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Introduction

In [6], John von Neumann created the mathematical foundation of quantum mechanics:
to do so he formulated the theory of general Hilbert spaces and of the linear operators, both
bounded and unbounded, on such spaces. A centerpiece of this theory is the existence of a
spectral resolution for a self-adjoint operator T : D ✓ H ! H acting on a complex Hilbert
space H, that is, of the following representation of such an operator as the Stieltjes integral
with respect to an increasing path {E�}�2R of orthogonal projections on H:

(1) Th =

Z 1

�1
� dE�h for all h in D.

He “sketched in broad outline” ([6, p. 154]) his method of proof, which proceeded as follows:
he first established a spectral resolution for a bounded unitary operator, that is, for a bounded
operator T : H ! H for which T ⇤ = T�1, and then for a general self-adjoint operators T : D ✓
H ! H by passing to its Cayley transform (T + ı · I)(T � ı · I)�1, which is unitary.
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Since then many di↵erent proofs and formulations of the existence of a spectral resolution
have been given. We mention two of these: In [2], Nelson Dunford and Jacob Schwartz first
used Gelfand’s theory of B⇤ algebras to establish a spectral resolution for a bounded linear
operator that is normal, that is, for a bounded linear operator T for which T ⇤T = TT ⇤; and
then for a general self-adjoint operator T , by passing, via the Riesz-Dunford resolvent calculus,
to the operator (T � z · I)�1, which is normal; In [4], Peter Lax, following Doob and Koopman
[1], proved a representation theorem of Herzglotz-Riesz for the boundary values of a function
that is analytic on the upper half-plane, and a theorem of Nevinlinna regarding the growth
of analytic functions with positive imaginary part. He used these two results to examine the
behavior, for a self-adjoint operator T, of the resolvent function z 7! (T � z · I)�1, which is
analytic in the upper half-plane, and thereby proved the existence of a spectral resolution of T.

Paul Halmos observed that the spectral resolution, even for bounded symmetric operators,
is “widely regarded as mysterious and deep”([3, p. 241]) and often is viewed as lying only
in the domain of the specialist. One reason for this is that, as von Neumann already noted
([6, p. 119]), the integral representation (1) is not easily recognizable as being related to the
eigenvalue problem Th = �h. Moreover, frequently, as in [2] and [4], the resolution is expressed
not as a Stieltjes integral with respect to a path of orthogonal projections but as an integral with
respect to a projection-valued measure on the Borel sets of the spectrum of T, which is quite
far from the eigenvalue problem Th = �h. A further reason is that, in many comprehensive
texts (see, for instance, [2], [4], [10]), a proof of the existence of a spectral resolution is given
by relying on material that spans the preceding several hundred pages, making it di�cult to
discern what comprises the essential ingredients of a particular proof. Finally, we note that in
many presentations either extra assumptions are made (for instance, separability of H in [7])
or uniqueness is not addressed (for instance, in [4]).

Our goal here is to address the above points. We present a direct, fully detailed and
self-contained, proof of the existence of a unique spectral resolution for an unbounded self-
adjoint operator T : the concept of spectral resolution is precisely the original one defined by
von Neumann ([6, p. 118]). This proof is based on the equivalence of the integral representation
(1) for T to a property of the eigenvalue problem Th = �h. More precisely, let {E�}�2R be
a right-continuous, increasing path of orthogonal projections on H with the property that
h =

R1
�1 dE�h for all h in H. Let T : D ✓ H ! H be self-adjoint. We prove that

(2) D =

⇢
h in H

����
Z 1

�1
�2 dhE�h, hi < 1

�
and Th =

Z 1

�1
� dE�h for all h in D

if and only if for ↵ < �, T maps E�(H) \ [E↵(H)]? into itself and

(3) kTh� �0hk  (� � ↵)khk for all h in E�(H) \ [E↵(H)]? and �0 in [↵,�].

In section 1.1, we establish elementary algebraic properties of orthogonal projections and
elementary results regarding Stieltjes integration of a continuous real-valued function with re-
spect to a path of orthogonal projections, based on which we prove the equivalence of (2)
and (3) in the case T in L(H) symmetric. The following section is devoted to constructing a
functional calculus for f(T ), for T in L(H) symmetric and f is a bounded, real-valued Borel
function on the spectrum of T. For completeness and clarity, the entirety of the background
in spectral theory for bounded symmetric operators that we need to construct this calculus
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is established from scratch in the brief subsection 1.3. In subsection 1.4, we prove that, for
T in L(H) symmetric, if we define, for � in R, E� ⌘ f�(T ), where f� is the characteristic func-
tion of the interval (�1, �], then {E�}�2R is the unique right-continuous, increasing path of
orthogonal projections with the property that h =

R1
�1 �dE�h for all h in H for which (3), and

hence (2), holds.
In Section 2, we turn to the proof of the existence of a unique spectral resolution for an

unbounded self-adjoint operator. We follow the approach of using bounded approximations, as
in [10]. We observe that a few points in [10] need touching up (for instance, the actual definition
of the integral on the right-hand side of (2) (see [10, ]), and the lower value of the integrand in
the case of bounded operators (see the footnote on [, ] ). By first proving the equivalence of (2)
and (3) these points are clarified. Moreover, of course, this equivalence also explicitly reveals the
relationship between a spectral resolution of T and the eigenvalue problem Th = �h. The proof is
based on the approximation of such an operator by a sequence of bounded symmetric operators.
Indeed, let T : D ✓ H ! H be self-adjoint. If {Hn} is an ascending sequence of closed subspaces
of H for which [1

n=1Hn is a dense subset of D and T maps each Hn into itself, we call the
sequence {T : Hn ! Hn}1n=1 a sequence of bounded approximations of T : D ✓ H ! H. A
theorem of Hellinger and Toeplitz tells us that each approximant T : Hn ! Hn is a bounded
symmetric operator. Work of Lorch, Nagy and Riesz (see [9] and [10]) may be synthesized in
what we call the Bounded Approximation Theorem: every self-adjoint operator T : D ✓ H ! H
has a sequence of bounded approximations {T : Hn ! Hn}1n=1, and, for any such sequence, if,
for each n, Qn is the orthogonal projection of H onto Hn, the domain D comprises those h in H
for which {TQnh}1n=1 is bounded and for each such h, Th = limn!1 TQnh. We postpone a
detailed proof of this theorem until the final section. By passage to the limit as n ! 1, we
first deduce the equivalence of (2) and (3) for a self-adjoint operator T : D ⇢ H ! H from
the equivalence of these for each approximant, and then deduce that (3) holds since it holds
for each approximant. We establish uniqueness by taking the limit for a special approximating
sequence.

A remark regarding the origins of the spectral resolutions of a self-adjoint operator is in
order. For a symmetric operator T in L(H), the origins of this development lie in the seminal
work of David Hilbert and his student Erhard Schmidt on eigenvalue problems for integral
equations. John von Neumann [5], Frederick Riesz [8] and Marshall Stone [12] were the first to
consider the spectral resolution of a self-adoint operator T : D ✓ H ! H.

Throughout, H denotes a complex Hilbert space, equipped with a Hermitian inner-product
h·, ·i. The orthogonal complement of a subspace V ofH is denoted by V ?. The space of bounded
linear operators on H is denoted by L(H). An operator T in L(H) is said to be invertible
provided it is is one-to-one and onto: the Open Mapping Theorem tells us that the inverse is
bounded. For T in L(H), the resolvent of T, ⇢(T ), is defined to be the set of complex numbers
� for which � · I�T is invertible. The spectrum of T , �(T ), is the complement, in the complex
numbers, of ⇢(T ). An operator T in L(H) is said to be symmetric provided

hTu, vi = hu, Tvi for all u, v in H.
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1. The Spectral Resolution of a Bounded Symmetric Operator

1.1. Paths of Orthogonal Projections and Stieltjes Integration. There is a natural
ordering among symmetric operators in L(H). For two such operators T and S, we write T  S
provided

hTh, hi  hSh, hi for all h in H.

An operator P in L(H) is said to be a projection provided P 2 = P. A projection P is said to
be orthogonal provided (I�P )H is the orthogonal complement of P (H), which is equivalent to
the assertion that it is symmetric.

Lemma 1. Let P and Q be orthogonal projections on H for which P  Q. Then

(4) PQ = QP = P, and

(5) Q� P is the orthogonal projection of H onto Q(H) \ P (H)?.

Moreover, if R is an orthogonal projection on H for which Q  R, then

(6) the spaces (Q� P )H and (R�Q)H are orthogonal.

If T : Q(H) ! Q(H) is symmetric and T (P (H)) ✓ P (H), then

(7) kTQhk2 � kTPhk2 = kT (Q� P )hk2 for all h in Q(H).

