MATH 341 - FINAL EXAM SOLUTIONS

(1) $y(t)=a e^{2 t}+b t e^{2 t}+(2+t) e^{t}$, where a and b are constants.
(2) Write the equation in the form $\phi_{t}+\phi_{y} y^{\prime}=0$ for $\phi(t, y)$. Then solve

$$
\phi(t, y)=t y^{2}+2 t^{2} y^{3}+4 y=\text { constant }
$$

The constant is determined by the initial condition. We find

$$
t y^{2}+2 t^{2} y^{3}+4 y=-4
$$

(3) (a) $\mathcal{L}(y)(s)=\int_{0}^{\infty} e^{-s t} y(t) d t$. (b) Compute

$$
\begin{aligned}
\int_{0}^{\infty} e^{-s t} \cos t d t & =\Re \int_{0}^{\infty} e^{-s t} e^{i t} d t \\
& =\Re \int_{0}^{\infty} e^{-(s-i) t} d t \\
& \left.=\Re-\frac{e^{-(s-i) t}}{s-i}\right]_{0}^{\infty} \\
& =\Re-\frac{1}{s-i}=\Re-\frac{s+i}{s^{2}+1} \\
& =\frac{s}{s^{2}+1}
\end{aligned}
$$

(c) $\mathcal{L}\left(y^{\prime}\right)=s \mathcal{L}(y)-y(0)$, so

$$
\begin{aligned}
\mathcal{L}\left(y^{\prime \prime}\right) & =s \mathcal{L}\left(y^{\prime}\right)-y^{\prime}(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} \mathcal{L}(y)-s y(0)-y^{\prime}(0) \\
& =s^{2} \mathcal{L}(y)-s-2
\end{aligned}
$$

(4) The characteristic polynomial of A is $p_{A}(\lambda)=-(\lambda-1)(\lambda-3)(\lambda+2)$. Use row reduction to find the eigenvectors. The general solution is

$$
\mathbf{x}(t)=a e^{t}\left(\begin{array}{c}
-1 \\
4 \\
1
\end{array}\right)+b e^{3 t}\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)+c e^{-2 t}\left(\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right)
$$

for constants a, b, c.
(5) (a) At $t=0$ (and hence, any t) the vectors are independent. (b) Choose the correct initial condition:

$$
\mathbf{x}(t)=-\mathbf{x}_{1}(t)-\mathbf{x}_{2}(t)+2 \mathbf{x}_{3}(t)
$$

(c) By the same argument choose initial conditions to be the standard basis. So the fundamental solution is

$$
\mathbf{X}(t)=\left(\begin{array}{ccc}
e^{2 t} & t e^{2 t} & 0 \\
0 & e^{2 t} & 0 \\
0 & 0 & e^{t}
\end{array}\right) \quad \text { so } \quad A=\left(\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

(6) (a) Solve simultaneously for $f(x, y)=g(x, y)=0$. The solutions are

$$
(0,0)(-3,1)(0,-2)(-4,0)
$$

(b) Compute

$$
\begin{aligned}
& f_{x}=y, f_{y}=x+2 y+2, f_{x x}=0, f_{y y}=2, f_{x y}=1 \\
& g_{x}=2 x-y+4, g_{y}=-x, g_{x x}=2, g_{y y}=0, g_{x y}=-1
\end{aligned}
$$

Evaluating at $(-3,1)$, we have

$$
\begin{aligned}
f(x, y) & =(x+3)+(y-1)+(x+3)(y-1)+(y-1)^{2} \\
g(x, y) & =-3(x+3)+3(y-1)+(x+3)^{2}-(x+3)(y-1)
\end{aligned}
$$

(c) Linearize the equation at each of the critical points. In each case, let A be the matrix

$$
A=\left(\begin{array}{ll}
f_{x} & f_{y} \\
g_{x} & g_{y}
\end{array}\right)
$$

evaluated at the critical point. Plugging in the values into the expression above, we find

$$
\begin{aligned}
\text { At }(0,0), A & =\left(\begin{array}{ll}
0 & 2 \\
4 & 0
\end{array}\right) \\
\text { At }(-3,1), A & =\left(\begin{array}{cc}
1 & 1 \\
-3 & 3
\end{array}\right) \\
\text { At }(0,-2), A & =\left(\begin{array}{cc}
-2 & -2 \\
6 & 0
\end{array}\right) \\
\text { At }(-4,0), A & =\left(\begin{array}{cc}
0 & -2 \\
-4 & 4
\end{array}\right)
\end{aligned}
$$

From the determinants and traces, we see that $(0,-2)$ is stable, and the others are all unstable.

