MATH 341 - QUIZ \# 1 SOLUTIONS

(1)
(a) $\quad H(f)(0,0)=\left(\begin{array}{ll}4 & 2 \\ 2 & 1\end{array}\right)$
(b) $\quad f(x, y)=1+2 x+y+2 x^{2}+2 x y+\frac{1}{2} y^{2}+O\left(\left(x^{2}+y^{2}\right)^{3 / 2}\right)$
(2) Critical points are at $f_{x}=-2 y^{2}+3 x^{2}-1=0$ and $f_{y}=4 y^{3}-4 x y=0$. Solutions are $(\pm 1 / \sqrt{3}, 0)$ and $(1, \pm 1)$. Using the second derivative test, the first two are saddle points, and the last two are local minima.
(3) Use Lagrange multipliers: $\nabla f=\lambda \nabla g$, where $g(x, y, z)=x^{2}+y^{2}+z^{2}$. We find

$$
1=2 \lambda x \quad 1=2 \lambda y \quad-1=2 \lambda z
$$

so $x=y=-z$. This implies $x= \pm 3 \sqrt{3}$. The maximum of f is $9 \sqrt{3}$ and the minimum is $-9 \sqrt{3}$.