Proof. Let u belong to P (H). Then

hu, ui = hPu, ui  hQu, ui = hu, ui � h(I�Q)u, (I�Q)ui.
Thus h(I�Q)u, (I�Q)ui = 0 and hence u = Qu. Therefore P (H) ✓ Q(H), from which we
deduce that QP = P. To verify (4) it remains to show that PQ = P. Indeed, for u, v in H, since
P and Q are symmetric,

hPQu, vi = hu, QPvi = hu, Pvi = hPu, vi,
that is, PQ = P. To verify (5), first observe that since P and Q commute, Q�P is a projection,
and is an orthogonal projection since it is symmetric. Moreover, Q � P is the identity on
Q(H) \ P (H)? and maps H into Q(H) \ P (H)?. Hence (5) holds. The relations Q  R and
P  R may be substituted in the above arguments for the relation P  Q, and hence QR = Q
and PR = P. Therefore

(Q� P )(R�Q) = QR�QQ� PR+ PP = 0,

which is equivalent to assertion (6). To verify (7), observe that since T is symmetric and
maps Q(H) into itself and P (H) into itself, it maps Q(H) \ P (H)? into itself. According to
(5), (Q � P )h belongs to Q(H) \ P (H)?. Thus T (Ph) and T (Q � P )h are orthogonal. Since
QP = P and

TQh = TQPh+ TQ(h� Ph) = TPh+ T (Q� P )h,

and therefore we obtain (7). ⇤
Consider a path {E�}�2R of orthogonal projections on H that is increasing in the sense that

if ↵  �, then E↵  E� . Conclusion (4) of the preceding lemma tells that for each ↵,�

(8) E↵ � E� = E� � E↵ = Emin{↵,�},
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so that, in particular, {E�}�2R is a family of commuting operators. According to (5), for ↵ < �,

(9) E� � E↵ is the orthogonal projection of H onto (E� � E↵)H = E�(H) \ [E↵(H)]?.

For each � and ↵  �, since E� commutes with E� � E↵, it maps (E� � E↵)H into itself and
hence

(10) E� maps E�(H) \ [E↵(H)]? into itself.

Finally, conclusion (6) of this lemma tells us that, for ↵ = �0 < �1 < . . . < �n = �, there in
the following direct sum orthogonal decomposition:

(11) (E� � E↵)H = (E�1 � E�0)H � (E�2 � E�1)H � · · ·� (E�n � E�n�1)H,

so that if h =
Pn

k=1 hk, with each hk in (E�k
� E�k�1

)H, then

(12) khk2 =
nX

k=1

khkk2.

Let [a, b] be a compact interval and V a normed linear space. Consider a path g : [a, b] ! V
and a function f : [a, b] ! R.We recall what it means for f to be Stieltjes integrable with respect
to g over [a, b], and, when it is integrable, the value of the integral.

We call ⇡ = {�k}nk=0 a partition of [a, b] provided a = �0 < �1 < . . . < �n�1 < �n = b.
The gap of ⇡, which is denoted by gap(⇡), is defined to be the maximum of {�k � �k�1}1kn.
A set c = {c1, c2, . . . , cn} is called a choice set for ⇡ provided that, for 1  k  n, ck belongs
to [�k�1,�k]. We call

Sum(f, g, ⇡, c) ⌘
nX

k=0

f(ck)(g(�k)� g(�k�1))

a Stieltjes sum for f with respect to g over [a, b]. Suppose there is a vector v in V with the
following property: for each ✏ > 0, there is a � > 0, such that, if ⇡ is any partition of [a, b] and
c any choice set for ⇡, then

kv � Sum(f, g, ⇡, c)k < ✏ if gap(⇡) < �.

There can be at most one such vector. If there is such a vector v we say that f is Stieltjes
integrable with respect to g over [a, b] and write

v =

Z b

a
f(�) · dg(�).

Integration over infinite intervals is defined for a path g : (�1, 1) ! V and a function
f : (�1, 1) ! R by

Z 1

�1
f(�) · dg(�) ⌘ lim

�!�1
⌘!1

Z ⌘

�
f(�) · dg(�)

provided this limit exists.
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We are interested in the cases V = R, V = H and V = L(H). Observe that if f is Stieltjes
integrable with respect to E : [a, b] ! L(H) over [a, b] and has Stieltjes integral T , then, for all
h in H,

Th =

Z b

a
f(�) · dE�h and hTh, hi =

Z b

a
f(�) · dhE�h, hi.

All of the properties of Stieltjes integration that we need are collected below.

Proposition 2. Let {E�}�2[a, b] be an increasing path of orthogonal projections on H and the
function f : [a, b] ! R be continuous. Then f is Stieltjes integrable with respect to E over [a, b]
and the Stieltjes integral T : H ! H is a bounded symmetric operator. Moreover, for all in H,

(13) kThk2 =
Z b

a
f2(�) · dhE�h, hi,

and for [↵, �] ✓ [a, b],

(14)

Z b

a
f(�) · d E�(E� � E↵)h =

Z �

↵
f(�) · d E�h.

Proof. We deduce from the completeness of L(H) that to verify integrability it is necessary and
su�cient to verify the Cauchy integrability criterion, namely, to show that for each ✏ > 0, there
is a � > 0 such that

k Sum(f, E , ⇡, c)� Sum(f, E , ⇡0, c0)k < ✏ if gap(⇡) < � and gap(⇡0) < �.

Let ✏ > 0. By the uniform continuity of f on [a, b], we can choose � > 0 such that for
s, t in [a, b], |f(s) � f(t)| < ✏ if |s � t| < �. We claim that this � responds to the ✏ challenge
with respect to verifying the Cauchy integrability criterion. Indeed, let ⇡ and ⇡0 be partitions
of [a, b] for which gap(⇡) < � and gap(⇡0) < �.

First consider the special case ⇡ = ⇡0. Let c = {c1, c2, . . . , cn} and c0 = {c01, c02, . . . , c0n} be
choice sets for ⇡. Let h belong to H. We have

[Sum(f, E , ⇡, c)� Sum(f, E , ⇡, c0)]h =
nX

k=1

(f(ck)� f(c0k))(E�k
� E�k�1

)h.

We may therefore appeal to (12) to deduce that

k[Sum(f, E , ⇡, c)� Sum(f, E , ⇡, c0)]hk2 =
nX

k=1

|f(ck)� f(c0k)|2 k(E�k
� E�k�1

)hk2

 ✏2
nX

k=1

k(E�k
� E�k�1

)hk2

= ✏2 k(Eb � Ea)hk2

 ✏2 khk2 for all h in H.

Thus k Sum(f, E , ⇡, c)�Sum(f, E , ⇡, c0)k < ✏, and so this choice of � responds to the ✏ challenge
when the partitions are equal.

In the case that ⇡ 6= ⇡0 we argue as follows. Let ⇡⇤ = {�k}mk=0 be a partition of [a, b] that
is a refinement of both ⇡ and ⇡0. Let c⇤ be the unique choice set for ⇡⇤ with the property that
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if the i-th interval induced by the partition ⇡⇤ is contained in the j-th interval induced by the
partition of ⇡, then c⇤i = cj . Let c0⇤ be the unique choice set for ⇡⇤ that is similarly related to
⇡0. Observe that

Sum(f, E , ⇡, c) = Sum(f, E , ⇡⇤, c⇤) and Sum(f, E , ⇡0, c0) = Sum(f, E , ⇡0⇤, c0⇤).
But gap(⇡⇤) < � and therefore, as we argued above, |Sum(f, E , ⇡⇤, c⇤)� Sum(f, E , ⇡0⇤, c0⇤)| <
✏, so that |Sum(f, E , ⇡, c)� Sum(f, E , ⇡0, c0)| < ✏. This completes the proof of the integrability
of f with respect to E : [a, b] ! L(H) over [a, b].

Each Stieltjes sum is a bounded symmetric operator and hence so is their limit in L(H),
the integral, which we denote by T. It remains to verify (13) and (14). Let h belong to H. For
the Stieltjes sum Sum(f, E , ⇡, c) =

Pn
k=1 f(ck)(E�k

� E�k�1
), we deduce from (11) that

hSum(f, E , ⇡, c)h, Sum(f, E , ⇡, c)hi =
nX

k=1

f2(ck)[hE�k
h, hi � hE�k�1

h, hi].

Since f and f2 are integrable with respect to E : [a, b] ! L(H) over [a, b], we take the limit as

gap(⇡) ! 0 to deduce that kThk2 = hTh, Thi =
R �
↵ f2(�) · d hE�h, hi. So (13) is verified.

We deduce from (8) that the path � 7! E�(E��E↵) takes the constant value 0 on the interval
(�1, ↵] and the constant value E� � E↵ on the interval [�, 1), so that

Z b

a
f(�) · d E�(E� � E↵)h =

Z �

↵
f(�) · d E�(E� � E↵)h.

