Math 436 – Final Exam Solutions

(1) Let $\mathbf{T} = \dot{\gamma}$. By assumption, $\dot{\mathbf{T}} \neq 0$. Then the Frenet-Serret formula is

$$\begin{pmatrix} \mathbf{T} \\ \mathbf{N} \\ \mathbf{B} \end{pmatrix}' = \begin{pmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0 \end{pmatrix} \begin{pmatrix} \mathbf{T} \\ \mathbf{N} \\ \mathbf{B} \end{pmatrix}$$

where κ , τ are the curvature and torsion, and the normal and binormal are defined by

$$\mathbf{N} = rac{\dot{\mathbf{T}}}{\|\dot{\mathbf{T}}\|} \;,\; \mathbf{B} = \mathbf{T} imes \mathbf{N}$$

- (2) (a) False. Any longitude between the north and south poles of a sphere is a geodesic.
 - (b) True. We proved this using stereographic projection.
 - (c) False. κ would have only three critical points, violating the four vertex theorem.
 - (d) False. The cylinder of radius R and plane are locally isometric, but the cylinder has principal curvatures 0 and 1/R.
- (3) (a) If $X = X_1\sigma_u + X_2\sigma_v$, and $Y = Y_1\sigma_u + Y_2\sigma_v$, for functions X_i , Y_i of u, v, then $D_X Y = X_1(Y_1\sigma_u + Y_2\sigma_v)_u + X_2(Y_1\sigma_u + Y_2\sigma_v)_v$
 - (b) The covariant derivative vanishes if $D_X Y$ is normal to the surface. Hence, the equations are

$$0 = \langle \sigma_u, X_1 (Y_1 \sigma_u + Y_2 \sigma_v)_u + X_2 (Y_1 \sigma_u + Y_2 \sigma_v)_v \rangle$$

$$0 = \langle \sigma_v, X_1 (Y_1 \sigma_u + Y_2 \sigma_v)_u + X_2 (Y_1 \sigma_u + Y_2 \sigma_v)_v \rangle$$

- (4) Let X, Y denote tangent vectors. Then
 - (a) $I(X,Y) = \langle X,Y \rangle$.
 - (b) $II(X,Y) = -\langle D_X \mathbf{N}, Y \rangle$.
 - (c) Since II is symmetric it can be diagonalized. The eigenvalues $\kappa_1 \leq \kappa_2$ are the principal curvatures.
 - (d) $H = (\kappa_1 + \kappa_2)/2$.
 - (e) $K = \kappa_1 \kappa_2$.
- (5) (a) It is just the Euler characteristic of the sphere minus 3 vertices; so -1.
 - (b) $\int_{S} K dA = 2\pi \chi(S).$
 - (c) $\int_{\Delta}^{\beta} K dA = \alpha + \beta + \gamma \pi.$