MATH 341 - QUIZ \# 5 SOLUTIONS

(1) The characteristic polynomial is $p_{A}(\lambda)=(\lambda-5)^{2}(\lambda+10)$. Now

$$
A-5 I=\left(\begin{array}{ccc}
-12 & 0 & 6 \\
0 & 0 & 0 \\
6 & 0 & -3
\end{array}\right) \quad A+10 I=\left(\begin{array}{ccc}
3 & 0 & 6 \\
0 & 15 & 0 \\
6 & 0 & 12
\end{array}\right)
$$

It is easily seen that $\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right)$ form a basis for the eigenspace associated to $\lambda=5$, and $\left(\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right)$ is an eigenvector with eigenvalue -10 .
(2) Write $B=S+N$ where

$$
S=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 2
\end{array}\right) \quad N=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Notice that $S N=N S$ and $N^{2}=0$. So $e^{t B}=e^{t S} e^{t N}=e^{t S}(I+t N)$.

$$
e^{t B}=\left(\begin{array}{ccc}
e^{-t} & t e^{-t} & 0 \\
0 & e^{-t} & 0 \\
0 & 0 & e^{2 t}
\end{array}\right)
$$

(3) The characteristic polynomial is $p_{A}(\lambda)=\lambda^{2}+2 \lambda+2$, and so the eigenvalues are complex: $\lambda=-1 \pm i$. The vector $\binom{1}{2-i}$ is an eigenvector with eigenvalue $-1+i$. Therefore, a basis of solutions is given by the real and imaginary parts of

$$
\begin{aligned}
e^{t} \lambda\binom{1}{2-i} & =e^{-t} e^{i t}\binom{1}{2-i}=e^{-t}\binom{\cos t+i \sin t}{2 \cos t+\sin t+i(2 \sin t-\cos t)} \\
\mathbf{x}_{1}(t) & =e^{-t}\binom{\cos t}{2 \cos t+\sin t} \quad \mathbf{x}_{2}(t)=e^{-t}\binom{\sin t}{2 \sin t-\cos t}
\end{aligned}
$$

Notice that $\mathbf{x}_{1}(0)=\binom{1}{2}, \mathbf{x}_{1}(0)=\binom{0}{-1}$, so $\mathbf{x}_{1}+\mathbf{x}_{2}$ has the correct initial conditions. Hence, the solution is

$$
\mathbf{x}(t)=\mathbf{x}_{1}+\mathbf{x}_{2}=e^{-t}\binom{\cos t+\sin t}{\cos t+3 \sin t}
$$