On the other hand, again by (8), the path � 7! E�(E� � E↵)� E� takes the constant value �E↵
on [↵, �], and consequently

Z �

↵
f(�) · d E�(E� � E↵)h =

Z �

↵
f(�) · d E�h.

So (14) is verified.
⇤

1.2. The Spectral Resolution and Estimates of Th� �h.

Definition. If T is a bounded symmetric operator on H and h belongs to H, by symmetry,
hTh, hi = hh, Thi and, since h·, ·i is an Hermitian inner product, hh, Thi is the complex
conjugate of hTh, hi. Therefore hTh, hi is real. Define

m(T ) ⌘ inf
h2H,h 6=0

hTh, hi
hh, hi and M(T ) ⌘ sup

h2H,h 6=0

hTh, hi
hh, hi ,

and call m = m(T ) and M = M(T ) the spectral bounds for T.

Definition. We call an increasing path of orthogonal projections {E�}�2R right-continuous
provided for each h in H and real number �0, lim�!�+

0
E�h = E�0h.

Lemma 3. Let T in L(H) be a symmetric operator that has spectral bounds m and M. Let
{E�}�2R be a right-continuous, increasing path of orthogonal projections on H with the property
that h =

R1
�1 d E�h for all h in H. Assume that for ↵ < �,

(15) kTh� �0hk  (� � ↵)khk for all h in E�(H) \ [E↵(H)]? and �0 in [↵,�].
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Then EM = I and if m0 < m, Em0 = 0.

Proof. We deduce from (15) and the Cauchy-Schwarz Inequality that for ↵ < � and ↵  �0  �,

�(� � ↵)hh, hi  hTh� �0h, hi  (� � ↵)hh, hi for all h in E�(H) \ [E↵(H)]?.

Let m0 < m. Choose ↵ and � such that ↵ < m0 < � and � � ↵ < m �m0. Taking �0 = m0 in
the preceding inequalities and using the definition of m, we have that

mhh, hi  hTh, hi  [m0 + � � ↵]hh, hi for all h in E�(H) \ [E↵(H)]?.

But m > m0+��↵. Therefore E�(H)\ [E↵(H)]? = {0}. According to (9), E�(H)\ [E↵(H)]? =
(E� � E↵)H. Thus the path {E�}�2R is constant in a neighborhood of m0. We argue, using
the connectedness of (�1, m), that {E�}�2R takes a constant value P on (�1, m). A similar
argument tells us that that {E�}�2R takes a constant value Q on (M,1) and hence, by right-
continuity, on [M,1) But I =

R1
�1 d E� = Q � P. Since P and Q are orthogonal projections,

Q = I and P = 0. ⇤
Theorem 4. Let {E�}�2R be a right-continuous, increasing path of orthogonal projections on
H with the property that h =

R1
�1 dE�h for all h in H. Let T in L(H) be symmetric. Then

(16) Th =

Z 1

�1
� dE�h for all h in H

if and only if T maps each E�(H) into itself and, for ↵ < �,

(17) kTh� �0hk  (� � ↵)khk for all h in E�(H) \ [E↵(H)]? and �0 in [↵,�].

Proof. First assume (16). We deduce from (8) that the E�’s commute and so each E� commutes
with each Stieltjes sum associated with the integral in (16) and consequently also commutes
with the integral, T. Hence, T maps each E�(H) into itself. Choose ↵ < �. Let �0 belong to
[↵,�] and h belong to E�(H) \ [E↵(H)]?. Then, by (9), h = (E� � E↵)h so that

�0 h = �0 (E� � E↵)h =

Z �

↵
�0 dE�h.

and furthermore, by (14),

Th =

Z 1

�1
� dE�h =

Z �

↵
� dE�h.

Substitute �� �0 for f(�) in (13) to obtain, since hE�h, hi � hE↵h, hi = k(E� � E↵)hk2,

kTh� �0hk2 =
Z �

↵
(�� �0)

2dhE�h, hi  (� � ↵)2k(E� � E↵)hk2 = (� � ↵)2khk2.

Therefore (16) implies (17).
Now assume T maps each E�(H) into itself and (17) holds. Let m and M be the spectral

bounds for T. Choose a < m and set b = M. The preceding lemma tells us that Ea = 0 and
Eb = I . Let ⇡ = {�k}nk=0 be a partition of [a, b] and c a choice set for this partition. Define
f(�) ⌘ �. Since Ea = 0 and Eb = I,

I =
nX

k=1

(E�k
� E�k�1

),
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and therefore

T � S(f, E , ⇡, c) =
nX

k=1

(T � ck · I) � (E�k
� E�k�1

).

By assumption, T maps each E�(H) into itself, and hence, since T is symmetric, commutes with
E�. Therefore, for ↵ < �, T commutes with the projection E� � E↵ and so maps [E� � E↵]H
into itself. In particular, for 1  k  n, T maps each [E�k

� E�k�1
]H into itself. Let h belong

to H. We appeal to (11) to deduce that

kTh� S(f, E , ⇡, c)hk2 =
nX

k=1

k(T � ck · I) � (E�k
� E�k�1

)hk2.

For 1  k  n, since, by (5), (E�k
� E�k�1

)h belongs to E�k
(H) \ [E�k�1

(H)]?, we may invoke
assumption (17) with [↵,�] substituted by [�k�1,�k] and h substituted by (E�k

� E�k�1
)h, to

deduce that

kTh� Sum(f, E , ⇡, c)hk2 
nX

k=1

(�k � �k�1)
2k(E�k

� E�k�1
)hk2

 gap(⇡)2
nX

k=1

k(E�k
� E�k�1

)hk2

= gap(⇡)2k(E� � E↵)hk2

 gap(⇡)2 khk2.
Therefore

kT � Sum(f, E , ⇡, c)k  gap(⇡).

Thus f(�) ⌘ � is Stieltjes integrable with respect to {E�}�2R over [a, b], and its Stieltjes integral
is T . Since {E�}�2R takes the constant value 0 on the interval (�1, a] and the constant value
I on the interval [b, 1), the integral over [a, b] equals the integral over (�1, 1). ⇤
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1.3. The Spectral Mapping, Boundary and Radius Theorems, For a polynomial p(t) =Pn
k=0 akt

k and operator T in L(H), we define p(T ) ⌘
Pn

k=0 akT
k, where T 0 ⌘ I .

Theorem 5 (The Spectral Mapping Theorem). Let the operator T belong to L(H) and p be a
polynomial. Then

(18) �(p(T )) = p(�(T )).

Proof. First suppose �0 belongs to �(T ). Now �0 is a root of the polynomial p(�) � p(�0).
Therefore there is a polynomial q for which p(�)� p(�0) = (�� �0)q(�). Consequently,

p(T )� p(�0) · I = (T � �0 · I)q(T ) = q(T )(T � �0 · I).

Since T � �0 · I either fails to be one-to-one or fails to be onto, the operator p(T )� p(�0) · I has
the same property. Thus p(�0) belongs to �(p(T )).

Now assume that µ belongs to �(p(T )). Factor p(�) � µ as c ·
Qn

k=1(� � yk) to obtain the
following composition of operators:

p(T )� µ · I = c[(T � y1 · I) � · · · � (T � yn · I)].

Since p(T ) � µ · I is noninvertible, there is at least one k for which T � yk · I is noninvertible.
Therefore yk belongs to �(T ) and, since µ = p(yk), µ belongs to p(�(T )).

⇤

Definition. A bounded symmetric operator T is said to be positive definite provided its lower
spectral bound, m(T ), is positive, and said to be nonnegative provided m(T ) � 0.

Proposition 6. Let T in L(H) be symmetric and positive definite. Then T is invertible.

Proof. Let m and M be the spectral bounds of T . By definition,

hTh, hi � m(T )hh, hi for all h in H.

Therefore, by the Cauchy-Schwarz Inequality,

(19) kTu� Tvk � m(T )ku� vk for all u, v in H.

Hence, since m(T ) > 0, T is one-to-one and has a closed range. But, since T is symmetric,
[T (H)]? = kerT. Since T (H) is closed and its orthogonal complement is {0}, T (H) = H. Thus
T is one-to-one and onto. ⇤

To a bounded symmetric operator T onH there is associated a real quadratic formQ = Q(T )
on H defined by Q(h) ⌘ hTh, hi for all h in H. The norm of Q, which is denoted by kQk, is
defined by

kQk ⌘ sup
h2H,khk=1

|Q(h)|.

