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Abstract Adaptive finite element methods (AFEM) are a fundamental numerical in-
strument in science and engineering to approximate partialdifferential equations. In
the 1980s and 1990s a great deal of effort was devoted to the design of a posteriori
error estimators, following the pioneering work of Babuška. These are computable
quantities, depending on the discrete solution(s) and data, that can be used to assess
the approximation quality and improve it adaptively. Despite their practical success,
adaptive processes have been shown to converge, and to exhibit optimal cardinal-
ity, only recently for dimensiond > 1 and for linear elliptic PDE. These series of
lectures presents an up-to-date discussion of AFEM encompassing the derivation
of upper and lower a posteriori error bounds for residual-type estimators, including
a critical look at the role of oscillation, the design of AFEMand its basic prop-
erties, as well as a complete discussion of convergence, contraction property and
quasi-optimal cardinality of AFEM.
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1 Piecewise Polynomial Approximation

We start with a discussion of piecewise polynomial approximation inWk
p Sobolev

spaces and graded meshes in any dimensiond. We first compare pointwise approx-
imation over uniform and graded meshes ford = 1 in §1.1, which reveals the ad-
vantages of the latter over the former and sets the tone for the rest of the paper. We
continue with the concept of Sobolev number in§1.2.

We explore the geometric aspects of mesh refinement for conforming meshes in
§1.3 and nonconforming meshes in§1.7, but postpone a full discussion until§6. We
include a statement about complexity of the refinement procedure, which turns out
to be instrumental later.

We briefly discuss the construction of finite element spaces in §1.4, along with
polynomial interpolation of functions in Sobolev spaces in§1.5. This provides local
estimates adequate for comparison of quasi-uniform and graded meshes ford > 1.
We exploit them in developing the so-called error equidistribution principle and the
construction of suitably graded meshes via thresholding in§1.6. We conclude that
graded meshes can deliver optimal interpolation rates for certain classes of singular
functions, and thus supersede quasi-uniform refinement.

1.1 Classical vs Adaptive Pointwise Approximation

We start with a simple motivation in 1d for the use of adaptiveprocedures, due to
DeVore [22]. GivenΩ = (0,1), a partitionTN = {xi}Nn=0 of Ω

0 = x0 < x1 < · · ·< xn < · · ·< xN = 1

and a continuous functionu : Ω → R, we consider the problem ofinterpolating u
by a piecewise constantfunctionUN overTN. To quantify the difference between
u andUN we resort to themaximum normand study two cases depending on the
regularity ofu.

Case 1:W1
∞-Regularity. Suppose thatu is Lipschitz in [0,1]. We consider the ap-

proximation
UN(x) := u(xn−1) for all xn−1≤ x < xn.

Since

|u(x)−UN(x)|= |u(x)−u(xn−1)|=
∣∣∣
∫ x

xn−1

u′(t)dt
∣∣∣≤ hn‖u′‖L∞(xn−1,xn)

we conclude that

‖u−UN‖L∞(Ω) ≤
1
N
‖u′‖L∞(Ω), (1)
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provided the local mesh-sizehn is about constant (quasi-uniformmesh), and so pro-
portional toN−1 (the reciprocal of the number of degrees of freedom). Note that
the same integrability is used on both sides of (1). A naturalquestion arises:Is it
possible to achieve the same asymptotic decay rate N−1 with weaker regularity de-
mands?

Case 2:W1
1 -Regularity. To answer this question, we suppose‖u′‖L1(Ω) = 1 and

consider the non-decreasing function

φ(x) :=
∫ x

0
|u′(t)|dt

which satisfiesφ(0) = 0 andφ(1) = 1. LetTN = {xi}Nn=0 be the partition given by

∫ xn

xn−1

|u′(t)|dt = φ(xn)−φ(xn−1) =
1
N

.

Then, forx∈ [xn−1,xn],

|u(x)−u(xn−1)|=
∣∣∣
∫ x

xn−1

u′(t)dt
∣∣∣≤

∫ x

xn−1

|u′(t)|dt≤
∫ xn

xn−1

|u′(t)|dt =
1
N

,

whence

‖u−UN‖L∞(Ω) ≤
1
N
‖u′‖L1(Ω). (2)

We thus conclude that we could achieve the same rate of convergenceN−1 for
rougher functions with just‖u′‖L1(Ω) < ∞. The following comments are in order
for Case 2.

Remark 1 (Equidistribution).The optimal meshTN equidistributesthe max-error.
This mesh is graded instead of uniform but, in contrast to a uniform mesh, such a
partition may not be adequate for another function with the same basic regularity as
u. It is instructive to consider the singular functionu(x) = xγ with γ = 0.1 and error
tolerance 10−2 to quantify the above computations: ifN1 andN2 are the number of
degrees of freedom with uniform and graded partitions, we obtainN1/N2 = 1018.

Remark 2 (Nonlinear Approximation).The regularity ofu in (2) is measured in
W1

1 (Ω) instead ofW1
∞(Ω) and, consequently, the fractionalγ regularity measured in

L∞(Ω) increases to one full derivative when expressed inL1(Ω). This exchange of
integrability between left and right-hand side of (2), and gain of differentiability, is
at the heart of the matter and the very reason why suitably graded meshes achieve
optimal asymptotic error decay for singular functions. By those we mean functions
which are not in the usual linear Sobolev scale, sayW1

∞(Ω) in this example, but
rather in a nonlinear scale [22]. We will get back to this issue in §7.
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1.2 The Sobolev Number: Scaling and Embedding

In order to make Remark 2 more precise, we introduce the Sobolev number. Let
Ω ⊂ R

d with d > 1 be a Lipschitz and bounded domain, and letk∈ N,1≤ p≤ ∞.
The Sobolev spaceWk

p(Ω) is defined by

Wk
p(Ω) := {v : Ω → R| Dαv∈ Lp(Ω) ∀|α| ≤ k}.

If p = 2 we setHk(Ω) = Wk
2 (Ω) and note that this is a Hilbert space. TheSobolev

numberof Wk
p(Ω) is given by

sob(Wk
p) := k− d

p
. (3)

This number governs the scaling properties of the semi-norm

|v|Wk
p(Ω) :=

(
∑
|α|=k

‖Dαv‖p
Lp(Ω)

)1/p
,

because rescaling variables ˆx = 1
hx for all x∈Ω , transformsΩ into Ω̂ andv into v̂,

while the corresponding norms scale as

|v̂|Wk
p(Ω̂) = hsob(Wk

p)|v|Wk
p(Ω).

In addition, we have the followingcompact embedding: if m> k and sob(Wm
q ) >

sob(Wk
p), then

Wm
q (Ω)⊂Wk

p(Ω).

We say that two Sobolev spaces are in the same nonlinear Sobolev scale if they have
the same Sobolev number. We note that for compactness the spaceWm

q (Ω) must be
above the Sobolev scale ofWk

p(Ω). A relevant example ford = 2 are the pairH1(Ω)

andL∞(Ω) which have the same Sobolev number, in fact sob(H1) = sob(L∞) = 0,
but the former is not even contained in the latter: in fact

v(x) = log log
|x|
2
∈ H1(Ω)\L∞(Ω)

in the unit ball. This is a source of difficulties for polynomial interpolation theory
and the need for quasi-interpolation operators. This is discussed in§1.5.

We conclude with a comment about Remark 2. We see thatd = 1 and sob(W1
1 ) =

sob(L∞) = 0 butW1
1 (Ω) is compactly embedded inL∞(Ω) in this case. This shows

that these two spaces are in the same nonlinear Sobolev scaleand that the above
inequality between Sobolev numbers for a compact embeddingis only sufficient.
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1.3 Conforming Meshes: The Bisection Method

In order to approximate functions inWk
p(Ω) by piecewise polynomials, we decom-

poseΩ into simplices. We briefly discuss thebisectionmethod, the most elegant
and successful technique for subdividingΩ in any dimension into a conforming
mesh. We also discuss briefly nonconforming meshes in§1.7. We present complete
proofs, especially of the complexity of bisection, later in§6.

We focus ond = 2 and follow Binev, Dahmen, and DeVore [7], but the results
carry over to any dimensiond > 1 (see Stevenson [53]). We refer to Nochetto,
Siebert, and Veeser [45] for a rather complete discussion for d > 1.

Let T denote amesh(triangulation or grid) made of simplicesT, and letT be
conforming(edge-to-edge). Each element is labeled, namely it has an edge E(T)
assigned for refinement (and an opposite vertexv(T) for d = 2); see Figure 1.

2

2

1 2

1

1

E(T )

T

v(T ) = v(T )

v(T)
T

TE(T)
E(T )

Fig. 1 TriangleT ∈ T with vertexv(T) and opposite refinement edgeE(T). The bisection rule
for d = 2 consists of connectingv(T) with the midpoint ofE(T), thereby giving rise to children
T1,T2 with common vertexv(T1) = v(T2), the newly created vertex, and opposite refinement edges
E(T1),E(T2).

The bisection method consists of a suitablelabelingof the initial meshT0 and
a rule to assign the refinement edge to the two children. Ford = 2 we consider
thenewest vertex bisectionas depicted in Figure 1. Ford > 2 the situation is more
complicated and one needs the concepts of type and vertex order [45, 53].

Bisection creates auniquemaster forestF of binary trees with infinite depth,
where each node is a simplex (triangle in 2d), its two successors are the two children
created by bisection, and the roots of the binary trees are the elements of the initial
conforming partitionT0. It is important to realize that, no matter how an element
arises in the subdivision process, its associated newest vertex is unique and only
depends on the labeling ofT0: sov(T) andE(T) are independent of the order of the
subdivision process for allT ∈ F; see Lemma 16 in§6. Therefore,F is unique.

A finite subsetF ⊂ F is called aforestif T0⊂F and the nodes ofF satisfy

• all nodes ofF \T0 have a predecessor;

• all nodes inF have either two successors or none.

Any nodeT ∈F is thus uniquely connected with a nodeT0 of the initial triangula-
tionT0, i.e.T belongs to the infinite treeF(T0) emanating fromT0. Furthermore, any
forest may haveinterior nodes, i.e. nodes with successors, as well asleaf nodes, i.e.
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nodes without successors. The set of leaves corresponds to amesh (or triangulation,
grid, partition)T = T (F ) of T0 which may not be conforming or edge-to-edge.

We thus introduce the setT of all conforming refinements ofT0:

T := {T = T (F ) |F ⊂ F is finite andT (F ) is conforming}.

If T∗ = T (F∗) ∈ T is a conforming refinement ofT = T (F ) ∈ T, we write
T∗ ≥T and understand this inequality in the sense of trees, namelyF ⊂F∗.

11 9
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Fig. 2 Sequence of bisection meshes{Tk}2k=0 starting from the initial meshT0 = {Ti}4i=1 with
longest edges labeled for bisection. MeshT1 is created fromT0 upon bisectingT1 andT4, whereas
meshT2 arises fromT1 upon refiningT6 andT7. The bisection rule is described in Figure 1.

T1 T2 T3

T11 T12

T5

T

T6

4

T7 T8

T10
T9

Fig. 3 ForestF2 corresponding to the grid sequence{Tk}2k=0 of Figure 2. The roots ofF2 form
the initial meshT0 and the leaves ofF2 constitute the conforming bisection meshT2. Moreover,
each level ofF2 corresponds to all elements with generation equal to the level.

Example: ConsiderT0 = {Ti}4i=1 and the longest edge to be the refinement edge.
Figure 2 displays a sequence of conforming meshesTk ∈ T created by bisection.
Each elementTi of T0 is a root of a finite tree emanating fromTi , which together
form the forestF2 corresponding to meshT2 = T (F2). Figure 3 displaysF2,
whose leaf nodes are the elements ofT2.

Properties of Bisection.We now discuss several crucial geometric properties of
bisection. We start with the concept of shape regularity. For anyT ∈T , we define
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h
T

h
T

hT = diam(T)

hT = |T|1/d

hT = 2sup{r > 0|B(x, r)⊂ T for x∈ T}.

Then
hT ≤ hT ≤ hT ≤ σhT ∀T ∈T ,

whereσ > 1 is the shape regularity constant. We say that a sequence of meshes
is shape regularif σ is uniformly bounded, or in other words that the element
shape does not degenerate with refinement. The next lemma guarantees that bisec-
tion keepsσ bounded.

Fig. 4 Bisection produces at most 4 similarity classes for any triangle.

