach. See Section 3.1. for choices of prior dis-
tributions to β and A and for choices of model fit and estimation. How do
the model parameter estimates compare? In each case, provide the shrinkage
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coefficients.

Exercise 4. Lahiri and Pramanik (2011) computed estimates for the
shrinkage coefficient, Bi, based on the full Fay-Herriot models fitted to the
1993 and the 1997 data, using the following three methods:

• Exact Bayesian posterior distribution of Bi,

• The estimation method (ADM) mentioned in Section 3.1,

• The first-order Laplace approximation (Kass and Steffey, 1989).

Table 3 displays the exact posterior means and variances of B̂i, for the
four chosen states, California (CA), North Carolina (NC), Indiana (IN) and
Mississippi (MS), representing both small (i.e., large Di) and large (i.e., small
Di ) states.

Table 3: Estimates of the shrinkage coefficients based on Fay-Herriot models
to SAIPE state-level data; see Lahiri and Pramanik (2011) for details.

Year Posterior mean Posterior variance
State Exact ADM Laplace Exact ADM Laplace

1993 CA 0.47 0.37 0.56 0.038 0.023 0.093
NC 0.62 0.55 0.72 0.030 0.025 0.061
IN 0.80 0.77 0.87 0.014 0.014 0.019
MS 0.81 0.79 0.89 0.012 0.012 0.015

1997 CA 0.68 0.60 1.00 0.037 0.041 0.987
NC 0.84 0.81 1.00 0.014 0.018 0.120
IN 0.87 0.85 1.00 0.010 0.013 0.071
MS 0.92 0.91 1.00 0.005 0.005 0.021

Use the data from cps93p.txt, cps97p.txt, and CEN89RES.txt for ages 5-
17 to answer the following questions:

(a) Compare your results in Exercise 1 (c), Exercise 2 (d), for California
(CA), North Carolina (NC), Indiana (IN) and Mississippi (MS), with the
posterior means of Bi in column Laplace, in Table 3.

(b) Using the posterior means of Bi in column ADM, in Table 3, compute
the estimated model (random effects) variance under the Li-Lahiri method.
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(c) Give a Taylor approximation expression to the variance of the shrink-
age coefficient for the general Fay-Herriot model.

(d) Compute estimates of shrinkage coefficients and their estimated Tay-
lor approximated variance using the expression in (c), evaluated at the REML
point estimates for the model (random effects) variances constructed in Exer-
cises 1 and 2, and at the ADM point estimate for the model (random effects)
variances constructed in (b). How do the estimated Taylor approximated
variances compare to the estimated variances in Table 3?
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