
GAUSSIAN INTEGERS

1. Basic Definitions

A Gaussian integer is a complex number z = x+ yi for which x and
y, called respectively the real and imaginary parts of z, are integers.
In particular, since either or both of x and y are allowed to be 0, every
ordinary integer is also a Gaussian integer. We recall that the complex
conjugate of z is defined by z = x − iy and satisfies, for arbitrary
complex numbers z and w, z + w = z + w and zw = zw. We remark
that sums, products, and complex conjugates of Gaussian Integers are
again Gaussian integers.

For any complex number z, we define the norm of z by N(z) = zz =
x2 +y2, where x and y are the respectively the real and imaginary parts
of z. It follows that N(zw) = N(z)N(w). We remark that the norm
of any complex number is a non-negative real number, the norm of a
Gaussian integer is a non-negative integer, and only 0 has norm 0. We
observe further that only ±1 and ±i have norm 1. These are called
unit Gaussian integers, or units, and two Gaussian integers are called
associates if they can be obtained from one another by multiplication
by units. Note that, in general, z and its associates are distinct from z
and its associates. The exceptions to this rule occur when the real and
imaginary parts of z have the same absolute value, and when the real
or imaginary part of z is 0.

We defined divisibility for the Gaussian integers exactly as for inte-
gers. We say z|w if w is the product of z and some Gaussian integer.
A Gaussian integer is called irreducible if its only divisors are units
and its associates. Notice that if N(z) is a prime, then z is irreducible
since if z = w1w2, it follows that N(z) = N(w1)N(w2), from which
it follows that either w1 or w2 is a unit. For example 1 + i and 2 + i
are irreducible, since they have norms 2 and 5 respectively. We do not
claim the converse of this proposition. For example, we will see that 3
is irreducible as a Gaussian integer, but N(3) = 9, which is not prime.
Notice that we have just proved that 2 and 5 are not irreducible as
Gaussian integers.
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2. The Division Algorithm and gcd’s for Gaussian

Integers

The division algorithm for Gaussian integers states that if z and d
are Gaussian integers, then there are Gaussian integers q and r with
N(r) ≤ 1

2
N(d) and z = qd + r. We do not assert the uniquenss of r,

for reasons that will become clear in the proof.
The basic idea is that if we represent complex numbers in the plane

in the usual way with the real and imaginary parts as coordinates, then
the distance between z and w is SqrtN(z − w). We will choose q to
be a Gaussian integer whose distance from the complex number z

d
is as

small as possible. We can always choose q with N(q− c
d
) ≤ 1

2
, but there

may be up to four such choices possible. Since r = z − qd = d(q − c
d
)

it follows both that r is a Gaussian integer and that N(r) ≤ 1
2
N(d).

This completes the proof.
We now define d to be a greatest common divisor of z and w if

d has the form αz + βw with α and β Gaussian integers, and N(d)
takes the smallest positive value for Gaussian integers of that form. It
now follows from the division algorithm that d divides both z and w.
It also follows, as in the case of linear combinations of integers, that
any common divisor of z and w divides d. It follows that all greatest
common divisors of z and w are associates of one another.

It now follows precisely as it did for ordinary integers that if α, z
and w are Gaussian integers, α|zw and 1 is a greatest common divisor
of α and z, then α divides w. It also follows precisely as for ordinary
integers that if α is an irreducible Gaussian integer, then either α|z or
1 is a greatest common divisor of α and z. It is similarly easy to prove
that every Gaussian integer that is neither a unit nor irreducible is a
product of irreducible factors. Uniqueness is slightly more awkward to
prove, simply because it is more awkward to state; we will not require
the details.

3. Which Primes are Irreducible Gaussian Integers ?

Let p be an odd prime. If p is not an irreducible Gaussian integer
then p has a factor of the form x+yi and then N(x+yi)|N(p) = p2. If
x+yi is neither a unit nor an associate of p, we must have N(x+yi) =
(x + yi)(x − yi) = x2 + y2 = p. This establishes that an odd prime is
an irreducible Gaussian integer if and only if it is not the sum of two
squares.

We notice next that if x and y have opposite parity, then x2 +y2 ≡ 1
(mod 4). This is true because all even squares are congruent to 0
(mod 4) and all odd squares are congruent to 1 (mod 4). It follows
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that all primes congruent to 3 (mod 4) are irreducible Gaussian inte-
gers.

We will now show that all primes congruent to 1 (mod 4) have the
form N(x + yi) = x2 + y2 and therefore are not irreducible Gaussian
integers. We begin by recalling that -1 is a quadratic residue, for such
a prime. Thus there exists an integer x with x2 + 1 ≡ 0 (mod p).
Moreover, by choosing a least residue, and replacing x by p − x if
necessary, we can be certain that 0 < x ≤ p−1

2
. This gives

(x+ i)(x− i) = x2 + 1 = kp ≤ (p− 1)2

4
+ 1 < p2.

If p is an irreducible Gaussian integer, it must divide at least one of
the factors on the left. But then it must divide both, and the product
must be divisible by p2, which is impossible, since it is less than p2.
The conclusion is that p is not an irreducible Gaussian integer if p ≡ 1
(mod 4).

Now, we observe that if p ≡ 1 (mod 4), and N(x+ yi) = p then any
Gaussian integer whose norm is p must be irreducible, must divide p,
and therefore must divide either x + yi or x − yi. It follows that any
such Gaussian integer is an associate of either x+ yi or x− yi.

It now follows that the irreducible Gaussian integers are the following
and their associates:

• Primes congruent to 3 (mod 4).
• 1 + i
• x + yi and x − yi where x and y are positive integers such that
x2 + y2 is a prime congruent to 1 (mod 4).

4. Sums of two squares

Clearly, an integer is the sum of two squares if and only if it is
the norm of some Gaussian integer. If we factor a Gaussian integer
into irreducible factors, the norms of the factors are primes not not
congruent to 3 (mod 4) and the squares of primes congruent to 3
(mod 4). It follows that the norms of Gaussian integers are precisely
those numbers for which all primes congruent to 3 (mod 4) have even
multiplicity.

5. Problems

1. Apply the Euclidean algorithm for Gaussian integers to express
8+7i in the form qd+r where d = 1+2i and q and r are Gaussian
integers with N(r) ≤ 1

2
N(d).
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Solution: We have
8 + 7i

1 + 2i
=

(8 + 7i)(1− 2i)

5
=

22

5
− 9

5
i.

The nearest Gaussian integer is 4 − 2i, so that the remainder is
given by

r = 8 + 7i− (1 + 2i)(4− 2i) = i.

2. Why is 1− i not on the list of irreducible Gaussian integers?

Answer: 1− i is an associate, as well as the conjugate, of 1 + i.

3. Prove that the hypotenuse of a fundamental Pythagorean triple
is not divisible by any prime congruent to 3 (mod 4).

Proof: The hypotenuse of a fundamental Pythagorean triple has
the form zz where z = m+ ni, and m and n are relatively prime.
If p is a prime congruent to 3 (mod 4), and divides zz, then
p divides at least one of the factors. From this, it follows that
m and n are not relatively prime, as is required for fundamental
Pythagorean triples.

4. Find the smallest integer that is the hypotenuse of eight different
fundamental Pythagorean triples.

Solution: Such an integer must be divisible by four distinct primes,
each congruent to 1 (mod 4). The smallest is 5·13·17·29 = 32045.