Lemma 7. Let T in L(H) be nonnegative and symmetric and Q be its associated quadratic
form. Then

(20) kThk2  kQkhTh, hi for all h in H.
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Proof. There is the following generalization of the Cauchy-Schwarz Inequality:

(21) |hTu, vi|2  hTu, uihTv, vi for all u, v in H.

To verify this, for u, v in H, observe that, since T � 0, q(t) ⌘ hT (u+ tv), u+ tvi � 0 for all real
numbers t. Therefore the discriminant of the polynomial q(t) = hTu, ui+2tRehTu, vi+t2hTv, vi
is nonpositive, that is, [RehTu, vi]2  hTu, uihTv, vi. In this inequality, substitute �u for u,
where the complex number � is chosen so the |�| = 1 and �hTu, vi = |hTu, vi|, to obtain (21).

For h in H, substitute h for u and Th for v in (21), note that |hT (Th), Thi|  kQkkThk2,
and so deduce that kThk4  hTh, hikQkkThk2. Therefore (20) holds. ⇤
Theorem 8 (The Spectral Boundary Theorem). Let T in L(H) be symmetric and have spectral
bounds m and M. Then the spectrum of T, �(T ), is a closed subset of the interval [m, M ] that
contains its end-points m and M .

Proof. To show that �(T ) is closed, we show that its complement, its resolvent ⇢(T ), is open.
To do so, first observe that if S belongs to L(H) and kSk < 1, then I�S is invertible. Indeed,
by the completeness of L(H), the Neumann series

P1
k=0 S

k converges. We compose to verify
that this series is the inverse of I�S. Now let �0 belong to ⇢(T ). We claim that T � � · I is
invertible if |� � �0|k(T � �0 · I)�1k < 1, and hence �0 belongs to the interior of ⇢(T ). The
verification of this claim follows from from the preceding observation by observing if we define
S = (�� �0)(T � �0 · I)�1, then kSk < 1 and

T � � · I = T � �0 · I�(�� �0) · I = (T � �0 · I)(I�S).

To show that �(T ) is real, let � = ↵ + ı�, with ↵ and � real and � 6= 0. We claim that
T � � · I is invertible. Indeed, let h belong to H. Since

hTh� �h, hi = hTh, hi � ↵hh, hi � ı�hh, hi,
and, by the symmetry of T, hTh, hi is real, while, by choice, ↵ and � are real, we deduce from
the Cauchy-Schwarz Inequality that

(22) kTh� �hk � |�|khk for all h in H.

Therefore, since |�| > 0, T��·I is one-to-one and has closed range. This also holds if we replace
� by its complex conjugate, �. In particular, ker(T � � · I) = {0}. But, since T is symmetric,

[(T � � · I)H]? = ker(T � � · I) = {0}.
Therefore, since (T � � · I)H is closed, T � � · I is one-to-one and onto. We deduce from (22)
that its set inverse is bounded, so T � � · I is invertible. Thus the spectrum of T is real.

To verify the inclusion �(T ) ✓ [m, M ], first consider �0 > M. Then �0 · I�T is positive
definite, and hence, by the preceding proposition, �0 belongs to the resolvent of T. On the
other hand, if �0 < m, then T � �0 · I is positive definite, and hence, again by the preceding
proposition, �0 belongs to the resolvent of T.

To show that M belongs to �(T ), observe that since M · I�T is a nonnegative symmetric
operator, according to (20),

k(M · I�T )hk2  Q(M · I�T ) · h(M · I�T )h, hi for all h in H.

By the definition ofM , there is a sequence {hn} of unit vectors such that {h(M ·I�T )hn, hni} !
0. The above inequality tells us that {(M · I�T )hn} ! 0. Therefore M · I�T cannot possess an
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inverse, since an inverse would be continuous. Hence M belongs to �(T ). Replacing M · I�T
by T �m · I, the same argument shows that m also belongs to �(T ).

⇤
Proposition 9. Let T in L(H) be symmetric and Q(T ) be its associated quadratic form. Then
kTk = kQ(T )k. In particular, for c � 0,

(23) if � c · I  T  c · I, then kTk  c.

Proof. For notational simplicity set ⌘ = kQ(T )k. If ⌘ = 0, we deduce from (20) that T = 0.
So consider the case ⌘ > 0. Let h be a unit vector in H. Observe that, by the Cauchy-Schwarz
Inequality, |hT (h), hi|  kT (h)kkhk  kTk. Thus ⌘  kTk. Moreover, by (20), kThk2  ⌘kThk,
and hence kThk  ⌘. Therefore, kTk  ⌘. ⇤

For a bounded linear operator on T on H, its spectral radius, r�(T ), is defined by

r�(T ) ⌘ sup {|�| | � in �(T )} .

Theorem 10 (The Spectral Radius Theorem). Let T in L(H) be symmetric. Then

(24) r�(T ) = kTk.

Proof. Letm andM be the spectral bounds of T. According to the Spectral Boundary Theorem,
�(T ) ✓ [m,M ] and both m and M belong to �(T ). Therefore r�(T ) = max{|m|, |M |}. On the
other hand, by the proceeding proposition,

kTk = sup {|hTh, hi| | khk = 1} = max{|m|, |M |}.
Therefore (24) holds.

⇤

1.4. The Family of Spectral Measures for T .

Lemma 11 (The Spectral Measure Lemma). Let T in L(H) be symmetric and the vector h
belong to H. Then there is one and only one real finite measure µh on B(�(T )), the Borel
�-algebra of the spectrum of T , �(T ), such that, for each polynomial p with real coe�cients,

(25) hp(T )h, hi =
Z

�(T )
p(�) dµh(�) and kp(T )hk2 =

Z

�(T )
p2(�) dµh(�).

Proof. For p a polynomial with real coe�cients, define

 (p) ⌘ hp(T )h, hi.
Observe that p(T ) is symmetric since p has real coe�cients and T is symmetric, and, as a
consequence,  is real-valued. The functional p 7!  (p) is linear. There is the following
estimate of | (p)| :

| (p)|  kp(T )kkhk2(by the Cauchy-Schwarz Inequality)

= r�(p(T ))khk2(by the Spectral Radius Theorem)

= sup {|p(�)| | � in �(T )} khk2(by the Spectral Mapping Theorem)

= kpkC(�(T ),R) · khk2.
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This estimate tells us that if we equip the linear space C(�(T ),R) with the maximum norm
and let P be the subspace of restrictions to �(T ) of polynomials with real coe�cients, then the
linear functional  : P ! R is continuous. According to the Spectral Boundary Theorem, �(T )
is compact, and so we may appeal to the Weierstrass Approximation Theorem to deduce that P
is a dense subspace of C(�(T ),R). We may therefore uniquely extend  to a continuous linear
functional  : C(�(T ),R) ! R. We claim that this functional is positive, in the sense that if
f � 0 on �(T ), then  (f) � 0. Indeed, first let f = p be a polynomial with real coe�cients
that is nonnegative on �(T ). Then, by the Spectral Mapping Theorem, the spectrum of p(T )
is nonnegative and therefore, by the Spectral Boundary Theorem, its lower spectral bound is
nonnegative, that is, hp(T )h, hi � 0. So the operator p(T ) is positive. From this we deduce,
by the continuity of  with respect to the maximum norm and the Weierstrass Approximation
Theorem, that the functional  is positive.

According to the Riesz-Markov Representation Theorem1, since  is a positive, bounded,
linear functional, there is one and only one finite real Borel measure µh on the Borel �-algebra
B(�(T )) such that

 (f) =

Z

�(T )
f(�) dµh(�) for all f in C(�(T ),R).

This establishes the left-hand equality of (25), from which we deduce that, for a polynomial p
that has real coe�cients,

kp(T )hk2 = hp(T )h, p(T )hi
= hp2(T )h, hi(since p(T ) is symmetric)

=

Z

�(T )
p2(�) dµh(�).(by the choice of µh)

Hence the right-hand equality of (25) also holds.
⇤

We refer to the collection of finite Borel measures {µh}h2H for which (25) holds for each h
in H as the family of spectral measures for T.

1.5. The Functional Calculus: Linearity, Monotonicity and the Product Formula.
In this section, the only sigma algebra we consider is the collection of Borel subsets of B(�(T )).
So we use L2(�(T ), ⌫) to denote the space L2(�(T ),B(�(T )), ⌫).

Lemma 12. Let T in L(H) be symmetric, ⌫ : B(�(T )) ! [0, 1) be a finite, real Borel measure,
and f : �(T ) ! R be a bounded Borel function. There is a sequence {pn} of polynomials with
real coe�cients that converges to f in L2(�(T ), ⌫).

