MATH 241 - CALCULUS III SECOND MIDTERM EXAM SOLUTIONS

(1) For (a), $\nabla f=3 y e^{3 x} \hat{\mathbf{i}}+e^{3 x} \hat{\mathbf{j}}, \nabla f(0,1)=3 \hat{\mathbf{i}}+\hat{\mathbf{j}}$, and so $\mathbf{u}=3 / \sqrt{10} \hat{\mathbf{i}}+1 / \sqrt{10} \hat{\mathbf{j}}$. For (b), set $g(x, y, z)=3 e^{x}+2 x z+\sin (x+2 y)-3 z$. Then

$$
\begin{aligned}
\nabla g & =\left(3 e^{x}+2 z+\cos x+2 y\right) \hat{\mathbf{i}}+2 \cos (x+2 y) \hat{\mathbf{j}}+(2 x-3) \hat{\mathbf{k}} \\
\nabla g(0,0,1) & =6 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}
\end{aligned}
$$

So the equation of the plane is: $6 x+2 y-3 z+3=0$.
(2) For (a), the limit doesn't exist, since if $x=y$ the function is $=2$ whereas for $x=-y$ the function $=0$. For (b), differentiate both sides of the equation in part 1(b) with respect to z :

$$
3 e^{x} \frac{\partial x}{\partial z}+2 z \frac{\partial x}{\partial z}+2 x+\cos (x+2 y) \frac{\partial x}{\partial z}=3
$$

Evaluating at the point $(0,0,1)$ we find $\partial x / \partial z=1 / 2$.
(3) By definition: $\mathbf{N}(s)=\mathbf{T}^{\prime}(s) /\left\|\mathbf{T}^{\prime}(s)\right\|$. Since $\mathbf{T}(s)$ is a unit vector

$$
0=\frac{d}{d s}(\mathbf{T} \cdot \mathbf{T})=2 \mathbf{T} \cdot \mathbf{T}^{\prime}
$$

So in particular, $\mathbf{T} \cdot \mathbf{N}=0$. For (b), notice that from the definition of the binormal, $\mathbf{B} \cdot \mathbf{N}=0$ for all s. Differentiate this to find $\mathbf{B} \cdot \mathbf{N}^{\prime}=-\mathbf{B}^{\prime} \cdot \mathbf{N}$. The result follows from the definition of torsion and the fact that \mathbf{N} is a unit vector.
(4) Compute the partials

$$
f_{x}=6 x-3 y^{2} \quad f_{y}=-6 x y+3 y^{2}+6 y
$$

Setting the first equal to zero we have $x=y^{2} / 2$. Substituting this into the second, we have $0=-3 y^{3}+3 y^{2}+6 y=-3 y(y+1)(y-2)$. The critical points are therefore $(0,0),(1 / 2,-1)$, and $(2,2)$. The second derivatives are $f_{x x}=6, f_{y y}=-6 x+6 y+6$, $f_{x y}=-6 y$, so the Hessians at the critical points are

$$
\left(\begin{array}{ll}
6 & 0 \\
0 & 6
\end{array}\right) \quad, \quad\left(\begin{array}{cc}
6 & 6 \\
6 & -3
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
6 & -12 \\
-12 & 6
\end{array}\right)
$$

respectively. By the second derivative test, $(0,0)$ is a local minimum and the other two critical points are saddles.

