Math 660 — Exam #?2

(1) Let n > 1 be an integer and A € C, 0 < |A\| < 1. Set

f(2) = (z = 1)"e” — A

(a) Show that f has n zeros in the region |z — 1| < 1.
(b) What can you say about the multiplicities of the zeros in part (a)?
(c) Show that there are no other zeros of f (Hint: what if A\ — 07)

Solution: (a) Apply Rouché’s theorem to g(z) = (z — 1)"e*. (b) Compute:

z—1

F1(2) = (2 — 1)"e? (1+ n )

At the zeros of f in question, f'(z) = A(1+n/(z—1)) # 0, since |z—1| < 1. Hence, the
multiplicities are all = 1 (i.e. simple zeros). (c¢) For A = 0 the corresponding function
has a zero at z = 1 with multiplicity n. Now apply continuity and the argument
principle to conclude that f has n zeros as well. Alternatively, by continuity and
since all the zeros are at z =1 for A = 0, if (c¢) doesn’t hold there is some 0 < A < 1
for which f has a zero with |z — 1| = 1. But then |(z — 1)"e*| > 1; contradiction.
Let U C C be a domain. Let 21, 29 be in the same component of the complement of
U.

(a) Show that there is a holomorphic function f on U such that

)= —— - —

Z— 21 zZ — 29

(b) Show that there is a holomorphic function g on U such that

Zz— 21

e9(2) —

zZ — 29

Solution: (a) Since z; and 2z are in the same component of U¢, for any closed curve
v in U W(~,z1) = W (v, 22). Hence,

1 dz( Lo ):W(fy,zl)—W(*y,zg)zo

2mi ), Z—2 Z— 2

In particular, the integrand has a primitive in U. (b) Let f be the primitive in part

(a). Then
& (76=) =

The result follows.



(3) Let D be the unit disk, and f : D — C a holomorphic function. Suppose that
f(D) C {w:Rew > 0}, and f(0) = 1. Show that for all z € D,

F(z)] <

Solution: g(z) = (z—1)/(z+1) maps the right half conformally onto the disk. Hence,
g o f(z) maps the disk to itself and satisfies g o f(0) = 0. By the Schwarz lemma,
g o f(2)] < [2], or

flz) =1
'f(z>+1' =14
|f(2) = 1] < |2[[f(2) + 1]
1f()] =1 < 2[(1f(2)] +1)
1+ |z
f(2)] < —

(4) For 0 < o < 1, show that
/ dx ™ cosx = sin(ma/2)I'(1 — «)
0

In particular, justify the convergence of the improper integral (Hint: convert to a
complex integral over an appropriate closed contour in the upper right quadrant).

Solution: Choose the contour in the picture.

Cr
Co

'\|<—C€
|

Then show that the integrals over C. and Cy vanish as ¢ — 0 and R — oo. Using
the principal branch of the logarithm to define powers we have (it)™® = t~%e~7/2,



So by the residue theorem (there are no poles in the interior of the contour)

lim dz z7% " = lim dz 27 %%
R—o0 Cl R—o0 CQ
R .
= lim idtt e teomi/2

R—oo J
= ie ™2 (1 — a)

Taking real parts gives the result.

Let U C C be a domain. For each compact set K C U, show that there is a constant

Ck > 1 (depending on K) such that for all positive harmonic functions u on U and
all z,w e K,

1 u(z)

— <

Crk ~ u(w)

Solution: Since we can rescale, it suffices to prove the result for functions in

< Ck

F = {u positive harmonic on U and max u(z) =1}
zE

I claim there is ¢ > 0 such that u(z) > ck for all w € F and all z € K. This proves
the result, because then

cx <u(z)/u(w) < 1/ck
If such a constant does not exist, there is a sequence of functions u; € J and points
z; € K. By (a consequence of) the Harnack inequality, we may assume u; — u
uniformly on K, where u is harmonic and max,cx u(z) = 1. But (after passing to a

subsequence) z; — z € K. Then u(z) = 0. By the minimum principle, © must be
constant, which is a contradiction.