Proof. The spectral boundary theorem tells us that �(T ) is compact. Since �(T ) is a compact
metric space, by Lusin’s Theorem the continuous functions are dense in L2(�(T ), ⌫). Since f is
bounded and ⌫ is finite, f belongs to L2(�(T ), ⌫). Therefore, there is a sequence of continuous

1see, for instance, [11, p. 458]
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functions on �(T ) that converges in L2(�(T ), ⌫) to f. We appeal to the Weierstrass Approxi-
mation Theorem to obtain a sequence of polynomials with real coe�cients that converges to f
in L2(�(T ), ⌫). ⇤

Lemma 13. Let T in L(H) be symmetric and f : �(T ) ! R be a bounded Borel function.
There is a unique bounded symmetric operator f(T ) on H such that, for any vector h in H and
sequence {pn} of polynomials with real coe�cients,

(26) f(T )h = lim
n!1

pn(T )h if {pn} ! f in L2(�(T ), µh).

Proof. Let h belong to H. Let {pn} be a sequence of polynomials with real coe�cients that
converges to f in L2(�(T ), µh). The preceding lemma tells us that there is such a sequence.
This sequence is Cauchy in L2(�(T ), µh). But, by the right-hand equality in (25), for any m
and n,

kpn(T )h� pm(T )hk2 =
Z

�(T )
|pn(�)� pm(�)|2dµh(�).

Hence {pn(T )h} is Cauchy in H, so that, since H is complete, {pn(T )h} converges to a vector
that we denote by w. We deduce from the right-hand equality in (25) that if {qn} another
sequence of polynomials that converges to f in L2(�(T ), µh), then {qn(T )h} converges to the
same vector w. Define f(T )h ⌘ w. Therefore, by definition, (26) holds. It remains to show that
the correspondence h 7! f(T )h defines a bounded linear symmetric operator on H.

To show that f(T ) is linear, choose u, v in H and ↵,� in R. Define a finite measure ⌫ on
B(�(T )) by

⌫ = µu + µv + µ↵u+�v,

where {µh}h2H is the family of spectral measures associated with T. The preceding lemma
tells us that there is a sequence {pn} of polynomials with real coe�cients that converges
to f in L2(�(T ), ⌫). Then {pn} converges to f in L2(�(T ), µu), in L2(�(T ), µv), and in
L2(�(T ), µ↵u+�v). Now, for each n,

pn(T )[↵u+ �v] = ↵pn(T )u+ �pn(T )v.

The left-hand side converges to f(T )[↵u+ �v] since {pn} converges to f in L2(�(T ), µ↵u+�v),
while the right-hand side converges to ↵f(T )u + �f(T )v since {pn} converges to f in both
L2(�(T ), µu) and L2(�(T ), µv). Therefore f(T ) is linear.

To verify symmetry, observe since each pn(T ) is symmetric, for each n, hpn(T )u, vi =
hu, pn(T )vi. The sequence {pn} converges to f in both L2(�(T ), µu) and L2(�(T ), µv). Use the
continuity of the inner-product in H to take the limit and deduce that f(T ) is symmetric.

It remains to show that f(T ) is bounded. To do so, set p(�) ⌘ 1 in (25), and conclude that
µh(�(T )) = khk2.We deduce from (25) and the continuity of the norm inH and in L2(�(T ), µv)
that

(27) kf(T )hk2 = lim
n!1

kpn(T )hk2 = lim
n!1

Z

�(T )
p2n(�)dµh =

Z

�(T )
f2(�)dµh.

Hence kf(T )hk  ckhk for all h 2 H, where c = sup{|f(�| |� in �(T )}. ⇤
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Theorem 14. Let T in L(H) be symmetric and, for a bounded Borel function f : �(T ) ! R,
let f(T ) be the bounded symmetric operator on H defined by (26). Then, for all h in H,

(28) hf(T )h, hi =
Z

�(T )
f(�) dµh(�) and kf(T )hk2 =

Z

�(T )
f2(�) dµh(�),

where {µh}h2H is the family of spectral measures for T. The transformation f 7! f(T ) possesses
the following properties: for f and g bounded Borel function on �(T ) and real numbers ↵ and
�,

(i) Linearity:

(↵f + �g)(T ) = ↵f(T ) + �g(T );

(ii) The Product Property:

(f · g)(T ) = f(T ) � g(T );
(iii) Commutativity: The operator f(T ) commutes with T, and indeed commutes with any

bounded linear operator on H that commutes with T ;
(iv) Monotonicity: If f � 0 on �(T ), then f(T ) � 0.

Proof. Let h belong to H. According to Lemma 12, we may choose sequences of polynomials
with real coe�cients, {pn} and {qn}, that converge in L2(�(T ), µh) to f and g respectively.

Since µh is a finite measure, convergence in L2 implies convergence in L1. Therefore, since
the left-hand equality in (28) holds if f(T ) is replaced by pn(T ), passage to the limit establishes
it in general. The right-hand equality in (28) was already established as (27).

The linearity property follows from linearity of convergence in H and in L2.
To verify the commutativity property, let S in L(H) commute with T. Define a finite mea-

sure ⌫ on B(�(T )) by ⌫ = µh + µSh. By Lemma 12, we may choose a sequence of polynomials
with real coe�cients {rn} that converges in L(�(T ), ⌫) to f . Now S commutes with rn(T ).
Since {rn} converges to f in both L2(�(T ), µh) and in L2(�(T ), µSh)

S(f(T )h) = lim
n!1

S(rn(T )h) = lim
n!1

rn(T )(Sh) = f(T )(Sh).

To verify the product property, observe that since T is symmetric and the polynomials pn
and qn have real coe�cients, for all n,

(29) hqn(T )h, pn(T )hi = h[pn · qn](T )h, hi.

Every sequence that is L2(�(T ), ⌫) convergent has a subsequence that converge pointwise to
the limit function outside of a set of ⌫-measure 0. Therefore, by possibly choosing subsequenes,
we may assume the sequences {pn} and {qn} converge pointwise to f and g respectively, outside
a set of µh measure 0. Moreover, since f and g are pointwise bounded on �(T ), we may choose
the sequences {pn} and {qn} to be uniformly pointwise bounded on �(T ). Therefore, by the
Bounded Convergence Theorem, {pn · qn} converges in L2(�(T ), µh) to f · g. Consequently,

hg(T )h, f(T )hi = lim
n!1

hqn(T )h, pn(T )hi = lim
n!1

h[pn · qn](T )h, hi = h[f · g](T )h, hi,

so that, since f(T ) is symmetric,

h(f(T ) � g(T ))h, hi = hg(T )h, f(T )hi = h[f · g](T )h, hi.
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Since f(T ) and g(T ) are symmetric and commute, f(T ) � g(T ) is symmetric. The quadratic
form induced by the symmetric operator f(T )� g(T )� [f · g](T ) vanishes. We deduce from (23)
that f(T ) � g(T ) = [f · g](T ).

To verify the monotonicity property, let f : �(T ) ! R be a nonnegative, bounded Borel
function. Then so is

p
f : �(T ) ! R. By the product property and the symmetry

p
f(T ),

hf(T )h, hi = h[
p
f ·

p
f ](T )h, hi = h

p
f(T ) �

p
f(T )h, hi = h

p
f(T )h,

p
f(T )hi � 0,

for all h in H; that is, f(T ) � 0.
⇤

Let T in L(H) be symmetric and f : R ! R a bounded Borel function. We define f(T ) to
be f̂(T ), where f̂ is the restriction of f to �(T ). In this way, the spectral calculus, possessing
all of the above properties, is extended to bounded Borel functions f : R ! R.
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1.6. Existence and Uniqueness of a Spectral Resolution.

Definition. Let T in L(H) be symmetric. A right-continuous, increasing path of orthogonal
projections on H, {E�}�2R, with the property that h =

R1
�1 dEh for all h in H, is called a

spectral resolution of T provided

(30) Th =

Z 1

�1
� · dE�h for all h in H.

In this section, we prove that each symmetric operator in L(H) has one and only one spectral
resolution.

For a Borel subset E of R, �E is defined to be the characteristic function of E, which takes
the value 1 on E and 0 on the complement in R of E. Observe that if I is an interval, then �I

is a bounded Borel function on R and so, if T in L(H) is symmetric, the bounded symmetric
operator �I(T ) is defined.

Proposition 15. Let T in L(H) be symmetric. For each real number �, define

(31) E� ⌘ �(�1,�](T ).

Then {E�}�2R is right-continuous, increasing path of orthogonal projections on H with the
property that h =

R1
�1 dEh for all h in H. Moreover, T maps each E�(H) into itself and

kTh� �0hk  (� � ↵)khk for all ↵ < �, h in E�(H) \ [E↵(H)]? and �0 in [↵,�].

Proof. Observe that, for ↵,� in R,

�(�1,↵] · �(�1,�] = �(�1,min{↵,�}].

