MATH 341 - EXAM \# 1

Instructions. Show all your work. Be sure your name is on the booklet and that you have signed the honor pledge. You may not use calculators, notes, or any other form of assistance on this exam.
(1) (5 pts) Compute the Wronskian $W\left(y_{1}, y_{2}\right)$ of $y_{1}(t)=e^{a t}$ and $y_{2}(t)=t e^{a t}$, where a is constant.
(2) (5 pts) If the rate of growth of a population $N(t)$ of bacteria is given by

$$
\frac{d N(t)}{d t}=\lambda N(t)
$$

for some $\lambda>0$, how long does it take for the population to quadruple?
(3) (15 pts) Which, if any, of the following operators is linear?
(a) $L(y)=\int_{0}^{t}\left(s y^{\prime}(s)+s^{2} y(s)+s^{3}\right) d s$
(b) $L(y)=y^{\prime \prime}+y y^{\prime}$
(c) $L(y)=t^{2} y^{\prime \prime}-t y^{\prime}+2 y$
(4) (25 pts) Solve the following initial value problem.

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0 ; \quad y(0)=2, y^{\prime}(0)=0
$$

(5) (25 pts) Find the general solution to the differential equation

$$
y^{\prime \prime}-y^{\prime}-2 y=t e^{2 t}
$$

(6) (25 pts) Find two linearly independent solutions of

$$
t^{2} y^{\prime \prime}-t y^{\prime}+y=0
$$

(Hint: make a guess for one of them!)