Lemma 1 (Shape Regularity).The partitionsT generated by newest vertex bi-
section satisfy a uniform minimal angle condition, or equivalently σ is uniformly
bouunded, only depending on the initial partitionT0.

Proof. EachT ∈T0 gives rise to a fixed number of similarity classes, namely 4 for
d = 2 according to Figure 4. This, combined with the fact that #T0 is finite, yields
the assertion. ⊓⊔

We define thegeneration (or level) g(T) of an elementT ∈ T as the number of
bisections needed to createT from its ancestorT0 ∈ T0. Since bisection splits an
element into two children with equal measure, we realize that

hT = 2−g(T)/2hT0 ∀T ∈T . (4)

Referring to Figure 3 we observe that the leaf nodesT9,T10,T11,T12 have generation
2, whereasT5,T8 have generation 1 andT2,T3 have generation 0.

The following geometric property is a simple consequence of(4).

Lemma 2 (Element Size vs Generation).There exist constants0 < D1 < D2, only
depending onT0, such that

D12−g(T)/2≤ hT < hT ≤ D22−g(T)/2 ∀T ∈T . (5)
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Labeling and Bisection Rule.Whether the recursive application of bisection does
not lead to inconsistencies depends on a suitable initial labeling of edges and a
bisection rule. Ford = 2 they are simple to state [7], but ford > 2 we refer to
Condition (b) of Section 4 of [53]. GivenT ∈ T with generationg(T) = i, we
assign the label(i + 1, i + 1, i) to T with i corresponding to the refinement edge
E(T). The following rule dictates how the labeling changes with refinement: the side
i is bisected and both new sides as well as the bisector are labeled i +2 whereas the
remaining labels do not change. To guarantee that the label of an edge is independent
of the elements sharing this edge, we need a special labelingfor T0 [7]:

edges ofT0 have labels0 or 1 and all elements T∈ T have
exactly two edges with label1 and one with label0.

(6)

It is not obvious that such a labeling exists, but if it does then all elements ofT0

can be split into pairs of compatibly divisible elements. Werefer to Figure 5 for
an example of initial labeling ofT0 satisfying (6) and the way it evolves for two
successive refinementsT2≥T1≥T0 corresponding to Figure 2.

0

00 0

0 0

0

0

11

1 1

11

1

1

1

1 1

2

2

2 2

2

2

2

2

2

2

2 2

3

3
3

3

Fig. 5 Initial labeling and its evolution for the sequence of conforming refinementsT0≤T1≤T2
of Figure 2.

To guarantee (6) we can proceed as follows: given a coarse mesh of elementsT
we can bisect twice eachT and label the 4 grandchildren, as indicated in Figure 6 for
the resulting meshT0 to satisfy the initial labeling [7]. A similar, but much trickier,

1

1

1
1

1
1

1

0

0

Fig. 6 Bisecting each triangle ofT0 twice and labeling edges in such a way that all boundary
edges have label 1 yields an initial mesh satisfying (6).

construction can be made in any dimensiond > 2 (see Stevenson [53]). Ford = 3
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the number of elements increases by an order of magnitude, which indicates that (6)
is a severe restriction in practice. Finding alternative, more practical, conditions is
an open and important problem.

The ProcedureREFINE. GivenT ∈ T and a subsetM ⊂T of marked elements,
the procedure

T∗ = REFINE(T ,M )

creates a new conforming refinementT∗ of T by bisecting all elements ofM at
least once and perhaps additional elements to keep conformity.

Conformity is a constraint in the refinement procedure that prevents it from being
completely local. The propagation of refinement beyond the set of marked elements
M is a rather delicate matter, which we discuss later in§6. For instance, we show
that a naive estimate of the form

#T∗−#T ≤Λ0 #M

is not valid with an absolute constantΛ0 independent of the refinement level. This
can be repaired upon considering the cumulative effect for asequence of conforming
bisection meshes{Tk}∞

k=0. This is expressed in the following crucial complexity
result due to Binev, Dahmen, and DeVore [7] ford = 2 and Stevenson [53] for
d > 2. We present a complete proof later in§6.

Theorem 1 (Complexity of REFINE). If T0 satisfies the initial labeling(6) for
d = 2, or that in [53, Section 4] for d> 2, then there exists a constantΛ0 > 0 only
depending onT0 and d such that for all k≥ 1

#Tk−#T0≤Λ0

k−1

∑
j=0

#M j .

If elementsT ∈M are to be bisectedb≥ 1 times, then the procedureREFINE can
be applied recursively, and Theorem 1 remains valid withΛ0 also depending onb.

1.4 Finite Element Spaces

Given a conforming meshT ∈ T we define the finite element space of continuous
piecewise polynomials of degreen≥ 1

S
n,0(T ) := {v∈C0(Ω)| v|T ∈ Pn(T) ∀T ∈T };

note thatSn,0(T ) ⊂ H1(Ω). We refer to Braess [10], Brenner-Scott [11], Ciarlet
[19] and Siebert [50] for a discussion on the local construction of this space along
with its properties.
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We focus on the piecewise linear casen = 1 (Courant elements). Global con-
tinuity can be simply enforced by imposing continuity at theverticesz of T , the
so-callednodal values. We denote byN the set of verticesz of T .

However, the following local construction leads to global continuity. If T is a
generic simplex ofT , namely the convex hull of{zi}di=0, then we associate to each
vertexzi a barycentric coordinateλ T

i , which is the linear function inT with nodal
value 1 atzi and 0 at the other vertices ofT. Upon pasting together the barycentric
coordinatesλ T

z of all simplicesT containing vertexz∈N , we obtain a continuous
piecewise linear functionφz ∈ S

1,0(T ) as depicted in Figure 7 ford = 2: The set

φ
z

z

ω z

z

Fig. 7 Piecewise linear basis functionφz corresponding to interior nodez, supportωz of φz and
scheletonγz, the latter being composed of all sides within the interior ofωz.

{φz}z∈N of all such functions is the nodal basis ofS
1,0(T ), or Courant basis. We

denote byωz := supp(φz) the support ofφz, from now on calledstarassociated toz,
and byγz the scheleton ofωz, namely all the sides containingz.

We denote functions inSn,0(T ) with capital letters. In view of the definition of
φz, we have the following unique representation of any function V ∈ S

n,0(T )

V(x) = ∑
z∈N

V(z)φz(x).

If we further imposeV(z) = 0 for all z∈ ∂Ω ∩N , thenV ∈ H1
0(Ω). We denote by

V(T ) := S
n,0(T )∩H1

0(Ω)

the subspace of finite element functions which vanish on∂Ω . Note that we do not
explicitly refer to the polynomial degree, which will be clear in each context.

For each simplexT ∈ T , generated by vertices{zi}di=0, the dual functions
{λ ∗i }di=0⊂ P1(T) to the barycentric coordinates{λi}di=0 satisfy the bi-orthogonality
relation

∫
T λ ∗i λ j = δi j , and are given by

λ ∗i =
(1+d)2

|T| λi−
1+d
|T| ∑

j 6=i

λ j ∀ 0≤ i ≤ d.
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TheCourant dual basisφ ∗z ∈ S
n,−1(T ) are the discontinuous piecewise linear func-

tions overT given by

φ ∗z =
1
νz

∑
T∋z

(λ T
z )∗χT ∀ z∈N ,

whereνz ∈ N is the valence ofz (number of elements ofT containingz) andχT

is the characteristic function ofT. These functions have the same supportωz as the
nodal basisφz and satisfy the global bi-orthogonality relation

∫

Ω
φ ∗z φy = δzy ∀ z,y∈N .

1.5 Polynomial Interpolation in Sobolev Spaces

If v∈C0(Ω) we define theLagrange interpolant IT v of v as follows:

IT v(x) = ∑
z∈N

v(z)φz(x).

For functions without point values, such as functions inH1(Ω) for d > 1, we need
to determine nodal values by averaging. For any conforming refinementT ≥ T0

of T0, the averaging process extends beyond nodes and so gives rise to the discrete
neigborhood

NT (T) := {T ′ ∈T | T ′∩T 6= /0}
for each elementT ∈T along with thelocal quasi-uniformityproperties

max
T∈T

#NT (T)≤C(T0), max
T ′∈NT (T)

|T|
|T ′| ≤C(T0),

whereC(T0) depends only on the shape coefficient ofT0 given by

σ(T0) := max
T∈T0

hT

hT
.

We introduce now one such operatorIT due to Scott-Zhang [11, 48], from now
on calledquasi-interpolation operator. We focus on polynomial degreen = 1, but
the construction is valid for anyn; see [11, 48] for details. We recall that{φz}z∈N

is the global Lagrange basis ofS
1,0(T ), {φ ∗z }z∈N is the global dual basis, and

suppφ ∗z = suppφz for all z∈N . We thus defineIT : L1(Ω)→ S
1,0(T ) to be

IT v = ∑
z∈N

〈v, φ ∗z 〉φz,



12 R. H. Nochetto and A. Veeser

If 0 ≤ s≤ 2 is a regularity index and 1≤ p≤ ∞ is an integrability index, then we
would like to prove thequasi-local error estimate

‖Dt(v− IT v)‖Lq(T) . h
sob(Ws

p)−sob(Wt
q)

T ‖Dsv‖Lp(NT (T)) (7)

for all T ∈T , provided 0≤ t ≤ s, 1≤ q≤ ∞ are such that sob(Ws
p) > sob(Wt

q).
We first observe that by constructionIT is invariant inS

1,0(T ), namely,

IT P = P for all P∈ S
1,0(T ).

Since the averaging process giving rise to the values ofIT v for each elementT ∈T

takes place in the neighborhoodNT (T), we also deduce the local invariance

IT P|T = P for all P∈ P1(NT (T))

as well as the local stability estimate for any 1≤ q≤ ∞

‖IT v‖Lq(T) . ‖v‖Lq(NT (T)).

We thus may write

v− IT v|T = (v−P)− IT (v−P)|T for all T ∈T ,

whereP ∈ Ps−1 is arbitrary (P = 0 if s = 0). It suffices now to prove (7) in the
reference element̂T and scale back and forth toT; the definition (3) of Sobolev
number accounts precisely for this scaling. We keep the notation T for T̂, apply
the inverse estimate for linear polynomials‖Dt(IT v)‖Lq(T) . ‖IT v‖Lq(T) to v−P
instead ofv, and use the above local stability estimate, to infer that

‖Dt(v− IT v)‖Lq(T) . ‖v−P‖Wt
q(NT (T)) . ‖v−P‖Ws

p(NT (T)).

The last inequality is a consequenceWs
p(NT (T))⊂Wt

q(NT (T)) because sob(Ws
p) >

sob(Wt
q) andt ≤ s. Estimate (7) now follows from the Bramble-Hilbert lemma [11,

Lemma 4.3.8], [19, Theorem 3.1.1]

inf
P∈Ps−1(NT (T))

‖v−P‖Ws
p(NT (T)) . ‖Dsv‖Lp(NT (T)). (8)

This proves (7) forn = 1. The construction ofIT and ensuing estimate (7) are still
valid for anyn > 1 [11, 48].

Proposition 1 (Quasi-Interpolant without Boundary Values). Let s, t be regular-
ity indices with0≤ t ≤ s≤ n+1, and1≤ p,q≤ ∞ be integrability indices so that
sob(Ws

p) > sob(Wt
q).

There exists a quasi-interpolation operator IT : L1(Ω)→ S
n,0(T ), which is in-

variant in Sn,0(T ) and satisfies

‖Dt(v− IT v)‖Lq(T) . h
sob(Ws

p)−sob(Wt
q)

T ‖Dsv‖Lp(NT (T)) ∀T ∈T . (9)
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The hidden constant in(7) depends on the shape coefficient ofT0 and d.

To impose a vanishing trace onIT v we may suitably modify the averaging pro-
cess for boundary nodes. We thus define a set of dual functionswith respect to an
L2-scalar product over(d−1)-subsimplices contained on∂Ω ; see again [11, 48]
for details. This retains the invariance property ofIT on S

n,0(T ) and guarantees
thatIT v has a zero trace ifv∈W1

1 (Ω) does. Hence, the above argument applies and
(9) follows provideds≥ 1.

Proposition 2 (Quasi-Interpolant with Boundary Values). Let s, t, p,q be as in
Proposition 1. There exists a quasi-interpolation operator IT : W1

1 (Ω)→ S
n,0(T )

invariant inS
n,0(T ) which satisfies(9) for s≥ 1 and preserves the boundary values

of v provided they are piecewise polynomial of degree≤ n. In particular, if v∈
W1

1 (Ω) has a vanishing trace on∂Ω , then so does IT v.

