MATH 436 – HOMEWORK #5 – DUE NOV 13

Let $S \subset \mathbb{R}^3$ be an oriented regular surface with normal ν .

(1) Compute the Christoffel symbols for the surface of revolution

$$\sigma(u, v) = (f(u) \cos v, f(u) \sin v, g(u))$$

with $(f'(u))^2 + (g'(u))^2 = 1.$

(2) Let γ be a unit speed curve on S with curvature κ . Suppose the Gaussian curvature K of S satisfies K > 0, and let κ_i , i = 1, 2, be the principal curvatures. Show that

$$\kappa \ge \min\{|\kappa_1|, |\kappa_2|\}$$

(3) Let $\gamma: (-\varepsilon, \varepsilon) \to S$ be a unit speed curve. The *geodesic torsion* of γ is defined to be

$$\tau_g = \langle D\nu(\dot{\gamma}), \nu \times \dot{\gamma} \rangle$$

Let κ_i be the principal curvatures of S in directions \mathbf{e}_i .

- (a) Show that $\tau_q = (\kappa_1 \kappa_2) \cos \phi \sin \phi$, where ϕ is the angle from \mathbf{e}_1 to $\dot{\gamma}$.
- (b) If τ is the torsion of $\gamma(t)$ (as a curve in \mathbb{R}^3) and **N** the principal normal, let $\cos \theta = \langle \nu, \mathbf{N} \rangle$. Show that

$$\frac{d\theta}{dt} = \tau - \tau_g$$