Therefore, by the product property of the functional calculus, each E� is a projection, and is
an orthogonal projection since it is symmetric. We deduce from the monotonicity property of
the functional calculus that the path {E�}�2R is increasing.

To verify right-continuity, for �0 in R, let the sequence {�n} in (�0, 1) converge to �0. Let
h belong to H. According to conclusion (28) of Theorem 14, for each n,

k(E�n � E�0)hk2 =
Z

�(T )
�2
(�0,�n]dµh = µh(�(T ) \ (�0,�n]).

Therefore, by the continuity property of the finite Borel measure µh, limn!1 E�nh = E�0h.
Let m and M be the spectral bounds of T. For � � M, �(�1,�] takes the value 1 on �(T )

and therefore E� = I . For ↵ < m, �(�1,↵] takes the value 0 on �(T ) and therefore E↵ = 0.

Therefore, for all h in H, ↵ < m and � � M,
R �
↵ dE�h = h and so

R1
�1 dE�h = h.

By the commutativity properties of the functional calculus, T commutes with each E� and
hence maps each E�(H) into itself. It remains to verify the final assertion. Let ↵ < �. Observe
that, if we define g(�) ⌘ � · �(↵,�](�), then

↵ · �(↵,�](�)  g(�)  � · �(↵,�](�) for all �.

By the linearity property of the functional calculus, �(↵,�](T ) = E� � E↵, and by the product
product of the functional calculus, g(T ) = T �(E��E↵). Therefore, by the monotonicity property
of the functional calculus,

↵ · (E� � E↵)  T � (E� � E↵)  � · (E� � E↵),
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that is,

↵ · I  T  � · I on (E� � E↵)H.

Therefore, for ↵  �0  �,

�(� � ↵) · I  (↵� �0) · I  T � �0 · I  (� � �0) · I  (� � ↵) · I on (E� � E↵)H.

Since, by (9), (E� � E↵)H = E�(H) \ [E↵(H)]?, an appeal to (23) verifes the final assertion.
⇤

Lemma 16. Let {E�}�2[a, b] be an increasing path of orthogonal projections on H for which
Ea = 0 and Eb = I . Define

(32) T =

Z b

a
�d E�.

Then, for every polynomial p with real coe�cients,

(33) p(T ) =

Z b

a
p(�) dE�.

Proof. Define f(�) ⌘ �. Proposition 2 tells us that the integral in (32) is properly defined. Let
⇡ be a partition of [a, b] and c be a choice set for ⇡. Let j be a natural number. We deduce
from (11) that

(34) [Sum(f, E , ⇡, c)]j =
"

nX

k=1

ck · (E�k
� E�k�1

)

#j

=
nX

k=1

cjk · (E�k
� E�k�1

).

Proposition 2 tells us that f and f j are Stieltjes integrable with respect to {E�}�2[a, b]. Take
the limit as gap⇡ ! 0 to deduce that

(35) T j =

Z b

a
�j · dE�.

Since Ea = 0 and Eb = I, (35) also holds for j = 0. Thus, in view of (35), (33) holds. ⇤

Rather than proving uniqueness of the spectral resolution by pursuing the correspondence
between the resolution and the family of spectral measures, we establish uniqueness by simply
following the same argument used for the Stieltjes integral of a real valued function.

Lemma 17 (The Uniqueness Lemma). Let T in L(H) be symmetric and {E�}�2R and {E 0
�}�2R

be spectral resolutions of T. Then E� = E 0
� for all �.

Proof. Let m and M be the spectral bounds of T , choose a < m and let b = M. We deduce
from Theorem 4 and Lemma 15 that

(36) E 0
a = Ea = 0 and E 0

b = Eb = I .

Therefore the paths {E�}�2R and {E 0
�}�2R are constant on the intervals (�1, a] and [b,1),

and so Z b

a
� · dE 0

�h =

Z b

a
� · dE�h for all h in H.
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Let h belong to H. According to Lemma 16
Z b

a
p(�) · dhE�h, hi =

Z b

a
p(�) · dhE 0

�, hih if p is a polynomial with real coe�cients.

Define  (�) = hE�h, hi � hE 0
�h, hi for all � in [a, b]. From the above and the Weierstrass

Approximation Theorem we deduce that

(37)

Z b

a
f(�) d (�) = 0 for all f in C([a, b],R).

Therefore

(38)  (a) =  (x0) =  (b) if  : [a, b] ! R is continuous at the point x0 in [a, b].

Indeed, to see, say, that  (x0) =  (b), let ✏ > o and let f✏ be a continuous, increasing functions
from [a, b] to [0, 1] that rises from 0 to 1 on [x0, x0+✏]. Use (37), with f = f✏, and take the limit
as ✏! 0 to see that  (x0) =  (b). Now, since  is the di↵erence of right-continuous functions,
it is right-continuous, and since it is the di↵erence of increasing functions,  : [a, b] ! R is
continuous at all but possibly a countable number of points. Hence, by (38),  : [a, b] ! R is
constant. Since

 (b) = hEbh, hi � hE 0
bh, hi = khk2 � khk2 = 0,

 ⌘ 0 on [a, b]. But h was arbitrarily chosen in H. Therefore, for each � in [a, b], the operator
E� � E 0 is symmetric and

h(E� � E 0
�)h, hi = 0 for all h in H.

Thus, by (23), E� = E 0
�.

⇤
Theorem 18 (The Spectral Resolution of a Bounded Symmetric Operator). Let H be a complex
Hilbert space and T in L(H) be symmetric. Then T has one and only one spectral resolution.

Proof. For each real number �, define E� ⌘ �(�1,�](T ).We deduce from Proposition 15 together
with Theorem 4 that {E�}�2R is a spectral resolution of T. The Uniqueness Lemma asserts that
the spectral resolution is unique.

⇤
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2. The Spectral Resolution of a Self-Adjoint Operator

2.1. The Spectral Resolution and Estimates of Th� �h.

Definition. For D a linear subspace of H, a linear operator T : D ! H is said to be symmetric
provided

hTu, vi = hu, Tvi for all u, v in D.

If T : D ! H is symmetric and D is dense in H, the adjoint operator T ⇤ : D(T ⇤) ! H is
defined as follows: Let D(T ⇤) to be the collection of vectors f in H for which there is a vector
g in H such that

hTu, fi = hu, gi for all u in D.

Since D is dense in H, there can be only one such vector g. We define T ⇤(f) = g.

Definition. A densely defined symmetric operator T : D ! H is said to be self-adjoint pro-
vided T = T ⇤. It is easy to see that the self-adjointness of T is equivalent to the assertion that
T has no proper symmetric extension.

Definition. Let T : D ✓ H ! H be self-adjoint. Let {Hn}1n=1 be a sequence of closed sub-
spaces of H such that for each n, Hn ✓ Hn+1, Hn ✓ D, T maps Hn into itself and, for each
h in H, limn!1Qn(h) = h, where each Qn is the orthogonal projection of H onto Hn. We call
the sequence of operators {T : Hn ! Hn}1n=1 a sequence of bounded approximations of
T : D ✓ H ! H.

Regarding the above definition, a theorem of Hellinger and Toeplitz, whose proof is an
immediate consequence of the Closed Graph Theorem (see [4]) tells us that since each Hn is
a Hilbert space and each approximation T : Hn ! Hn is symmetric, each approximation is
bounded. This, together with the following theorem, justifies that name “bounded approxima-
tion.”

The proof of the existence of a spectral resolution for a self-adjoint operator is based on the
following theorem, whose proof we postpone until the final section.

Theorem 19 (The Bounded Approximation Theorem). Let T : D ✓ H ! H be self-adjoint
and {T : Hn ! Hn}1n=1 be a sequence of bounded approximations of T : D ✓ H ! H. Then
the domain D comprises those h in H for which {TQnh}1n=1 is bounded and, for each such h,
Th = limn!1 TQnh. Furthermore, every self-adjoint operator possesses a sequence of bounded
approximations.

Definition. Let the operator T : D ✓ H ! H be self-adjoint. A right-continuous, increasing
path of orthogonal projections on H {E�}�2R, with the property that h =

R1
�1 d E�h for all

h in H, is called a spectral resolution of T provided

D =

⇢
h in H

����
Z 1

�1
�2dhE�h, hi < 1

�
and Th =

Z 1

�1
� dE�h for all h in D.

The above definition of spectral resolution is precisely that of von Neumann ([6, p. 119]).
There is the following direct extension of Theorem 4.
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Theorem 20. Let {E�}�2R be a right-continuous, increasing path of orthogonal projections on
H with the property that h =

R1
�1 dE�h for all h in H. Let the operator T : D ✓ H ! H be

self-adjoint. Then

(39) D =

⇢
h in H

����
Z 1

�1
�2 dhE�h, hi < 1

�
and Th =

Z 1

�1
� dE�h for all h in D

if and only if, for ↵ < �, T maps E�(H) \ [E↵(H)]? into itself and

(40) kTh� �0hk  (� � ↵)khk for all h in E�(H) \ [E↵(H)]? and �0 in [↵,�].
Proof.