Remark 3 (Fractional Regularity).We observe that (7) does not require the regular-
ity indicest ands to be integer. The proof follows the same lines but replaces the
polynomial degrees−1 by the greatest integer smaller thats; the generalization of
(8) can be taken from [26].

Remark 4 (Local Error Estimate for Lagrange Interpolant).Let the regularity in-
dex s and integrability index 1≤ p ≤ ∞ satisfy s− d/p > 0. This implies that
sob(Ws

p) > sob(L∞), whenceWs
p(Ω) ⊂ C(Ω) and the Lagrange interpolation op-

eratorIT : Ws
p(Ω)→ Sn,0(T ) is well defined and satisfies thelocal error estimate

‖Dt(v− IT v)‖Lq(T) . h
sob(Ws

p)−sob(Wt
q)

T ‖Dsv‖Lp(T), (10)

provided 0≤ t ≤ s, 1≤ q≤ ∞ are such that sob(Ws
p) > sob(Wt

q). We point out that
NT (T) in (7) is now replaced byT in (10). We also remark that ifv vanishes on∂Ω
so doesIT v. The proof of (10) proceeds along the same lines as that of Proposition
1 except that the nodal evaluation does not extend beyond theelementT ∈ T and
the inverse and stability estimates over the reference element are replaced by

‖Dt IT v‖Lq(T̂) . ‖IT v‖Lq(T̂) . ‖v‖L∞(T̂) . ‖v‖Ws
p(T̂).

We are now in a position to derive a global interpolation error estimate. To this
end, it is convenient to introduce the mesh-size functionh∈ L∞(Ω) given by

h|T = hT for all T ∈T . (11)

Notice that the following estimate encompasses the linear as well as the nonlinear
Sobolev scales.

Theorem 2 (Global Interpolation Error Estimate). Let1≤ s≤ n+1 and1≤ p≤
2 satisfy r:= sob(Ws

p)−sob(H1) > 0. If v ∈Ws
p(Ω), then

‖∇(v− IT v)‖L2(Ω) . ‖hrDsv‖Lp(Ω). (12)
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Proof. Use Proposition 1 along with the elementary property of series ∑nan ≤
(∑naq

n)
1/q for 0 < q := p/2≤ 1. ⊓⊔

Quasi-Uniform Meshes. We now apply Theorem 2 to quasi-uniform meshes,
namely meshesT ∈T for which all its elements are of comparable sizeh regardless
of the refinement level. In this case, we have

h≈ (#T )−1/d.

Corollary 1 (Quasi-Uniform Meshes).Let1≤ s≤ n+1 and u∈Hs(Ω). If T ∈T

is quasi-uniform, then

‖∇(v− IT v)‖L2(Ω) . |v|Hs(Ω)(#T )−(s−1)/d. (13)

Remark 5 (Optimal Rate).If s = n+ 1, and sov has the maximal regularityv ∈
Hn+1(Ω), then we obtain the optimal convergence rate in a linear Sobolev scale

‖∇(v− IT v)‖L2(Ω) . |v|Hn+1(Ω)(#T )−n/d. (14)

The order−n/d is just dictated by the polynomial degreen and cannot be improved
upon assuming either higher regularity thatHn+1(Ω) or a graded meshT .

Example(Corner Singularity in 2d). To explore the effect of a geometric singularity
on (13), we letΩ be the L-shaped domain of Figure 1.5 andv∈ H1(Ω) be

u(r,θ) = r
2
3 sin(2θ/3)− r2/4.

This functionv ∈ H1(Ω) exhibits the typical corner singularity of the solution of
−∆v = f with suitable Dirichlet boundary condition:v∈ Hs(Ω) for s< 5/3. Table
1 displays the best approximation error for polynomial degreen = 1,2,3 and the
sequence ofuniform refinements depicted in Figure 1.5 in the seminorm| · |H1(Ω).
This gives alower bound for the interpolation error in (13).

h linear(n = 1) quadratic(n = 2) cubic(n = 3)
1/4 1.14 9.64 9.89
1/8 0.74 0.67 0.67
1/16 0.68 0.67 0.67
1/32 0.66 0.67 0.67
1/64 0.66 0.67 0.67
1/128 0.66 0.67 0.67

Table 1 The asymptotic rate of convergence in term of mesh-sizeh is abouth2/3, or equivalently
(#T )−1/3, irrespective of the polynomial degreen. This provides a lower bound for‖v− IT v‖L2(Ω)
and thus shows that (13) is sharp.

Even thoughs is fractional, the error estimate (13) is still valid as stated in Remark
3. In fact, for uniform refinement, (13) can be derived by space interpolation be-
tweenH1(Ω) andHn+1(Ω). The asymptotic rate(#T )−1/3 reported in Table 1 is



Primer of AFEM 15

Fig. 8 Sequence of consecutive uniform meshes for L-shaped domainΩ created by 2 bisections.

consistent with (13) and independent of the polynomial degreen; this shows that
(13) is sharp. It is also suboptimal as compared with the optimal rate(#T )−n/2 of
Remark 5.

The question arises whether the rate(#T )−1/3 in Table 1 is just a consequence
of uniform refinement or unavoidable. It is important to realize thatv 6∈ Hs(Ω) for
s≥ 5/3 and thus (13) is not applicable. However, the problem is notthat second
order derivatives ofv do not exist but rather that they are not square-integrable.In
particular, it is true thatv∈W2

p (Ω) if 1≤ p< 3/2. We therefore may apply Theorem
2 with, e.g.,n= 1, s= 2, andp∈ [1,3/2) and then ask whether the structure of (12)
can be exploited, e.g., by compensating the local behavior of Dsu with the local
mesh-sizeh. This enterprise naturally leads togradedmeshes adapted tov.

1.6 Adaptive Approximation

Principle of Error Equidistribution. We investigate the relation between local
mesh-size and regularity for the design of graded meshes adapted tov ∈ H1(Ω)
for d = 2. We formulate this as an optimization problem:

Given a function v∈C2(Ω)∩W2
p (Ω) and an integer N> 0 find condi-

tions for a shape regular meshT to minimize the error|v− IT v|H1(Ω)

subject to the constraint that the number of degrees of freedom#T ≤N.

We first convert thisdiscreteoptimization problem into acontinuous model, follow-
ing Babǔska and Rheinboldt [5]. Let

#T =
∫

Ω

dx
h(x)2

be the number of elements ofT and let the Lagrange interpolation error

‖∇(v− IT v)‖p
L2(Ω)

=
∫

Ω
h(x)2(p−1)|D2v(x)|pdx

be dictated by (12) withs= 2 and 1< p≤ 2; note thatr = sob(W2
p )−sob(H1) = 2−

2/p whencerp = 2(p−1) is the exponent ofh(x). We next propose the Lagrangian
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L [h,λ ] =
∫

Ω

(
h(x)2(p−1)|D2v(x)|p− λ

h(x)2

)
dx

with Lagrange multiplierλ ∈ R. The optimality condition reads (Problem 4)

h(x)2(p−1)+2|D2v(x)|p = Λ (15)

whereΛ > 0 is a constant. In order to interpret this expression, we compute the
interpolation errorET incurred in elementT ∈ T . According to (10),ET is given
by

Ep
T ≈ h2(p−1)

T

∫

T
|D2v(x)|p≈Λ

providedD2v(x) is about constant inT. Therefore we reach the heuristic, but in-
sightful, conclusion thatET is about constant, or equivalently

A graded mesh is quasi-optimal if the local error is equidistributed. (16)

Corner Singularities. Meshes satisfying (16) have been constructed by Babuška et
al [3] for corner singularities andd = 2; see also [30]. If the functionv possess the
typical behavior

v(x)≈ r(x)γ , 0 < γ < 1,

wherer(x) is the distance fromx∈ Ω to a reentrant corner ofΩ , then (15) implies
the mesh grading

h(x) = Λ
1

2p r(x)−
1
2 (γ−2)

whence

#T =
∫

Ω
h(x)−2dx= Λ−

1
p

∫ diam(Ω)

0
rγ−1dr ≈Λ−

1
p .

This crucial relation is valid for anyγ > 0 andp > 1; in fact the only condition on
p is thatr = 2−2/p > 0, or equivalently sob(W2

p ) > sob(H1). Therefore,

‖∇(v− IT v)‖2L2(Ω) = ∑
T∈T

E2
T = Λ

2
p (#T ) = (#T )−1 (17)

gives the optimal decay rate ford = 2,n= 1, according to Remark 5. We explore the
cased≥ 2 andn≥ 1 in Problem 6. What this argument does not address is whether
such meshesT exist in general and, more importantly, whether they can actually
be constructed upon bisecting the initial meshT0 so thatT ∈ T.

Thresholding. We now construct graded bisection meshesT for n = 1,d = 2 that
achieve the optimal decay rate(#T )−1/2 of (14) and (17) under the global regularity
assumption

v∈W2
p (Ω), p > 1. (18)

Following the work of Binev et al. [8], we use a thresholding algorithm that is based
on the knowledge of the element errors and on bisection. The algorithm hinges
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on (16): if δ > 0 is a given tolerance, the element error is equidistributed, that is
ET ≈ δ 2, and the global error decays with maximum rate(#T )−1/2, then

δ 4#T ≈ ∑
T∈T

E2
T = |v− IT v|2H1(Ω) . (#T )−1

that is #T . δ−2. With this in mind, we imposeET ≤ δ 2 as a common threshold to
stop refining and expect #T . δ−2. The following algorithm implements this idea.

Thresholding Algorithm. Given a toleranceδ > 0 and a conforming meshT0,
THRESHOLD finds a conforming refinementT ≥T0 of T0 by bisection such that
ET ≤ δ 2 for all T ∈T : let T = T0 and

THRESHOLD(T ,δ )
while M := {T ∈T |ET > δ 2} 6= /0

T := REFINE(T ,M )
end while
return(T )

We getW2
p (Ω)⊂C0(Ω), becausep > 1, and can use the Lagrange interpolant and

local estimate (10) withr = sob(W2
p )−sob(H1) = 2−2/p > 0. We deduce that

ET . hr
T ‖D2v‖Lp(T), (19)

and thatTHRESHOLD terminatesbecausehT decreases monotonically to 0 with
bisection. The quality of the resulting mesh is assessed next.

Theorem 3 (Thresholding).If v ∈ H1
0(Ω) verifies(18), then the outputT ∈ T of

THRESHOLD satisfies

|v− IT v|H1(Ω) ≤ δ 2(#T )1/2, #T −#T0 . δ−2 |Ω |1−1/p‖D2v‖Lp(Ω).

Proof. Let k≥ 1 be the number of iterations ofTHRESHOLD before termination.
Let M = M0∪·· ·∪Mk−1 be the set of marked elements. We organize the elements
in M by size in such a way that allows for a counting argument. LetP j be the set
of elementsT of M with size

2−( j+1) ≤ |T|< 2− j ⇒ 2−( j+1)/2≤ hT < 2− j/2.

We proceed in several steps.
1 We first observe that allT ’s in P j aredisjoint. This is because ifT1, T2 ∈P j

andT̊1∩ T̊2 6= /0, then one of them is contained in the other, sayT1 ⊂ T2, due to the
bisection procedure. Thus

|T1| ≤
1
2
|T2|

contradicting the definition ofP j . This implies

2−( j+1) #P j ≤ |Ω | ⇒ #P j ≤ |Ω |2 j+1. (20)
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2 In light of (19), we have forT ∈P j

δ 2≤ ET . 2−( j/2)r‖D2v‖Lp(T).

Therefore

δ 2p#P j . 2−( j/2)rp ∑
T∈P j

‖D2v‖p
Lp(T)

≤ 2−( j/2)rp ‖D2v‖p
Lp(Ω)

whence
#P j . δ−2p2−( j/2)rp ‖D2v‖p

Lp(Ω)
. (21)

3 The two bounds for #P in (20) and (21) are complementary. The first is good for
j small whereas the second is suitable forj large (think ofδ ≪ 1). The crossover
takes place forj0 such that

2 j0+1|Ω |= δ−2p2− j0(rp/2)‖D2v‖p
Lp(Ω)

⇒ 2 j0 ≈ δ−2 ‖D2v‖Lp(Ω)

|Ω |1/p
.

4 We now compute

#M = ∑
j

#P j . ∑
j≤ j0

2 j |Ω |+δ−2p‖D2v‖p
Lp(Ω) ∑

j> j0

(2−rp/2) j .

