MATH 341 - EXAM \# 1 SOLUTIONS

(1) $y_{1}^{\prime}=a e^{a t}$; $y_{2}^{\prime}=(1+a t) e^{a t}$. $W\left(y_{1}, y_{2}\right)=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}=e^{2 a t}$.
(2) $N(t)=N_{0} e^{\lambda t}$. Set $N(t)=4 N_{0}$. Then $t=(\ln 4) / \lambda$.
(3) Only (c) is linear.
(4) The roots of the characteristic equation are $-1 \pm 2 i$, so the general solution is

$$
a e^{-t} \cos (2 t)+b e^{-t} \sin (2 t)
$$

Setting $y(0)=2$ gives $a=2$. Setting $y^{\prime}(0)=0$ gives $-a+2 b=0$, so $b=1$, and the solution is

$$
2 e^{-t} \cos (2 t)+e^{-t} \sin (2 t)
$$

(5) The roots of the characteristic equation are $2,-1$, so the general solution to the homogeneous equation is $y=a e^{2 t}+b e^{-t}$. To find a particular solution, try $\psi=$ $\left(a+b t+c t^{2}\right) e^{2 t}$. Note that this is quadratic because 2 is a root. Then calculate

$$
\psi^{\prime \prime}-\psi^{\prime}-2 \psi=2 c+3 b+6 c t=t e^{2 t}
$$

Hence, a particular solution is given by $c=1 / 6,2 c+3 b=0$, or $b=-1 / 9$. The general solution to the inhomogeneous equation is therefore

$$
y=\left(-t / 9+t^{2} / 6\right) e^{2 t}+a e^{2 t}+b e^{-t}
$$

(6) Notice that $y=t$ is a solution! Then look for another solution of the form $y=t f(t)$. Then

$$
\begin{aligned}
y^{\prime} & =f+t f^{\prime} \\
y^{\prime \prime} & =2 f^{\prime}+t f^{\prime \prime}
\end{aligned}
$$

Plugging into the equation we get

$$
t^{2} y^{\prime \prime}-t y^{\prime}+y=t f^{\prime \prime}+f^{\prime}
$$

It follows that $f^{\prime}=1 / t$, or $f=\ln t$. Hence, $y=t \ln t$ is a second solution.

