MATH 141 — CALCULUS II
MIDTERM EXAM # 4 SOLUTIONS

(1) (a) Since na, — 2, we may assume 1 < na, < 3, or 1/n < a, and a2 < 9/n? The
first inequality implies that ) a, diverges (comparison with the harmonic series) and the
second inequality implies > a2 converges (comparison with the p-series, p = 2). (b) This is
a geometric series with a = 1/3 and r = —2/3. Hence, the sum is
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(c) This is an alternating series with
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Since a, — 0 (by L’Hopital’s rule), it suffices to show a, > a,4+1 for n sufficiently large.
This follows directly by algebra, or notice that f/(x) < 0 (and so f is decreasing) for =
large, where f(z) = (z + 1)/(z? + = + 1).

(2) (a) By the ratio test
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So the radius of convergence is 4/e2. (b) By the root test,
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(note that since In(n)/n — 0 and In(Inn)/n — 0 by I'Hopital’s rule, we have n'/? =

exp(Inn/n) — 1 and (Inn)"/" = exp(In(Inn)/n) — 1). So the radius of convergence in this
case is 1.
(3) For (a),
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For (b),
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(4) The n-th coefficient in the expansion is £ (0)/n!. So
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