Since

∑
j≤ j0

2 j ≈ 2 j0, ∑
j> j0

(2−rp/2) j . 2−(rp/2) j0 = 2−(p−1) j0

we can write

#M .
(
δ−2 +δ−2pδ 2(p−1)

)
|Ω |1−1/p‖D2v‖Lp(Ω) ≈ δ−2 |Ω |1−1/p‖D2v‖Lp(Ω).

We finally apply Theorem 1 to arrive at

#T −#T0 . #M . δ−2 |Ω |1−1/p‖D2v‖Lp(Ω).

5 It remains to estimate the energy error. We have, upon termination ofTHRESH-
OLD, thatET ≤ δ 2 for all T ∈T . Then

|v− IT v|2H1(Ω) = ∑
T∈T

E2
T ≤ δ 4#T .

This concludes the Theorem.⊓⊔

By relating the threshold valueδ and the number of refinementsN, we obtain a
result about the convergence rate.

Corollary 2 (Convergence Rate).Let v∈ H1
0(Ω) satisfy(18). Then for N> #T0

integer there existsT ∈ T such that
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|v− IT v|H1(Ω) . |Ω |1−1/p‖D2v‖Lp(Ω)N
−1/2, #T −#T0 . N.

Proof. Chooseδ 2 = |Ω |1−1/p‖D2v‖Lp(Ω)N
−1 in Theorem 3. Then, there exists

T ∈ T such that #T −#T0 . N and

|v− IT v|H1(Ω) . |Ω |1−1/p‖D2v‖Lp(Ω)N
−1(N+#T0

)1/2

. |Ω |1−1/p‖D2v‖Lp(Ω)N
−1/2

becauseN > #T0. This finishes the Corollary.⊓⊔

Remark 6 (Piecewise smoothness).The global regularity (18) can be weakened to
piecewise W2

p regularity over the initial meshT0, namelyW2
p (Ω ;T0), and global

H1
0(Ω). This is becauseW2

p (T) →֒C0(T) for all T ∈ T0, whenceIT can be taken
to be the Lagrange interpolation operator.

Remark 7 (Case p< 1). We consider now polynomial degreen≥ 1. The integrabil-
ity p corresponding to differentiabilityn+1 results from equating Sobolev numbers:

n+1− d
p

= sob(H1) = 1− d
2
⇒ p =

2d
2n+d

.

Depending ond≥ 2 andn≥ 1, this may lead to 0< p < 1, in which caseWn+1
p (Ω)

is to be replaced by the Besov spaceBn+1
p,p (Ω) [22]; see Problem 6. The argument

of Theorem 3 works provided we replace (19) by a modulus of regularity; in fact,
Dn+1v would not be locally integrable and so would fail to be a distribution.

Remark 8 (Isotropic vs anisotropic elements).Theorem 3 and Problem 5 show that
isotropic graded meshes can always deal with geometric singularities ford = 2. This
is no longer the case ford > 2 and is explored in Problem 6.

1.7 Nonconforming Meshes

More general subdivisions ofΩ than those in§1.3 are used in practice. If the ele-
ments ofT0 are quadrilaterals ford = 2, or their multidimensional variant ford > 2,
then it is natural to allow for improper orhanging nodesfor the resulting refinements
T to be graded; see Figure 9 (a). On the other hand, ifT0 is made of triangles for
d = 2, or simplices ford > 2, then red refinement without green completion also
gives rise to graded meshes with hanging nodes; see Figure 9 (b). In both cases, the
presence of hanging nodes is inevitable to enforce mesh grading. Finally, bisection
may produce meshes with hanging nodes, as depicted in Figure9 (c), if the comple-
tion process is incomplete. All three refinements maintain shape regularity, but for
both practice and theory, they cannot be arbitrary: we need to restrict the level of
incompatibility; see Problem 10. We discuss this next.
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P

P
P

Fig. 9 Nonconforming meshes made of quadrilaterals (a), triangles with red refinement (b), and
triangles with bisection (c). The shaded regions depict the domain of influence of a proper or
conforming nodeP.

We start with the notion of domain of influence of a proper node, introduced by
Babǔska and Miller in the context ofK-meshes [4]; see Figure 9. For simplicity,
we restrict ourselves to polynomial degreen = 1. We say that a nodeP of T is a
proper(or conforming) node if it is a vertex of all elements containing P; otherwise,
we say thatP is animproper(nonconforming or hanging) node. Since we only pre-
scribe degrees of freedom at the proper nodes, it is natural to describe the canonical
continuous piecewise linear basis functionsφP associated with each proper nodeP.

We do this recursively. As in§1.3, thegeneration g(T) of an elementT ∈ T

is the number of subdivisions needed to createT from its ancestor in the initial
meshT0, hereafter assumed to be conforming. We first rearrange the elements in
T = {Ti}#T

i=1 by generation:g(Ti)≤ g(Ti+1) for all i ≥ 0. Suppose thatφP has been
already defined for eachT ∈ T with g(T) < i. We proceed as follows to defineφP

at each vertexz of T ∈T with g(T) = i:

• if z is a proper node, then we setφP(z) = 1 if z= P andφP(z) = 0 otherwise;

• if z is a hanging node, thenzbelongs to an edge of another elementT ′ ∈T with
g(T ′) < i and setφP(z)|T = φP(z)|T ′ .

This definition is independent of the choice ofT ′ since, by construction,φP is con-
tinuous across interelements of lower level. We also observe that{φP}P∈N is a basis
of the finite element spaceV(T ) of continuouspiecewise linear functions, thus

V = ∑
P∈N

V(P)φP ∀V ∈ V(T ).

Thedomain of influenceof a proper nodeP is the support ofφP:

ωT (T) = supp(φP).

We say that a sequence of nonconforming meshes{T } is admissibleif there is a
universal constantΛ∗ ≤ 1, independent of the refinement level andT , such that

diam(ωT (T))≤Λ∗hT ∀ T ∈T . (22)
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An important example is quadrilaterals withonehanging node per edge. We ob-
serve, however, that (22) can neither be guaranteed with more than one hanging
node per edge for quadrilaterals, nor for triangles with onehanging node per edge
(see Problem 10).

Given an admissible gridT , a subsetM of elements marked for refinement, and
a desired numberρ ≥ 1 of subdivisions to be performed in each marked element,
the procedure

T∗ = REFINE(T ,M )

creates a minimal admissible meshT∗ ≥ T such that all the elements ofM are
subdivided at leastρ times. In order forT∗ to be admissible, perhaps other elements
not in M must be partitioned. Despite the fact that admissibility isa constraint on
the refinement procedure weaker than conformity, it cannot avoid the propagation
of refinements beyondM . The complexity ofREFINE is again an issue which we
discuss in§6.4: we show that Theorem 1 extends to this case.

Lemma 3 (REFINE for Nonconforming Meshes).Let T0 be an arbitrary con-
forming partition ofΩ , except for bisection in which caseT0 satisfies the labeling
(6) for d = 2 or its higher dimensional counterpart [53]. Then the estimate

#Tk−#T0≤Λ0

k−1

∑
j=0

#M j ∀k≥ 1

holds with a constantΛ0 depending onT0,d andρ .

We conclude by emphasizing that the polynomial interpolation and adaptive ap-
proximation theories of§§1.5 and 1.6 extend to nonconforming meshes with fixed
level of incompatibility as well.

1.8 Notes

The use of Sobolev numbers is not so common in the finite element literature, but
allows as to write compact error estimates and speak about nonlinear Sobolev scale.
The latter concept is quite natural in nonlinear approximation theory [22].

The discussion of bisection ford = 2 follows Binev, Dahmen, and DeVore [7].
Stevenson extended the theory tod > 2 [53]. We refer to the survey by Nochetto,
Siebert and Veeser [45] for a rather complete discussion ford > 1, and to§6 for a
proof of Theorem 1 ford = 2, which easily extends tod > 2.

The discussion of finite element spaces [10, 11, 19] and polynomial interpolation
[11, 26, 48] is rather classical. In contrast, the material of adaptive approximation is
much less documented. The principle of equidistribution goes back to Babǔska and
Rheimboldt [5] and the a priori design of optimal meshes for corner singularities for
d = 2 is due to Babǔska, Kellogg, and Pitk̈aranta [3]. The construction of optimal
meshes via bisection using thresholding is extracted from Binev, Dahmen, DeVore,
and Petrushev [8].
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Finally the discussion of nonconforming meshes follows Bonito and Nochetto
[9], and continues in§6 with the proof of Lemma 3.

1.9 Problems

Problem 1 (Nonconforming element).Given ad-simplex T in Rd with vertices
z0, . . . ,zd, construct a basis̄λ0, . . . , λ̄d of P1(T) such thatλ̄i(z̄j) = δi j for all i, j ∈
{1, . . . ,d}, wherez̄j denotes the barycenter of the face opposite to the vertexzj .
Does this local basis also lead to a global one inS

1,0(T )?

Problem 2 (Quadratic basis functions).Express the nodal basis ofP2(T) in terms
of barycentric coordinates ofT ∈T .

Problem 3 (Quadratic dual functions). Derive expressions for the dual functions
of the quadratic local Lagrange basis ofP2(T) for each elementT ∈ T . Construct
a global discontinuous dual basisφ ∗z ∈ S

2,−1(T ) of the global Lagrange basisφz∈
S

2,0(T ) for all z∈N2(T ).

Problem 4 (Lagrangian). Let h(x) be a smooth function locally equivalent to the
mesh-size andv∈C2(Ω)∩W2

p (Ω). Prove that a stationary point of the Lagrangian

L [h,λ ] =
∫

Ω

(
h(x)2(p−1) |D2v(x)|p− λ

h(x)2

)
dx

satisfies the optimality condition

h(x)2(p−1)+2 |D2v(x)|p = constant.

Problem 5 (W2
p -regularity). Consider the functionv(r,θ) = rγ φ(θ) in polar co-

ordinates(r,θ) for d = 2 with φ(θ) smooth. Show thatv ∈W2
p (Ω) \H2(Ω) for

1≤ p < 2/(2− γ).

Problem 6 (Edge singularities).This problem exploresformally the effect of edge
singularities for dimensiond > 2 and polynomial degreen≥ 1. Since edge (or line)
singularities are two dimensional locally, away from corners, we assume the behav-
ior v(x)≈ r(x)γ wherer(x) is the distance ofx∈Ω to an edge ofΩ andγ > 0.
(a) Use the Principle of Equidistribution withp = 2 to determine the mesh grading

h(x)≈Λ
1

2n+d r(x)2d γ−(n+1)
2n+d .

(b) Show the following relation betweenΛ and number of elements #T =
∫

Ω h(x)−d

γ >
(d−2)n

d
⇒ #T ≈Λ−

d
2n+d .

(c) If γ > (d−2)n
d , then deduce the optimal interpolation error decay



Primer of AFEM 23

‖∇(v− IT v)‖L2(Ω) . (#T )−
n
d .

(d) Prove thatγ > (d−2)n
d is equivalent to the regularity

∫
Ω |Dn+1v|p < ∞ for p >

2d
2n+d . If τ := 2d

2n+d ≥ 1, then this would meanv ∈Wn+1
p (Ω). However, it is easy

to find examplesd > 2 or n > 1 for whichτ < 1, in which case the Sobolev space
Wn+1

p (Ω) must be replaced by the Besov spaceBn+1
p,p (Ω) [22]. Note thatp > τ is

precisely what yields the crucial relation between Sobolevnumbers

sob(Bn+1
p,p ) = n+1− d

p
> sob(H1) = 1− d

2
.

We observe that ford = 2 all singular exponentsγ > 0 lead to optimal meshes, but
this is not true ford = 3: n= 1 requiresγ > 1

3 whereasn= 2 needsγ > 2
3. The latter

corresponds to a dihedral angleω > 3π
2 and can be easily checked computationally.

We thus conclude thatisotropicgraded meshes are sufficient to deal with geometric
singularities ford = 2 but not ford > 2, for whichanisotropicgraded meshes are
the only ones which exhibit optimal behavior. Their adaptive construction is open.

Problem 7 (Local H2-regularity). Consider the functionv(x) ≈ r(x)γ wherer(x)
is the distance to the origin andd = 2.
(a) Examine the construction of a graded mesh via the thresholding algorithm.
(b) Repeat the proof of Theorem 3 replacing theW2

p regularity by the corresponding
localH2-regularity ofv depending on the distance to the origin.