Claim 1: If either (39) or (40) is satisfied then, for ↵ < �, the subspace [E��E↵](H) is contained
in D and mapped by T into itself. Of course, if (40) is satisfied, this claim is true by assumption.
Assume (39) holds. Observe that if ↵ < � and h belongs to [E� � E↵](H), then, by (14)

(41)

Z 1

�1
�2 dhE�h, hi =

Z �

↵
�2 dhE�h, hi and

Z 1

�1
� dE�h =

Z �

↵
� dE�h.

The above left-hand equality and the left-hand assertion of assumption (39) tell us that, for
↵ < �, [E� � E↵](H) ✓ D, and therefore, by the above right-hand equality and right-hand
assertion of assumption (39),

Th =

Z �

↵
� dE�h for all h in [E� � E↵](H).

From this integral representation and the commutativity of the projections, we deduce that
T = T � [E� � E↵] = [E� � E↵] � T on [E� � E↵](H), so that T maps each subspace [E� � E↵](H)
into itself. This first claim is verified.

Claim 2: For each n, define Qn ⌘ En � E�n and Hn ⌘ Qn(H). If either (39) or (40) is satisfied,
then the sequence of operators {T : Hn ! Hn}1n=1 is a sequence of bounded approximations of
T : D ✓ H ! H. Indeed, since {E�}�2R increasing, for each n, Hn ✓ Hn+1, and the preceding
claim tells us that Hn ✓ D and T maps Hn into itself. Each Hn is closed since the projections
are continuous. Moreover, the assumption that h =

R1
�1 dE�h for all h in H is equivalent to

the assertion limn!1Qn(h) = h for all h in H. This second claim is justified.

Claim 3: For each n, let {En
� }�2R be the path of restrictions of the path {E�}�2R to Hn. Then

each {En
� }�2R is a right-continuous, increasing path of orthogonal projections on Hn with the

property that h =
R1
�1 dEn

�h for all h in Hn. This follows immediately from the assumptions
on {E�}�2R and the commutativity of the projections which implies that each E� maps each
Hn into itself.

Fix n. We appeal to Theorem 4, the version of this theorem for bounded symmetric opera-
tors, with T : Hn ! Hn substituted for T : H ! H and {En

� }�2R substituted for {E�}�2R, and
also to (41), to conclude that

(42) Th =

Z 1

�1
� dEn

�h =

Z n

�n
� dE�h for all h in Hn
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if and only if

(43) kTh� �0hk  (� � ↵)khk for all ↵ < �, h in En
� (Hn) \ [En

↵(Hn)]
? and �0 in [↵,�].

According to (14),
R n
�n � dE�Qnh =

R n
�n � dE�h, and, by commutativity of the projections,

if h belongs to E�(H) \ [E↵(H)]?, then each Qnh belongs to En
� (H) \ [En

↵(H)]?. Therefore, by
the preceding equivalence:

(44) TQnh =

Z n

�n
� dE�h for all h in H

if and only if

(45) kTQnh� �0Qnhk  (� �↵)kQnhk for all ↵ < �, h in E�(H)\ [E↵(H)]? and �0 in [↵,�].

We now prove the equivalence of (39) and (40). First assume (39) holds. Then, for each n,
(42) holds and hence so does (44). The preceding equivalence tells us that (45) holds. However,
by the right-hand equality of (39), together with the inclusion of E�(H) \ [E↵(H)]? in D,

lim
n!1

TQnh = Th for all h in E�(H) \ [E↵(H)]?.

By assumption, limn!1Qnh = h for all h in H. Take the limit as n ! 1 in (45) to deduce
that (40) holds.

Now assume that (40) holds. Then (43) holds and hence so does (45). By the preceding
equivalence, (44) holds. We may therefore appeal to (14) and (13) to deduce that, for all n,

(46) kTQnhk2 =
Z n

�n
�2 dhE�h, hi and TQnh =

Z n

�n
� dE�h for all h in H.

However, claim 2 asserts that {T : Hn ! Hn}1n=1 is a sequence of bounded approximations of
T : D ✓ H ! H.We may therefore appeal to Theorem 19 for this particular choice of subspaces,
{Hn}. In view of (46), assertion (39) follows from the conclusion of this theorem. ⇤

2.2. Proof of Existence and Uniqueness. This definition of spectral resolution is precisely
the original definition of von Neumann ([6, p. 118]).

Theorem 21 (The Spectral Resolution of an Unbounded Self-adjoint Operators). Let H be a
complex Hilbert space and the operator T : D ✓ H ! H be self-adjoint. Then T has one and
only one spectral resolution.

Proof. We appeal to Theorem 19 to choose a sequence {T : Hn ! Hn} of bounded approxima-
tions of T : D ✓ H ! H, and

(47) D = {h | {TQnh}1n=1 is bounded} and Th = lim
n!1

TQnh for h in D.

Fix n. The operator T : Hn ! Hn is a bounded symmetric operator on the Hilbert space Hn

and hence, by Theorem 18, has a unique spectral resolution {En
� }�2R. We appeal to Theorem

4 to conclude that, if ↵ < �, then

(48) kTh� �0hk  (� � ↵)khk for all h in (En
� � En

↵)Hn and all �0 in [↵, �].
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Fix � and k > n. The uniqueness of spectral resolutions for bounded symmetric operators
tells us that Ek

� |Hn = En
� , so that

Ek
�Qkh� En

�Qnh = Ek
�(Qkh�Qnh),

and hence

(49) kEk
�Qkh� En

�Qnhk  kQkh�Qnhk.
Since {Qnh} converges, the sequence {En

�Qnh} is Cauchy. By the completeness of H we may
define E�h = limn!1 En

�Qnh.

Claim 1: {E�}�2R is a right-continuous, increasing path of orthogonal projections with the
property that

R1
�1 dE�h = h for all h in H. Indeed, it is clear that, for each n, the operator

En
�Qn in L(H) is an orthogonal projection. Since each {En

�Qn}�2R is a path of orthogonal
projections, so is the limit {E�}�2R. Taking the limit as k ! 1 in (49) we conclude that, for
each h and n,

(50) kE�h� En
�Qnhk  kh�Qnhk.

From this it is clear that {E�}�2R is right continuous and moreover

lim
�!1

E�h = h and lim
�!�1

E�h = 0,

so that
R1
�1 dE�h = h for all h in H. This claim is verified.

Claim 2: If h belongs to (E� � E↵)H than, for all n, Qnh belongs to (En
� � En

↵)Hn. Indeed, fix n

and �. For each k > n, Ek
� |Hn = En

� , and therefore the restriction of Qn to Hk commutes with
Ek
↵, so that QnEk

�Qk = En
�Qn. Therefore

QnE� = Qn lim
k!1

Ek
�Qk = lim

k!1
QnEk

�Qk = En
�Qn.

This su�ces to establish the claim.

Claim 3: For ↵ < �, the subspace (E� � E↵)H is contained in D and mapped by T into itself.
Indeed, let h belong to (E� � E↵)H. Fix n. According to the preceding claim, Qnh belongs to
(En

� � En
↵)Hn. We appeal to (48) to conclude that

(51) kTQnh� �0Qnhk  (� � ↵)kQnhk for all �0 in [↵, �].

Since {Qnh} is bounded, we deduce that {TQnh}1n=1 is bounded. We appeal to (47) to conclude
that h belongs to D and Th = limn!1 TQnh. Since {En

� } is a spectral resolution of T : Hn !
Hn, T maps (En

� �En
↵)Hn into itself. Since Qnh belongs to (En

� �En
↵)Hn so does TQnh. However,

(En
� � En

↵)Hn is contained in the closed subspace (E� � E↵)H and so Th = limn!1 TQnh also
belongs to this subspace. This claim is verified.

We appeal to Theorem 4 to conclude that {E�}�2R is a spectral resolution of T : D ✓
H ! H. It remains to prove uniqueness. Suppose {E 0

�}�2R also is a spectral resolution of the
operator T : D ✓ H ! H. Then each E 0

� commutes with T. The spectral resolution {E�}�2R
was chosen to have the property that if a bounded linear operator S commutes with T, then it
also commutes with each E�. From this we deduce that the restriction of {E 0

�}�2R to each Hk
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is a spectral resolution of the bounded symmetric operator T : Hk ! Hk. By the uniqueness
assertion of Theorem 18, for all k and �, E 0

� = E 0
� on Hk. Since the union of the Hk’s is dense

in H, the paths {E 0
�}�2R and {E�}�2R are equal. ⇤

2.3. Proof of the the Bounded Approximation Theorem. The results in this section,
except von Neuman’s theorem, Theorem 23, and strategy of proof, are adaptations of the
fundamental results of Riesz and Lorch ([9]). It is convenient to first prove the following
property of bounded approximations, and then turn to proving the existence of a bounded
approximation for each self-adjoint operator.

