MATH 341 - FINAL EXAM

Instructions. Show all your work. Be sure your name is on the booklet and that you have signed the honor pledge. You may not use calculators, notes, or any other form of assistance on this exam.
(1) (20 pts) Find the general solution of the differential equation: $y^{\prime \prime}-4 y^{\prime}+4 y=t e^{t}$.
(2) (15 pts) Solve the initial value problem

$$
y^{2}+4 t y^{3}+2\left(t y+3 t^{2} y^{2}+2\right) y^{\prime}=0 ; y(0)=-1
$$

You may leave your answer as a functional relation between t and y.
(3) (15 pts)
(a) Define the Laplace transform $\mathcal{L}(y)$ of a function $y(t)$.
(b) Compute the Laplace transform of $y(t)=\cos t$.
(c) Express $\mathcal{L}\left(y^{\prime \prime}\right)$ in terms of $\mathcal{L}(y)$, where $y(0)=1, y^{\prime}(0)=2$.
(4) (20 pts) Find the general solution of $\mathbf{x}^{\prime}=A \mathbf{x}$, where

$$
A=\left(\begin{array}{ccc}
1 & -1 & 4 \\
3 & 2 & -1 \\
2 & 1 & -1
\end{array}\right)
$$

(5) (15 pts) Let

$$
\mathbf{x}_{1}(t)=\left(\begin{array}{c}
0 \\
0 \\
e^{t}
\end{array}\right) \quad \mathbf{x}_{2}(t)=\left(\begin{array}{c}
e^{2 t} \\
0 \\
0
\end{array}\right) \quad \mathbf{x}_{3}(t)=\left(\begin{array}{c}
t e^{2 t} \\
e^{2 t} \\
e^{t}
\end{array}\right)
$$

Suppose $\mathbf{x}_{1}(t), \mathbf{x}_{2}(t), \mathbf{x}_{3}(t)$ are solutions of the equation $\mathbf{x}^{\prime}=A \mathbf{x}$, where A is a constant 3×3 matrix.
(a) Show that $\left\{\mathbf{x}_{1}(t), \mathbf{x}_{2}(t), \mathbf{x}_{3}(t)\right\}$ are independent solutions.
(b) Find the solution of $\mathbf{x}^{\prime}=A \mathbf{x}$ with initial condition $\mathbf{x}(0)=\left(\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right)$.
(c) Find A.
(6) (15 pts) Consider the system

$$
(*)\left\{\begin{array}{l}
x^{\prime}=x y+y^{2}+2 y \\
y^{\prime}=x^{2}-x y+4 x
\end{array}\right.
$$

(a) Find all the equilibrium points of $(*)$.
(b) Write out the second order Taylor expansion of the functions

$$
\begin{aligned}
& f(x, y)=x y+y^{2}+2 y \\
& g(x, y)=x^{2}-x y+4 x
\end{aligned}
$$

about the point $(-3,1)$.
(c) Determine which equilibrium points of $(*)$ are stable.