Problem 8 (Thresholding for d > 2). Let d > 2, n = 1, andv∈W2
p (Ω) with p >

2d
2+d . This implies thatv ∈ H1(Ω) but not necessarily inC0(Ω). Use the quasi-
interpolantIT of Proposition 1 to define the localH1-error ET for each element
T ∈T and use the thresholding algorithm to show Theorem 3 and Corollary 2.

Problem 9 (Reduced rate).Let d ≥ 2, n = 1, andv∈Ws
p(Ω) with 1 < s< 2 and

sob(Ws
p) > sob(H1), namelys− d

p > 1− d
2 . Use the quasi-interpolantIT of Propo-

sition 1 to define the localH1-errorET for each elementT ∈T and use the thresh-
olding algorithm to show Corollary 2: givenN > #T0 there existsT ∈ T with
#T −#T0 . N such that

‖v− IT v‖H1(Ω) . ‖Dsv‖Lp(Ω)N
− s−1

d .

Problem 10 (Level of incompatibility). This problem shows that keeping the num-
ber of hanging nodes per side bounded does not guarantee a bounded level of incom-
patibility for d = 2. The situation is similar ford > 2.
(a)Square elements: construct a selfsimilar quad-refinement of the unit squarewith
only 2 hanging nodes per side and unbounded level of incompatibility.
(b) Triangular elements: construct selfsimilar red-refinements and bisection refine-
ments of the unit reference triangle with 1 hanging node per side and unbounded
level of incompatibility.
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Problem 11 (Quasi-interpolation of discontinuous functions). Let T be an ad-
missible nonconforming mesh. LetV(T ) denote the space of discontinuous piece-
wise polynomials of degree≤ n overT , andV

0(T ) be the subspace of continuous
functions. Construct a local quasi-interpolation operator IT : V(T )→V

0(T ) with
the following approximation property for allV ∈ V(T ) and|α|= 0,1

‖Dα(V− IT V)‖L2(T) . h
1−|α|

2
T ‖ [[V]] ‖L2(ΣT (T)) ∀T ∈T ,

whereΣT (T) stands for all sides withinNT (T) and [[V]] denotes the jump ofV
across sides.
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2 Error Bounds for Finite Element Solutions

In §1 we have seen that approximating a given known function withmeshes which
are adapted to that function can impressively outperform the approximation with
quasi-uniform meshes. In view of the fact that the solution of a boundary value
problem is given only implicitly, it is not all clear if this is also true for its adaptive
numerical solution. Considering a simple model problem anddiscretization, we now
derive two upper bounds for the error of the finite element solution: an a priori one
and an a aposteriori one. The a priori bound reveals that an adaptive variant of the
finite element method has the potential of a similar performance. The a posteriori
bound is a first step to design such a variant, which has to facethe complication that
the target function is given only implicitly.

2.1 Model Boundary Value Problem

In order to minimize technicalities in the presentation, let us consider the following
simple boundary value problem as a model problem: find a scalar functionu = u(x)
such that

−div(AAA∇u) = f in Ω ,

u = 0 on∂Ω ,
(23)

whereΩ ⊂ R
d is a bounded domain with Lipschitz boundary∂Ω , AAA = AAA(x) a map

into the positive definited×d matrices, andf = f (x) a scalar load term. Introducing
the Hilbert space

V := H1
0(Ω) := {v∈ H1(Ω) | v|∂Ω = 0}, ‖v‖V :=

(∫

Ω
|∇v|2

)1/2

,

and the bilinear form

B[v, w] :=
∫

Ω
AAA∇v·∇w, v,w∈ V,

the weak solution of (23) is characterized by

u∈ V : B[u, v] = 〈 f , v〉 for all v∈ V. (24)

Hereafter〈·, ·〉 stands for theL2(Ω)-scalar product and also for a duality paring. We
assume thatf ∈V

∗= H−1(Ω) := H1
0(Ω)∗ and that there exist constants 0< α1≤α2

with
∀x∈Ω , ξ ∈ R

d α1|ξ |2≤ AAA(x)ξ ·ξ and|AAA(x)ξ | ≤ α2|ξ |. (25)

The latter implies that the operator−div(AAA∇·) is uniformly elliptic. Moreover, the
bilinear formB is coercive and continuous with constantsα1 andα2, respectively.



26 R. H. Nochetto and A. Veeser

Lax-Milgram Theorem and Poincaré-Friedrichs Inequality

‖v‖Ω ≤ diam(Ω)‖∇v‖Ω for all v∈ V = H1
0(Ω) (26)

thus ensure existence and uniqueness of the weak solution (24).
Note thatAAA is not assumed to be symmetric and so the bilinear formB may be

nonsymmetric. For the a posteriori upper bound, we will require some additional
regularity on the dataf andAAA in §2.4.

2.2 Galerkin Solutions

SinceV has infinite dimension, problem (24) cannot be implemented on a com-
puter and solved numerically. Given a subspaceS⊂ V, the corresponding Galerkin
solution or approximation of (24) is given by

U ∈ S : B[U, V] = 〈 f , V〉 for all V ∈ S. (27)

We simply replaced each occurence ofV in (24) byS. If S is finite-dimensional, we
can choose a basis ofS and the coefficients of the expansion ofU can be determined
by solving a square linear system.

Residual.Associate the functionalR ∈ V
∗ given by

〈R, v〉 := 〈 f , v〉 −B[U, v],

to U ∈ S. The functionalR is called the residual and depends only on the approxi-
mate solutionU and dataAAA and f . Moreover, it has the following properties:

• It relates to the typically unknown error functionu−U in the following manner:

〈R, v〉 = B[u−U, v] for all v∈ V. (28)

This is a direct consequence of the characterization (24) ofthe exact solution.

• It vanishes for discrete test functions, which in the case ofsymmetricAAA corre-
sponds to the so-called Galerkin orthogonality:

B[u−U, V] = 〈R, V〉 = 0 for all V ∈ S. (29)

This immediately follows from (28) and the definition (27) ofthe Galerkin solu-
tion.

Quasi-Best Approximation. Property (25) ofAAA, Galerkin orthogonality (29) and
Cauchy-Schwarz Inequality inL2(Ω) imply

α1‖u−U‖2V ≤B[u−U, u−U ] = B[u−U, u−V]

≤ α2‖u−U‖V‖u−V‖V
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for arbitraryV ∈ S. This proves the famous

Theorem 4 (Ćea Lemma).The Galerkin solution is a quasi-best approximation
fromS with respect to theV-norm:

‖u−U‖V ≤
α2

α1
inf
V∈S
‖u−V‖V. (30)

If the bilinearB is also symmetric and one considers the error with respect to
the so-called energy normB[·, ·]1/2, the Galerkin solution is even the best approxi-
mation fromS; see Problem 12.

2.3 Finite Element Solutions and A Priori Bound

Problem (27) can be solved numerically on a computer, if we dispose of an imple-
mentable basis ofS. As an example of such space, letT be a conforming triangu-
lation of Ω into d-simplices (this imposes further conditions onΩ ) and consider

S = V(T ) := {V ∈ S
n,0(T ) |V|∂Ω = 0}, (31)

where, as in§1.4, S
n,0(T ) the space of continuous functions that are piecewise

polynomial up to degreen. This is in fact a subspace ofV = H1
0(Ω) thanks to the

continuity requirement and boundary condition for the functions in V(T ). More-
over, the basis{φz}z∈N ∩Ω from §1.4 can be easily constructed in the computer; see
for example Siebert [50].

The spaceV(T ) is a popular choice forS in (27) and their combination may be
viewed as a model finite element discretization.

In §1.5 we studied the approximation properties ofS
n,0(T ) with the help of

(quasi-)interpolation operatorsIT . Since the right-hand side of (30) is bounded in
terms of‖u− IT u‖V = ‖∇(u− IT u)‖L2(Ω) with IT as in Proposition 2, the dis-
cussion of§1.5 applies also to the error of the Galerkin solutionUT in V(T ). In
particular, the combination of the Céa Lemma and Theorem 2 yields the following
upper bound. Since it does not involve the discrete solution, it is also comes with
the adjective ‘a priori’.

Theorem 5 (A priori upper bound). Assume that the exact solution u of(24) sat-
isfies u∈Ws,p(Ω) with 1≤ s≤ n+1, 1≤ p≤ 2, and set

r := sob(Ws
p(Ω))−sob(H1(Ω)) > 0.

Then the error of the finite element solution UT ∈ S = V(T ) of (27) satisfies the
global a priori upper bound

‖u−UT ‖V . ‖hrDsu‖Lp(Ω). (32)
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The discussion in§1.6 about adaptively graded meshes only partially carries
over to the error of the finite element solutionUT , from now on denotedU . In
view of the Ćea Lemma,§1.6 shows that there are sequences of meshes such that
the error ofU decays as #T −1/2 if, for example,d = 2 andu ∈W2,p(Ω) with
p > 1. Notice however that the thresholding algorithm utilizesthe local errors
ET = ‖∇(u− IT u)‖L2(T), which are typically not computable. The construction of
appropriate meshes when the target function is given only implicitly by a boundary
value problem is much more subtle. A first step towards this goal is developed in the
next section.

2.4 A Posteriori Upper Bound

The a priori upper bound (32) is not computable and essentially providesonly
asymptotic information, namely the asymptotic convergence rate. The goal of this
section is to derive an alternative bound, so-calleda posterioribound, that provides
information beyond asymptotics and is computable in terms of data and the approx-
imate solution. It is worth noting that such bounds are useful not only for adaptivity
but also for the quality assessment of the approximate solution.

Since in this section the gridT is (arbitrary but) fixed, we simplify the notation
by suppressing the subscript indicating the dependence on the grid in case of the
approximate solution and similar quantities.

Error and Residual. Our starting point is the algebraic relationship (28) between
the residualR and the error functionu−U . It implies (Problem 13)

‖u−U‖V ≤
1

α1
‖R‖V∗ ≤

α2

α1
‖u−U‖V, (33)

which means that the dual norm

‖ℓ‖V∗ := sup
{
〈ℓ, v〉 | v∈ V,‖v‖V ≤ 1

}
(34)

is a good measure for the residualR if we are interested in the error‖u−U‖V =
‖∇(u−U)‖L2(Ω). However the evaluation of‖R‖V∗ = ‖R‖H−1(Ω) is impractical
and, moreover, does not provide local information for guiding an adaptive mesh
refinement. We therefore aim at a sharp upper bound of‖R‖H−1(Ω) in terms of
locally computable quantitites.

Assumptions and Structure of Residual.For the derivation of a computable upper
bound of the dual norm of the residual, we require that

f ∈ L2(Ω) and AAA∈W1,∞(Ω ;T ) (35)

where the latter means thatAAA is Lipschitz in each element ofT . Under these as-
sumptions, we can write〈R, v〉 as integrals over elementsT ∈T and elementwise
integration by parts yields the representation:
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〈R, v〉 =
∫

Ω
f v−AAA∇U ·∇v = ∑

T∈T

∫

T
f v−AAA∇U ·∇v

= ∑
T∈T

∫

T
rv+ ∑

S∈S

∫

S
jv,

(36)

where

r = f +div(AAA∇U) in any simplexT ∈T ,

j = [[AAA∇U ]] ·nnn = nnn+ ·AAA∇U|T+ +nnn− ·AAA∇U|T− on any internal sideS∈S
(37)

andnnn+, nnn− are unit normals pointing towardsT+, T− ∈ T . We see that the dis-
tribution R consists of a regular partr, called interior or element residual, and a
singular partj, calledjump or interelement residual. The regular part is absolutely
continuous w.r.t. thed-dimensional Lebesgue measure and is related to the strong
form of the PDE. The singular part is supported on the skeleton Γ =

⋃
S∈S Sof T

and is absolutely continuous w.r.t. the(d−1)-dimensional Hausdorff measure.
We point out that this structure of the residual is not special to the model problem

and its discretization but rather arises from the weak formulation of the PDE and the
piecewise construction of finite element spaces.

Scaled Integral Norms.In view of the structure of the residualR, we make our goal
precise as follows: we aim at a sharp upper bound for‖R‖H−1(Ω) in terms of local
Lebesgue norms of the element and interelement residualsr and j, which are con-
sidered to be computable because they can be easily approximated with numerical
integration. This approach is usually called standard a posteriori error estimation.

The sharpness of these bounds crucially hinges on appropriate local scaling con-
stants for the aforementioned Lebesgue norms, which dependon the local geometry
of the mesh. For simplicity, we will explicitly trace only the dependence on the lo-
cal mesh-size and write ‘.’ instead of ‘≤C’, where the constantC is bounded in
terms of the shape coefficientσ(T ) = maxT∈T hT/hT of the triangulationT and
the dimensiond.

