MATH 341 - QUIZ \# 2 SOLUTIONS

(1)

$$
\begin{aligned}
y_{0}(t) & =y(0)=1 \\
y_{1}(t) & =1+\int_{0}^{t}\left(s^{2}+1\right) d s \\
& =t^{3} / 3+t+1
\end{aligned}
$$

(2) (a) Separate variables:

$$
\begin{aligned}
\frac{2 y y^{\prime}}{1+y^{2}} & =-t^{2} \\
\log \left(1+y^{2}\right) & =-t^{3} / 3+C \\
y^{2} & =C e^{-t^{3} / 3}-1
\end{aligned}
$$

The initial condition implies $C=2$, so $y=\left(2 e^{-t^{3} / 3}-1\right)^{1 / 2}$. For (b), set $\phi_{t}=2 t y^{3}$, $\phi_{y}=3 t^{2} y^{2}$. We see that $\phi=t^{2} y^{3}$, and $\phi=C$ is a solution. The initial condition means $C=1$, so $y=t^{-2 / 3}$.

