
Math 660 – Exam #2

(1) Let n ≥ 1 be an integer and λ ∈ C, 0 < |λ| < 1. Set

f(z) = (z − 1)nez − λ

(a) Show that f has n zeros in the region |z − 1| < 1.

(b) What can you say about the multiplicities of the zeros in part (a)?

(c) Show that there are no other zeros of f (Hint: what if λ→ 0?)

Solution: (a) Apply Rouché’s theorem to g(z) = (z − 1)nez. (b) Compute:

f ′(z) = (z − 1)nez
(

1 +
n

z − 1

)
At the zeros of f in question, f ′(z) = λ(1+n/(z−1)) 6= 0, since |z−1| < 1. Hence, the

multiplicities are all = 1 (i.e. simple zeros). (c) For λ = 0 the corresponding function

has a zero at z = 1 with multiplicity n. Now apply continuity and the argument

principle to conclude that f has n zeros as well. Alternatively, by continuity and

since all the zeros are at z = 1 for λ = 0, if (c) doesn’t hold there is some 0 < λ < 1

for which f has a zero with |z − 1| = 1. But then |(z − 1)nez| ≥ 1; contradiction.

(2) Let U ⊂ C be a domain. Let z1, z2 be in the same component of the complement of

U .

(a) Show that there is a holomorphic function f on U such that

f ′(z) =
1

z − z1
− 1

z − z2
(b) Show that there is a holomorphic function g on U such that

eg(z) =
z − z1
z − z2

Solution: (a) Since z1 and z2 are in the same component of U c, for any closed curve

γ in U W (γ, z1) = W (γ, z2). Hence,

1

2πi

∫
γ

dz

(
1

z − z1
− 1

z − z2

)
= W (γ, z1)−W (γ, z2) = 0

In particular, the integrand has a primitive in U . (b) Let f be the primitive in part

(a). Then

d

dz

(
ef

(z − z2)
(z − z1)

)
= 0

The result follows.
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(3) Let D be the unit disk, and f : D → C a holomorphic function. Suppose that

f(D) ⊂ {w : Rew > 0}, and f(0) = 1. Show that for all z ∈ D,

|f(z)| ≤ 1 + |z|
1− |z|

Solution: g(z) = (z−1)/(z+1) maps the right half conformally onto the disk. Hence,

g ◦ f(z) maps the disk to itself and satisfies g ◦ f(0) = 0. By the Schwarz lemma,

|g ◦ f(z)| ≤ |z|, or ∣∣∣∣f(z)− 1

f(z) + 1

∣∣∣∣ ≤ |z|
|f(z)− 1| ≤ |z||f(z) + 1|
|f(z)| − 1 ≤ |z|(|f(z)|+ 1)

|f(z)| ≤ 1 + |z|
1− |z|

(4) For 0 < α < 1, show that∫ ∞
0

dx x−α cosx = sin(πα/2)Γ(1− α)

In particular, justify the convergence of the improper integral (Hint: convert to a

complex integral over an appropriate closed contour in the upper right quadrant).

Solution: Choose the contour in the picture.

C2

CR

C1

← Cε|
ε

|
R

Then show that the integrals over Cε and CR vanish as ε→ 0 and R→∞. Using

the principal branch of the logarithm to define powers we have (it)−α = t−αe−απi/2.
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So by the residue theorem (there are no poles in the interior of the contour)

lim
R→∞

∫
C1

dz z−αeiz = lim
R→∞

∫
C2

dz z−αeiz

= lim
R→∞

∫ R

0

idt t−αe−te−απi/2

= ie−απi/2Γ(1− α)

Taking real parts gives the result.

(5) Let U ⊂ C be a domain. For each compact set K ⊂ U , show that there is a constant

CK ≥ 1 (depending on K) such that for all positive harmonic functions u on U and

all z, w ∈ K,
1

CK
≤ u(z)

u(w)
≤ CK

Solution: Since we can rescale, it suffices to prove the result for functions in

F = {u positive harmonic on U and max
z∈K

u(z) = 1}

I claim there is c > 0 such that u(z) ≥ cK for all u ∈ F and all z ∈ K. This proves

the result, because then

cK ≤ u(z)/u(w) ≤ 1/cK

If such a constant does not exist, there is a sequence of functions uj ∈ F and points

zj ∈ K. By (a consequence of) the Harnack inequality, we may assume uj → u

uniformly on K, where u is harmonic and maxz∈K u(z) = 1. But (after passing to a

subsequence) zj → z ∈ K. Then u(z) = 0. By the minimum principle, u must be

constant, which is a contradiction.