Theorem 22. Let T : D ✓ H ! H be self-adjoint and {T : Hn ! Hn}1n=1 be a sequence
of bounded approximations of T. If, for each n, Qn is the orthogonal projection of H onto
Hn, the domain D comprises those h in H for which {TQnh}1n=1 is bounded, and for such h,
Th = limn!1 TQnh.

Proof. Let n and k be natural numbers. Since T is symmetric and maps Hn+k into itself and
Hn into itself, T maps Hn+k \ H?

n into itself. Moreover, according to (5), Qn+k � Qn is the
orthogonal projection of H onto Hn+k \H?

n . Thus, for each h,

k(TQn+k)h� (TQn)hk2 = k((TQn+k)hk2 � k(TQn)hk2.
Hence, since H is complete, the sequence {TQnh}1n=1 is bounded if and only if it converges.
Therefore, if we defineD0 ⌘ {h in H | {TQnh}1n=1 is bounded}, we may define T 0 : D0 ✓ H ! H
by setting T 0(h) = limn!1 TQnh for each h in D0. Clearly, for each n, Hn ✓ D0, so that D0 is
dense in H and, since T is symmetric, so is T 0.

Claim 1: The operator T 0 : D0 ✓ H ! H is self-adjoint. Indeed, let f and g in H have the
property that

(52) hT 0u, fi = hu, gi for all u in D0.

Since T = T 0 on Qn(H), and T is symmetric and maps Qn(H) into Qn(H), TQnf belongs to
Hn ✓ D0, so that

kTQnfk2 = hTQnf, TQnfi = hT (TQn)f), fi = hTQnf, gi for all n.
Therefore, by the Cauchy-Schwarz inequality, kTQnfk  kgk, for all n. So f belongs to D0. By
the symmetry of T 0 and (52),

hu, T 0fi = hT 0u, fi = hu, gi for all u in D0.

But D0 is dense in H and so T 0f = g. Hence T 0 : D0 ✓ H ! H is self-adjoint

Claim 2: The operator T : D ✓ H ! H extends T 0 : D0 ✓ H ! H. Indeed, let v belong to D0.
By the symmetry of T,

hTu, Qnvi = hu, TQnvi for all u in D and all n.

Take limits as n ! 1 to obtain

hTu, vi = hu, T 0vi for all u in D.

Since T is self-adjoint, v belongs to D and Tu = T 0v. Thus T : D ✓ H ! H extends T 0 : D0 ✓
H ! H.
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Since T 0 : D0 ✓ H ! H is self-adjoint, it has no proper symmetric extensions. Therefore
D = D0 and T 0 = T.

⇤
Theorem 23 (von Neumann). If T : D ✓ H ! H is self-adjoint, then the operator

I+T 2 : D(T 2) ✓ H ! H

is one-to one and onto, and its inverse (I+T 2)�1 is bounded, symmetric, and

(53) 0  (I+T 2)�1  I .

Furthermore, the operator T � (I+T 2)�1 : H ! H also is bounded.

Proof. To show that I+T 2 maps D(T 2) onto H, we examine the graph of T,

G(T ) ⌘ {(u, Tu) | u in D} ✓ H �H.

As we already observed, since T is self-adjoint, G(T ) is a closed subspace of H �H, considered
as a Hilbert space with the natural Hermitian form making the decomposition orthogonal.
Therefore, there is the following orthogonal decomposition of H �H:

(54) H �H = G(T )�G(T )?.

We deduce from the self-adjointness of T that

G(T )? = {(�Tu, u) | u in D} .
Let h belong to H. According to (54), there are vectors u, v in D for which

(h, 0) = (u, Tu) + (�Tv, v),

that is,
h = u� Tv and v = �Tu.

Hence u belongs to D(T 2) and h = u + T 2(u). Thus I+T 2 : D(T 2) ! H is onto. Since T is
symmetric

(55) h(I+T 2)u, ui = hu, ui+ hTu, Tui � hu, ui for all u in D(T 2).

Thus I+T 2 is one-to-one, (53) holds, and (I+T 2)�1 is symmetric since it is the inverse of a
symmetric operator. We deduce from (55) and the Cauchy-Schwarz Inequality that (I+T 2)�1

is bounded.
Finally, we verify that T � (I+T 2)�1 : H ! H is bounded. Indeed, let h belong to H. Then

T � (I+T 2)�1h = Tv where (I+T 2)v = h.

By the symmetry of T,
hv, vi+ hTv, Tvi = hh, vi,

from which we first deduce that kvk  khk and then that kTvk  khk. Hence
kT � (I+T 2)�1hk = kTvk  khk for all h in H,

and therefore T � (I+T 2)�1 is bounded. ⇤
Theorem 24. Let T : D ✓ H ! H be self-adjoint. Then T has a sequence of bounded approx-
imations {T : Hn ! Hn}, which has the further property that if S in L(H) commutes with T,
in the sense that S � T = T � S on D, then S maps each Hk into Hk.
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Proof. The preceding theorem tells us that (I+T 2)�1 belongs to L(H) and is symmetric. The-
orem 18 tells us that there is a unique spectral resolution {E�}�2R for (I+T 2)�1. Recall that
any operator S in L(H) that commutes with (I+T 2)�1 also commutes with each projection E�.
For each natural number n, define

Qn ⌘ I�E1/(n+1) and Hn ⌘ Qn(H).

We deduce from Lemma 1 that {Hn}1n=1 is an ascending sequence of closed subspaces of H and
each Qn is the orthogonal projection of H onto Hn.

Claim 1: For each h in H, limn!1Qnh = h. Indeed, by the right-continuity of {E�}�2R to
verify this claim is to show that E0 = 0. However, observe that, by (8), E� is equal to E0 for
� � 0 and equal to 0 for � < 0. Therefore

(I+T 2)�1E0 =
Z 1

�1
�d E�E0 = 0.

Since (I+T 2)�1 is invertible, E0 = 0.

Claim 2: We claim that {Hk}1k=1 reduces T. Indeed, fix a natural number k. As noted above,
(I+T 2)�1 commutes with each E� and therefore maps Hk into itself. Moreover, by (14),

h(I+T 2)�1h, hi =
Z 1

1/k
�d hE�h, hi � 1/kkhk2 for all h in Hk

In particular, (I+T 2)�1 : Hk ! Hk is positive definite, and consequently, by Proposition 6,
is invertible. On the other hand, the bounded linear operator T (I+T 2)�1 commutes with
(I+T 2)�1. By the commutativity property of the spectral resolution, T (I+T 2)�1 commutes
with each E�, and so [T (I+T 2)�1](Hk) ✓ Hk. Therefore

T (Hk) = T (I+T 2)�1(Hk) ✓ Hk.

Claim 3: We claim that the commutativity property holds. Indeed, suppose S in L(H) com-
mutes with T. Then S also commutes with (I+T 2)�1. By the commutativity property of the
spectral resolution, S commutes with each E� and therefore maps each subspace Hk into itself.

⇤

3. An Extra Lemma

Lemma 25 (The Approximation Lemma). Let T : D ✓ H ! H be self adjoint. For each n,
let Hn be a closed subspace of D for which Hn ✓ Hn+1 and T (Hn) ✓ Hn, and let Qn be the
orthogonal projection of H onto Hn. Suppose that for each h in H, limn!1Qnh = h. Then

Th = lim
n!1

TQnh for all h in D.

Proof. Let h belong to D. For each n, TQnh and T (TQnh) belong to Hn ✓ D. Thus

||TQnh||2 = hTQnh, TQnhi = hT (TQnh), Qnhi = hT (TQnh), hi = hTQnh, Thi for all n,
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so that, by the Cauchy-Schwarz Inequality, ||TQnh||  ||Th|| for all n. Thus the sequence
{TQnh}1n=1 is bounded. Since the symmetric operator T maps Qn+k into itself and Qn into
itself, for each n and k,

(56) kTQn+khk2 � kTQnhk2 = kTQn+kh� TQnhk2.
Thus the sequence {kTQnhk}1n=1 is increasing, and since it is bounded, it converges. The
completeness of H, together with (56), tells us that {TQnh}1n=1 converges: call the limit f. We
claim that f = Th. Indeed, for each n,

hTQnh, ui = hQnh, Tui for all u in D

Take the limit as n ! 1 to see that

hz, ui = hh, Tui for all u in D.

The self-adjointness of T tells us that z = Th. ⇤
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