Localization. As a first step, we decompose the residualR into local contributions
with the help of the Courant basis{φz}z∈V from §1.4. HereafterV stands for the set
of vertices ofT , which coincide with the nodes ofS

1,0(T ). The Courant basis has
the following properties:

• It provides a partition of unity:

∑
z∈V

φz = 1 in Ω . (38)

• For each interior vertexz, the corresponding basis functionφz is contained in
V(T ) and so the residual is orthogonal to the interior contributions of the partition
of unity:

〈R, φz〉 = 0 for all z∈ V̊ := V ∩Ω . (39)
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The second property corresponds to the Galerkin orthogonality. Notice that the first
property involves all vertices, while in the second one the boundary vertices are
excluded.

Given anyv∈ H1
0(Ω), we apply (38) and then (39) to write

〈R, v〉 = ∑
z∈V

〈R, vφz〉 = ∑
z∈V

〈R, (v−cz)φz〉, (40)

wherecz∈R andcz = 0 wheneverz∈ ∂Ω . Exploiting representation (36), 0≤ φz≤
1, and the fact that theφz are locally supported, we can bound each local contribution
〈R, (v−cz)φz〉 in the following manner:

|〈R, (v−cz)φz〉| ≤
∣∣∣∣
∫

ωz

r(v−cz)φz

∣∣∣∣+
∣∣∣∣
∫

γz

j(v−cz)φz

∣∣∣∣ , (41)

whereωz := ∪T∋zT is the star (or patch) around a vertexz∈ V in T and γz is
the skeleton ofωz, i.e. the union of all sides emanating fromz; note thatr in (41) is
computed elementwise. We examine the two terms on the right-hand side separately.

Bounding the Element Residual.We first consider the terms associated with the
element residualr. The key tool for a sharp bound is the following local Poincaré-
type inequality. Let

hz := |ωz|1/d

and notice that this quantity is, up to the shape coefficientσ(T ), equivalent to the
diameter ofωz, to hT = |T|1/d if T is ad-simplex ofωz and tohS := |S|1/(d−1) if S
is a side ofγz.

Lemma 4 (Local Poincaŕe-type inequality).For any v∈ H1
0(Ω) and z∈ V there

exists cz∈ R such that

‖v−cz‖L2(ωz)
. hz‖∇v‖L2(ωz)

. (42)

If z∈ ∂Ω is a boundary vertex, then we can take cz = 0.

We postpone the proof of Lemma 4. Combining the Cauchy-Schwarz inequality
in L2(ωz) and Lemma 4 readily yields
∣∣∣∣
∫

ωz

r(v−cz)φz

∣∣∣∣≤ ‖r φ1/2
z ‖L2(ωz)

‖v−cz‖L2(ωz)
. hz‖r φ1/2

z ‖L2(ωz)
‖∇v‖L2(ωz)

. (43)

Notice that the right-hand side consists of two factors: a computable one in the
desired form and one that involves the test function in a local variant of the norm of
the test space.

Bounding the Jump Residual.Next, we consider the terms associated to the jump
residual j. Recall that j is supported on sides and so proceeding similarly as for
the element residual will bring up traces of the test function. The following trace
inequality exactly meets our needs.
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Lemma 5 (Scaled trace inequality).For any side S of a d-simplex T the following
inequality holds:

‖w‖L2(S) . h−1/2
S ‖w‖L2(T) +h1/2

S ‖∇w‖L2(T) for all w ∈ H1(T). (44)

We again postpone the proof, now of Lemma 5. We apply first the Cauchy-
Schwarz inequality inL2(γz), then Lemma 5 and finally Lemma 4 to obtain
∣∣∣∣
∫

γz

j(v−cz)φz

∣∣∣∣≤‖ j φ1/2
z ‖L2(γz)

‖v−cz‖L2(γz)
. h1/2

z ‖ j φ1/2
z ‖L2(γz)

‖∇v‖L2(ωz)
, (45)

where the right-hand side has the same structure as that of the element residual.

Upper Bound for Residual Norm.We collect the local estimates and sum them up
in order to arrive at the desired bound for the dual norm of theresidual. Inserting
the estimates (43) and (45) for element and jump residuals into (41) gives

|〈R, vφz〉|.
(

hz‖r φ1/2
z ‖L2(ωz)

+h1/2
z ‖ j φ1/2

z ‖L2(γz)

)
‖∇v‖L2(ωz)

.

Recalling the decomposition (40), we sum overz∈ V and use Cauchy-Schwarz in
R

#T to arrive at

|〈R, v〉|.
(

∑
z∈V

h2
z‖r φ1/2

z ‖2L2(ωz)
+hz‖ j φ1/2

z ‖2L2(γz)

)1/2(
∑

z∈V

‖∇v‖2L2(ωz)

)1/2

.

For bounding the second factor, we resort to the finite overlapping property of stars,
namely

∑
z∈V

χωz(x)≤ d+1,

and infer that

∑
z∈V

‖∇v‖2L2(ωz)
. ‖∇v‖2L2(Ω).

Since mesh refinement is typically based upon element subdivision, we regroup
the terms within the first factor. To this end, denote byh: Ω → R

+ the mesh-size
function given byh(x) := |S|1/k if x belongs to the interior of thek-subsimplexSof
T with k∈ {1, . . . ,d}. Then for allx∈ ωz we havehz . h(x). Therefore employing
(38) once more and recalling thatΓ is the union of all interior sides ofT , we deduce

∑
z∈V

h2
z‖r φ1/2

z ‖2L2(ωz)
+hz‖ j φ1/2

z ‖2L2(γz)
. ∑

z∈V

‖hr φ1/2
z ‖2L2(Ω) +‖h

1/2 j φ1/2
z ‖2L2(Γ )

= ‖hr‖2L2(Ω) +‖h
1/2 j‖2L2(Γ ).

Thus, introducing theelement indicators

E
2
T (U,T) := h2

T‖r‖2L2(T) +hT‖ j‖2L2(∂T\∂Ω) (46)
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and theerror estimator
E

2
T (U) = ∑

T∈T

E
2
T (U,T) (47)

we arrive at the following upper bound for the dual norm of theresidual:

‖R‖H−1(Ω) . ET (U). (48)

Hereafter, we writeET (U,M ) to indicate that the estimator is computed overM ⊂
T , whereasET (U,T ) = ET (U) if no confusion arises.

Proofs of Poincaŕe-Type and Trace Inequalities.We now prove Lemmas 4 and
5. We start with a formula for the mean value of a trace, which follows from the
Divergence Theorem.

Lemma 6 (Trace identity). Let T be a d-simplex, S a side of T , and z the vertex
opposite to S. Defining the vector field qqqS by

qqqS(x) := x−z

the following equality holds

1
|S|

∫

S
w =

1
|T|

∫

T
w+

1
d|T|

∫

T
qqqS·∇w for all w∈W1

1 (T).

Proof. We start with properties of the vector fieldqqqS. Let S′ be an arbitrary side of
T and fix somey∈ S′. We then seeqqqS(x) ·nnnT = qqqS(y) ·nnnT +(x−y) ·nnnT = qqqS(y) ·nnnT

for anyx∈ S′ sincex−y is a tangent vector toS′. Therefore, on each side ofT, the
associated normal fluxqqqS ·nnnT is constant. In particular, we seeqqqS ·nnnT vanishes on
∂T \Sby choosingy = z for sides emanating fromz. Moreover, divqqqS = d. Thus, if
w∈C1(T), the Divergence Theorem yields

∫

T
qqqS·∇w =−d

∫

T
w+(qqqS·nnnT)|S

∫

S
w.

Takew = 1 to show(qqqS ·nnnT)|S = d|T|/|S| and extend the result tow ∈W1
1 (T) by

density. ⊓⊔
Proof of Lemma 5.Apply Lemma 6 to|w|2; for the details see Problem 17.⊓⊔
Proof of Lemma 4.1 For anyz∈ V the value

c̄z =
1
|ωz|

∫

ωz

v

is an optimal choice and (42) follows from (8) withcz = c̄z.
2 If z∈ ∂Ω , then we observe that there exists a sideS⊂ ∂ωz∩∂Ω such thatv = 0

onS. We therefore can write

v = v− 1
|S|

∫

S
v = (v− c̄z)−

1
|S|

∫

S
(v− c̄z)
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whence, using Lemma 5 and Step 1 for the second term,

‖v‖L2(ωz)
. ‖v− c̄z‖L2(ωz)

+hz‖∇v‖L2(ωz)
. hz‖∇v‖L2(ωz)

,

which establishes the supplement for boundary vertices.⊓⊔
Upper Bound for Error. Inserting the bound (48) for the dual norm of the residual
in the first bound of (33), we obtain the main result of this section.

Theorem 6 (A posteriori upper bound). Let u be the exact solution of the model
problem(24) satisfying(25) and (35). The error of the finite element solution U∈
S = V(T ) of (27) is bounded in terms of the estimator(47)as follows:

‖u−U‖V .
1

α1
ET (U), (49)

where the hidden constant depends only on the shape coefficient σ(T ) of the trian-
gulationT and on the dimension d.

Notice that the a posteriori bound in Theorem 6 does not require additional regu-
larity on the exact solutionu as the a priori one in Theorem 5. On the other hand, the
dependence of the estimator on the approximate solution prevents us from directly
extracting information such as asymptotic decay rate of theerror. The question thus
arises how sharp the a posteriori bound in Theorem 6 is.

In this context it is worth noticing that if we did not exploitorthogonality and
used a global Poincaré-type inequality instead of the local ones, the resulting scal-

ings of the element and jump residuals would be, respectively, 1 andh−1/2
T and the

corresponding upper bound would have a lower asymptotic decay rate. We will show
in the next§3 that the upper bound in Theorem 6 is sharp in an asymptotic sense.

2.5 Notes

The discussion of the quasi-best approximation and the a priori upper bound of
the error of the finite element solution are classical; see Braess [10], Brenner-Scott
[11], and Ciarlet [19]. The core of the a posteriori upper bound is a bound of the dual
norm of the residual in terms of scaled Lebesgue norms. This approach is usually
calledstandard a posteriori error estimationand has been successfully used for a
variety of problems and discretizations. For alternative approaches we refer to the
monographs of Ainsworth and Oden [2] and Verfürth [58] on a posteriori errror
estimation.

Typically standard a posteriori error estimation is carried out with the help of er-
ror estimates for quasi-interpolation as in§1.5, which in turn rely on local Bramble-
Hilbert lemmas. The above presentation invokes only the special case of Poincaré-
type inequalities. It is a simplified version of derivation in Veeser and Verf̈urth [56],
which has been influenced by Babuška and Rheinboldt [5], Carstensen and Funken
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[12], and Morin, Nochetto and Siebert [42], and provides in particular constants
that are explicit in terms of local Poincaré constants. It is worth mentioning that the
ensuing constants are found in [56] for sample meshes and have values close to 1.

The setting and assumption of the model problem and discretization in this sec-
tion avoids the following complications: numerical integration, approximation of
boundary values, approximation of the domain, and inexact solution of the discrete
system. While all these issues have been analyzed in an a priori context, only some
of them have been considered in a posteriori error estimation; see Ainsworth and
Kelly [1], Dörfler and Rumpf [25], Morin, Nochetto, and Siebert [42], Nochetto,
Siebert, Schmidt and Veeser [46], and Sacchi and Veeser [47].

2.6 Problems

Problem 12 (Best approximation for symmetric problems).Consider the model
problem (24), assume in addition to (25) thatA is symmetric and denote the energy
norm associated with the differential operator−div(A∇·) by

|||v|||Ω :=

(∫

Ω
A∇v·∇v

)1/2

.

Prove that the Galerkin solution is the best approximation from S = V(T ) with
respect to the energy norm:

|||u−U |||Ω = min
V∈S

|||u−V|||Ω . (50)

Derive from this that in this case (30) improves to

‖u−U‖V ≤
√

α2

α1
inf
V∈S

‖u−V‖V.

Problem 13 (Equivalence of error and residual norm).Prove the equivalence
(33) between error and dual norm of the residual. Consider the model problem also
with a symmetricAAA and derive a similar relationship for the energy norm error.

