MATH 341 – FINAL EXAM

Instructions. Show all your work. Be sure your name is on the booklet and that you have signed the honor pledge. You may *not* use calculators, notes, or any other form of assistance on this exam.

- (1) (20 pts) Find the general solution of the differential equation: $y'' 4y' + 4y = te^t$.
- (2) (15 pts) Solve the initial value problem

$$y^{2} + 4ty^{3} + 2(ty + 3t^{2}y^{2} + 2)y' = 0 ; y(0) = -1$$

You **may** leave your answer as a functional relation between t and y.

- (3) (15 pts)
 - (a) Define the Laplace transform $\mathcal{L}(y)$ of a function y(t).
 - (b) Compute the Laplace transform of $y(t) = \cos t$.
 - (c) Express $\mathcal{L}(y'')$ in terms of $\mathcal{L}(y)$, where y(0) = 1, y'(0) = 2.
- (4) (20 pts) Find the general solution of $\mathbf{x}' = A\mathbf{x}$, where

$$A = \begin{pmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{pmatrix}$$

(5) (15 pts) Let

$$\mathbf{x}_1(t) = \begin{pmatrix} 0\\0\\e^t \end{pmatrix} \qquad \mathbf{x}_2(t) = \begin{pmatrix} e^{2t}\\0\\0 \end{pmatrix} \qquad \mathbf{x}_3(t) = \begin{pmatrix} te^{2t}\\e^{2t}\\e^t \end{pmatrix}$$

Suppose $\mathbf{x}_1(t)$, $\mathbf{x}_2(t)$, $\mathbf{x}_3(t)$ are solutions of the equation $\mathbf{x}' = A\mathbf{x}$, where A is a constant 3×3 matrix.

- (a) Show that $\{\mathbf{x}_1(t), \mathbf{x}_2(t), \mathbf{x}_3(t)\}\$ are *independent* solutions.
- (b) Find the solution of $\mathbf{x}' = A\mathbf{x}$ with initial condition $\mathbf{x}(0) = \begin{pmatrix} -1\\ 2\\ 1 \end{pmatrix}$.
- (c) Find A.

please turn \hookrightarrow

Date: May 18, 2009.

(6) (15 pts) Consider the system

$$(*) \begin{cases} x' = xy + y^2 + 2y \\ y' = x^2 - xy + 4x \end{cases}$$

- (a) Find all the equilibrium points of (*).
- (b) Write out the *second* order Taylor expansion of the functions

$$f(x,y) = xy + y^{2} + 2y$$
$$g(x,y) = x^{2} - xy + 4x$$

about the point (-3, 1).

(c) Determine which equilibrium points of (*) are stable.