Problem 14 (Dominance of jump residual).Considering the model problem (24)
and its discretization (27) with (31) andn = 1, show that, up to higher order terms,
the jump residual

ηT (U) =
(

∑
S∈S

‖h1/2 j‖2L2(S)

)1/2

bounds‖R‖H−1(Ω), which entails that the estimatorET (U) is dominated byηT (U).
To this end, revise the proof of the upper bound for‖R‖H−1(Ω), use

cz =
1∫

ωz
φz

∫

ωz

f φz.
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and rewrite
∫

ωz
f (v−cz)φz by exploiting this weightedL2-orthogonality.

Problem 15 (A posteriori upper bound with quasi-interpolation). Consider the
model problem (24) and its discretization (27) with spaceS = V(T ), and derive the
upper a posteriori error bound without using the discrete partition of unity. To this
end, use (36) and combine the scaled trace inequality (44) with the local interpola-
tion error estimate (7). Show as an intermediate step the upper bound

|〈R, v〉|. ∑
T∈T

ET (U,T)‖∇v‖L2(NT (T)) (51)

with NT (T) from §1.5. This bound will be useful in§4.

Problem 16 (Upper bound for certain singular loads).Revising the proof of The-
orem 6, derive an a posteriori upper bound in the case of right-hand sides of the form

〈 f , v〉 =
∫

Ω
g0v+

∫

Γ
g1v, v∈ V = H1

0(Ω),

whereg0 ∈ L2(Ω), g1 ∈ L2(Γ ), andΓ stands for the skeleton of the meshT .

Problem 17 (Scaled trace inequality).Work out the details of the proof of Lemma
5, taking into account thathT ≈ |T|/ |S| ≈ hS.

Problem 18 (A posteriori upper bound for L2-error). Assuming thatΩ is convex
and applying a duality argument, establish a variant of (33)between theL2-error
‖u−U‖L2(Ω) and a suitable dual norm of the residual. Use this to derive the a pos-
teriori upper bound

‖u−U‖L2(Ω) .

(

∑
T∈T

h2
TET (U,T)2

)1/2

,

where the hidden constant depends in addition on the domainΩ .
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3 Lower A Posteriori Bounds

The goal of this section is to assess the sharpness of the a posteriori upper bound
for the model problem and discretization. We show not only that it is sharp in an
asymptotic sense like the a priori bound but also in a local sense and, for certain data,
in a non-asymptotic sense. Moreover, we verify that the latter cannot be true for all
data and argue that this is the price to pay for the upper boundto be computable.

As in §2.4, ‘.’ stands for ‘≤C’, where the constantC is bounded in terms of the
shape coefficentσ(T ) of the triangulationT and the dimensiond and, often, we
do not indicate the dependence on the arbitrary but fixed triangulation.

3.1 Local Lower Bounds

The first step in the derivation of the upper bound (49) is thatthe error is bounded in
terms of an appropriate dual norm of the residual. In the caseof the model problem
(24) this relies on the continuity of[−div(AAA∇·)]−1 : H−1(Ω)→H1

0(Ω). Notice that
the inverse is a global operator, while−div(AAA∇·) in the classical sense is a local
one. One thus may suspect that an appropriate local dual normof the residual is
bounded in terms of the local error. Let us verify this for themodel problem (24).

Local Dual Norms. Let ω be a subdomain ofΩ and notice thatH−1(ω) is a good
candidate for the local counterpart ofH−1(Ω). Givenv∈ H1

0(ω) (and extending it
by zero onΩ \ω), the algebraic relationship (28), the Cauchy-Schwarz inequality
in L2(ω), and (25) readily yield

〈R, v〉 = B[u−U, v] =

∫

ω
AAA∇(u−U) ·∇v≤ α2‖∇(u−U)‖L2(ω)‖∇v‖L2(ω).

Consequently,
‖R‖H−1(ω) ≤ α2‖∇(u−U)‖L2(ω), (52)

entailing that lower bounds for the local error‖∇(u−U)‖L2(ω) may be shown by
bounding the local dual norm‖R‖H−1(ω) from below.

Local Dual and Scaled Integral Norms.As for the a posteriori upper bound, we
assume (35). If we takeω = T ∈T in the preceding paragraph, then there holds

‖R‖H−1(T) = sup
‖∇v‖L2(T)

≤1
〈R, v〉 = sup

‖∇v‖L2(T)
≤1

∫

T
rv = ‖r‖H−1(T) (53)

thanks to the representation (36). Recall that the corresponding indicatorET (U,T)
contains the termhT‖r‖L2(T) and therefore we wonder about the relationship of
‖r‖H−1(T) andhT‖r‖L2(T). Mimicking the local part in the derivation of the a poste-
riori upper bound in§2.4, we obtain
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∫

T
rv≤ ‖r‖L2(T)‖v‖L2(T) . hT‖r‖L2(T)‖∇v‖L2(T)

with the help of the Poincaré-Friedrichs inequality (26). Hence there holds

‖r‖H−1(T) . hT‖r‖L2(T). (54)

SinceL2(Ω) is a proper subspace ofH−1(Ω), the inverse inequality cannot hold
for arbitraryr. Consequently,hT‖r‖L2(T) may overestimate‖r‖H−1(T). On the other
hand, ifr ∈ R is constantandη = ηT denotes a non-negative function with proper-
ties

|T|.
∫

T
η , suppη = T, ‖∇η‖L∞(T) . h−1

T (55)

(postpone the question of existence until (59) below), we deduce

‖r‖2L2(T) .

∫

T
r(rη)≤ ‖r‖H−1(T)‖∇(rη)‖L2(T)

≤ ‖r‖H−1(T)‖r‖L2(T)‖∇η‖L∞(T) . h−1
T ‖r‖H−1(T)‖r‖L2(T),

whence
hT‖r‖L2(T) . ‖r‖H−1(T). (56)

This shows that overestimation in (54) is caused byoscillationof r at a scale finer
than the mesh-size. Notice that (56) is a so-called inverse estimate, where one norm
is a dual norm. It is also valid forr ∈ Pn(T), but the constant deteriorates with the
degreen; see Problem 22.

Local Lower Bound with Element Residual.Motivated by the observations of the
preceding paragraph, we expect thathT‖r‖L2(T) bounds asymptotically‖R‖H−1(T)

from below and introduce theoscillation of the interior residualin T defined by

hT‖r− rT‖L2(T),

whererT denotes the mean value ofr in T. Replacingr by rT in (56) and byr− rT

in (54), as well as recalling (53), we derive

hT‖r‖L2(T) ≤ hT‖rT‖L2(T) +hT‖r− rT‖L2(T)

. ‖rT‖H−1(T) +hT‖r− rT‖L2(T)

. ‖r‖H−1(T) +‖r− rT‖H−1(T) +hT‖r− rT‖L2(T)

. ‖R‖H−1(T) +hT‖r− rT‖L2(T).

(57)

This is the desired statement because the oscillationhT‖r− rT‖L2(T) is expected to
convergence faster thanhT‖r‖L2(T) under refinement. In particular, ifn = 1, then
r = f and the oscillation of the interior residual becomesdata oscillation:

oscT ( f ,T) := ‖h( f − f̄T)‖L2(T) for all T ∈T . (58)
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Note that in this case there is one additional order of convergence if f ∈ H1(Ω).
The inequality (57) holds also withrT chosen fromPn1(T), with n1 ≥ 1, at the

price of a larger constant hidden in.. We postpone the discussion of the higher
order nature of the oscillation in this case after Theorem 7 below.

We conclude this paragraph by commenting on the choice of thecut-off function
ηT ∈W1

∞(T) with (55). For example, we may take

ηT = (d+1)d+1 ∏
z∈V ∩T

λz, (59)

whereλz, z∈ V ∩T, are the barycentric coordinates ofT from §1.4. This choice
is due to Verf̈urth [57, 58]. Another choice, due to Dörfler [24], can be defined as
follows: refineT such that there appears an interior node and take the correspond-
ing Courant basis function on the virtual triangulation ofT; see Fig. 10 for the
2-dimensional case.
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suppη

z

T

Fig. 10 Virtual refinement of a triangle for the D̈orfler cut-off function.

The Dörfler cut-off function has the additional property that it is an element of
a refined finite element space. This is not important here but useful when proving
lower bounds for the differences of two discrete solutions;see e.g. Problem 23. Such
estimates are therefore calleddiscrete lower boundwhereas the bound for the true
error is calledcontinuous lower bound.

Local Lower Bound with Jump Residual. We next strive for a local lower bound
for the error in terms of the jump residualh1/2

S ‖ j‖L2(S), S∈ S , and use the local
lower bound in terms of the element residual as guideline.

We first notice thatj = [[AAA∇U ]] may not be constant on an interior sideS∈S due
to the presence ofAAA. We therefore introduce theoscillation of the jump residualin S,

h1/2
S ‖ j− jS‖L2(S),

where jS stands for the mean value ofj onS, and write

h1/2
S ‖ j‖L2(S) ≤ h1/2

S ‖ jS‖L2(S) +h1/2
S ‖ j− jS‖L2(S). (60)

Notice that here the important question about the order of this oscillation is not ob-
vious because, in contrast to the oscillation of the elementresidual in the casen= 1,
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the approximate solutionU is involved. We postpone the corresponding discussion
until after Theorem 7 below.

To choose a counterpart ofηT , let ωS denote the patch composed of the two
elements ofT sharingS; see Fig. 11 (left) for the 2-dimensional case. ObviouslyωS

has a nonempty interior. LetηS∈W1
∞(ωS) be a cut-off function with the properties

|S|.
∫

S
ηS, suppηS = ωS, ‖ηS‖L∞(ωS) = 1, ‖∇ηS‖L∞(ωS) . h−1

S . (61)

Following Verfürth [57, 58] we may takeηS given by

ηS|T = dd ∏
z∈V ∩S

λ T
z , (62)

whereT ⊂ ωS andλ T
z , z∈ V ∩T, are the barycentric coordinates ofT. Also here

1

2

ωs

z

z

s

s

s

x

Fig. 11 PatchωS of triangles associated to interior side (left) and its refinement for Dörfler cut-off
function (right).

Dörfler [24] proposed the following alternative: refineωS such that there appears an
interior node ofSand take the corresponding Courant basis function on the virtual
triangulation ofωS; see Fig. 11 (right) for the 2-dimensional case.

After these preparations we are ready to derive a counterpart of (57). In view of
the properties ofηS, we have

‖ jS‖2L2(S) .

∫

S
jS( jSηS) =

∫

S
j vS+

∫

S
( jS− j)vS (63)

with vS = jSηS. We rewrite the first term on the right-hand side with the representa-
tion formula (36) as follows:

∫

S
j vS =−

∫

ωS

r vS+ 〈R, vS〉;

in contrast to (53), the jump residual couples with the element residual. Hence
∣∣∣∣
∫

ωS

j vS

∣∣∣∣≤ ‖r‖L2(ωS)‖vS‖L2(ωS) +‖R‖H−1(ωS)‖∇vS‖L2(ωS).

In view of the Poincaŕe-Friedrichs inequality (26),|ωS|. hS|S| and (61), we have
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‖vS‖L2(ωS) . hS‖∇vS‖L2(ωS) ≤ hS‖ jS‖L2(ωS)‖∇ηS‖L∞(ωS) . h1/2
S ‖ jS‖L2(S).

We thus infer that
∣∣∣∣
∫

ωS

j vS

∣∣∣∣.
(

h1/2
S ‖r‖L2(ωS) +h−1/2

S ‖R‖H−1(ωS)

)
‖ jS‖L2(S)

and, using (44),
∣∣∣∣
∫

S
( jS− j)vS

∣∣∣∣≤ ‖ jS− j‖L2(S)‖vS‖L2(S) . ‖ jS− j‖L2(S)‖ jS‖L2(S).

Inserting these estimates into (63) yields

‖ jS‖2L2(S) .
(

h1/2
S ‖r‖L2(ωS) +h−1/2

S ‖R‖H−1(ωS) +‖ jS− j‖L2(S)

)
‖ jS‖L2(S)

whence, recalling (60),

h1/2
S ‖ j‖L2(S) . ‖R‖H−1(ωS) +hS‖r‖L2(ωS) +h1/2

S ‖ jS− j‖L2(S). (64)

This estimate also holds ifjS∈ Pn2(S) is a polynomial of degree≤ n2 (Problem 27).

Local Lower Bound with Indicator. We combine the two results on interior and
jump residual and exploit also the local relationship between residual and error in
order to obtain a local lower bound in terms of a single indicator.

To this end, we introduce the following notation for the oscillations. Recall the
mesh-size functionh from §1.5 and let

r = P2n−2r, j = P2n−1 j,

where P2n−2r|T and P2n−1 j|S are theL2-orthogonal projections ofr and j onto
P2n−2(T) andP2n−1(S), respectively. The choice of the polynomial degrees arise
from the desire that the oscillations are of higher order. Details are discussed after
Theorem 7. Moreover, we associate with each simplexT ∈T the patch

ωT :=
⋃

S⊂∂T\∂Ω
ωS

(see Fig. 12 for the 2-dimensional case), and define the oscillation in ωT by

oscT (U,ωT) = ‖h(r− r)‖L2(ωT ) +‖h1/2( j− j)‖L2(∂T\∂Ω). (65)

In general, as indicated by the notation, the oscillation depends on the approximation
U . However, in certain situations, it may be independent of the approximationU and
then becomesdataoscillation (58); see also Problem 19.

Theorem 7 (Local lower bound).Let u be the exact solution of the model problem
(24) satisfying(25) and (35). Each element indicator of(46) bounds, up to oscilla-
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ω T

T

Fig. 12 Patch associated to a triangle in the local lower bound.

tion, the local error of an approximation U∈ V(T ) from below:

ET (U,T) . α2‖∇(u−U)‖L2(ωT ) +oscT (U,ωT) for all T ∈T , (66)

where the hidden constant depends only on the shape coefficients of the simplices in
ωT , the dimension d and the polynomial degree n.

Proof. We combine (57) and (64), wherer and j are piecewise polynomial of degree
2n− 2 and 2n− 1, respectively. NotinghS≈ hT for all interior sidesS∈ S with
S⊂ ∂T and and‖R‖H−1(T ′) ≤ ‖R‖H−1(ωT ) for T ′ ⊂ T, we thus derive

ET (U,T) . ‖R‖H−1(ωT ) +‖h(r− r)‖L2(ωT ) +‖h1/2( j− j)‖L2(∂T\∂Ω).

Thus, the special case

‖R‖H−1(ωT ) ≤ α2‖∇(u−U)‖L2(ωT )

of (52) finishes the proof. ⊓⊔

A discussion of the significance of local lower bound in Theorem 7 is in order.
To this end, we first consider the decay properties of the oscillation terms, which
are crucial for the relevance of the aforementioned bound. Then we remark about
the importance of the fact that the bound in Theorem 7 is local. Finally, in the next
section, we provide a global lower bound as corollary and discuss its relationship
with the upper bound in Theorem 6.

Higher Order Nature of Oscillation. In some sense the oscillation pollutes the
local lower bound in Theorem 7. It is therefore important that the oscillaton is or
gets small relative to the local error. We therefore comparethe convergence order of
the oscillation (65) with that of the local error.

To this end, let us first observe that the choices of the polynomial degrees in
the oscillation allow us to derive the following upper boundof the oscillation (see
Problem 29):

oscT (U,ωT) . ‖h( f −P2n−2 f )‖L2(ωT )

+
(
‖h(divAAA−Pn−1(divAAA))‖L∞(ωT ) +‖AAA−PnAAA‖L∞(ωT )

)
‖∇U‖L2(ωT ).

(67)
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If f andAAA are smooth, one expects that the local error vanishes like

‖∇(u−U)‖L2(T) = O(hd/2+n
T )

and, in view of (67), oscillation like

oscT (U,ωT) = O(hd/2+n+1
T ).

See also Problem 30 for a stronger result for the jump residual.
The oscillation oscT (U,ωT) is therefore expected to be of higher order ashT ↓ 0.

However, as Problem 32 below illustrates, it may be relevanton relatively coarse
triangulationsT .

Local Lower Bound and Marking. In contrast to the upper bound in Theorem 6,
the lower bound in Theorem 7 is local. This is very welcome in acontext of adaptiv-
ity. In fact, if oscT (U,ωT)≪ ‖∇(u−U)‖L2(ωT ), as we expect asymptotically, then
(66) translates into

ET (U,T) . α2‖∇(u−U)‖L2(ωT ). (68)

This means that an elementT with relatively large error indicator contains a large
portion of the error. To improve the solutionU effectively, suchT must be split
giving rise to a procedure that tries to equidistribute errors. This is consistent with
the discussion of adaptive approximation of§1.1 ford = 1 and of§1.6 ford > 1.

3.2 Global Lower Bound

We derive a global lower bound from the local one in Theorem 7 and discuss its
relationship with the global upper bound in Theorem 6.

The global counterpart of oscT (U,ωT) from (65) is given by

oscT (U) = ‖h(r− r)‖L2(Ω) +‖h1/2( j− j)‖L2(Γ ), (69)

wherer is computed elementwise overT andΓ is the interior skeleton ofT .

Corollary 3 (Global lower bound). Let u be the exact solution of the model prob-
lem (24) satisfying(25) and (35). The estimator(47) bounds, up to oscillation, the
error of an approximation U∈ V(T ) from below:

ET (U) . α2‖u−U‖V +oscT (U) (70)

where the hidden constant depends on the shape coefficient ofT , the dimension d,
and the polynomial degree n.

Proof. Sum (66) over allT ∈T and take into account that each element is contained
in at most byd+2 patchesωT . ⊓⊔
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Supposing that the approximationU is the Galerkin solution (27) with (31), the
upper and lower a posteriori bounds in Theorem 6 and Corollary 3 imply

‖u−U‖V .
1

α1
ET (U) .

α2

α1
‖u−U‖V +

1
α1

oscT (U). (71)

In other words, the error and estimator are equivalent up to oscillation.
In Problem 32 we present an example for which the ratio‖u−U‖V/ET (U)

can be made arbitrarily small. Consequently, a lower bound without pollution and
a perfect equivalence of error and estimator cannot be true in general. Moreover,
for that example there holdsET (U) = oscT (U), indicating that oscT (U) is a good
measure to account for the discrepancy.

We see that oscT (U) intervenes in the relationship of error and estimator and,
therefore, cannot be ignored in an analysis of an adaptive algorithm using the esti-
matorET (U); we will come back to this in§7. The case of data oscillation will be
simpler than the general case in which oscT (U) depends on the approximationU ;
the latter dependence creates a nonlinear interaction in the adaptive algorithm.

The presence of oscillation is also consistent with our previous comparison of
local dual norms and scaled integral norms. Since we invokedscaled integral norm
in order to have an (almost) computable upper bound, this suggests that, at least for
standard a posteriori error estimation, oscillation is a price that we have to pay for
computability.

Fortunately, as we have illustrated in§3.1, oscillation is typically of higher order
and then the a posteriori upper bound in Theorem 6 is asymptotically sharp in that
its decay rate coincides with the one of the error, as the a priori bound of Theorem
5. Notice however the lower bound in Corollary 3 provides information beyond
asymptotics: for example, if we consider the linear finite element method, that is
n = 1, then oscT (U) vanishes for all triangulations on whichf andAAA are piecewise
constant and in this class of meshes error and estimator are thus equivalent:

‖∇(u−U)‖L2(Ω) ≈ ET (U).

In summary: the estimatorET (U) from (47) is computable, it may be used to
quantify the error and, in view of the local properties in§3.1, its indicators may be
employed to provide the problem-specific information for local refinement.

3.3 Notes

Local lower bounds first appear in the work of Babuška and Miller [4]. Their deriva-
tion with continuous bubble functions is due to Verfürth [57], while the discrete
lower bounds are due to D̈orfler [24].

The discussion of the relationship between local dual normsand scaled integral
norms as the reason for oscillation is an elaborated versionof Sacchi-Veeser’s one
[47, Remark 3.1]. It is worth mentioning that there the indicators associated with
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the approximation of the Dirichlet boundary values do not need to invoke scaled
Lebesgue norms and are overestimation-free. Binev, Dahmenand DeVore [7] and
Stevenson [52] arrange the a posteriori analysis such that oscillation is measured in
H−1(Ω). This avoids overestimation but brings back the question how to (approxi-
mately) evaluate theH−1(Ω)-norm at acceptable cost. This question is open.

One may think that the issue of oscillation is specific to standard a posteriori
error estimation. However all estimators we are aware of suffer from oscillations of
the data that are finer than the mesh-size. For example, in thecase of hierarchical
estimatorsηT (U) [2, 55, 58], as well as those based upon local discrete problems
[2, 12, 42] or on gradient recovery [2, 27], the oscillation arises in the upper but not
in the lower bounds and so creates a similar gap as that discussed here, namely

ηT (U) . ‖∇(u−U)‖L2(Ω) . ηT (U)+oscT (U). (72)

3.4 Problems

Problem 19 (Data oscillation).Check that oscT (U,ωT) in (65) does not depend
on the approximationU if U is piecewise affine andAAA is piecewise constant, and is
given by

osc( f ,ωT) = ‖h( f − f̄ )‖L2(ωT ),

which corresponds to element data oscillation in (58).

Problem 20 (Energy norm case).Consider model problem (24) and discretization
(27) withS = V(T ) andAAA symmetric. Derive the counterparts of (66) and (71) for
the energy norm and discuss the difference to the case presented here.

Problem 21 (Cut-off functions for simplices).Verify that a suitable multiple of
the Verf̈urth cut-off function (59) satisfies the properties (55). Tothis end, exploit
affine equivalence ofT to a fixed reference simplex and shape regularity. Repeat for
the corresponding D̈orfler cut-off function.

Problem 22 (Inverse estimate for general polynomials).(Try this problem after
Problem 21.) Show that the choice (59) forηT verifies, for allp∈ Pn(T),

∫

T
p2 .

∫

T
p2ηT , ‖∇(pηT)‖L2(T) . h−1

T ‖p‖L2(T)

with constants depending onn and the shape coefficient ofT. To this end, recall the
equivalence of norms in finite-dimensional spaces. Derive the estimate

hT ‖r‖L2(T) . ‖r‖H−1(T)

for r ∈ Pn(T).

Problem 23 (Lower bound for correction). Consider the model problem and its
discretization ford = 2 andn = 1. LetU1 be the solution over a triangulationT1
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andU2 the solution overT2, whereT2 has been obtained by applying at least 3
bisections to every triangle ofT1. Moreover, suppose thatf is piecewise constant
overT1. Show

‖∇(U2−U1)‖L2(Ω) ≥ ‖h1 f‖L2(Ω),

whereh1 is the mesh-size function ofT1.

Problem 24 (Cut-off functions for sides).Verify that a suitable multiple of the
Verfürth cut-off function (62) satisfies the properties (61). Repeat for the corre-
sponding D̈orfler cut-off function.

Problem 25 (Polynomial extension).Let Sbe a side of a simplexT. Show that for
eachq∈ Pn(S) there exists ap∈ Pn(T) such that

p = q onS and ‖p‖L2(T) . h1/2
T ‖q‖L2(S).

Problem 26 (Norm equivalences with cut-off functions of sides).Let Sbe a side
of a simplexT. Show that the choice (62) forηS verifies, for allq∈ Pn(S) and all
p∈ Pm(T),

∫

S
q2 .

∫

S
q2ηS, ‖∇(pηS)‖L2(T) . h−1

T ‖p‖L2(T)

with constants depending onm,n, and the shape coefficient ofT.

Problem 27 (Lower bound with jump residual and general oscillation). Exploit
the claims in Problems 25 and 26, to rederive the estimate (64) but this time withr
and j piecewise polynomials of degree≤ n1 andn2.

Problem 28 (Best approximation of a product).Let K be either ad or a(d−1)-
simplex. Forℓ ∈ N denote byPp

m : Lp(K,Rℓ)→ Pm(K,Rℓ) the operator of bestLp-
approximation inK. Prove that, for allv∈ L∞(K,Rℓ), V ∈ Pn(K,Rℓ) andm≥ n,

‖vV−P2
m(vV)‖L2(K) ≤ ‖v−P∞

m−nv‖L∞(K)‖V‖L2(K).

Problem 29 (Upper bound for oscillation). Verify the upper bound (67) for the
oscillation by exploiting Problem 28.

Problem 30 (Superconvergence of jump residual oscillation). Show that ifAAA is
smooth across interelement boundaries, then the oscillation of the jump residual is
superconvergent in that

‖ j− jS‖L2(S) = O(hn
S)‖ j‖L2(S) ashSց 0.

Problem 31 (Simplified bound of oscillation).Using (67), show that (35) implies

oscT (U,ωT) . hT

(
‖ f‖L2(ωT ) +‖∇U‖L2(ωT )

)
, (73)

where the hidden constant depends also onAAA.
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Problem 32 (Necessity of oscillation).Let ε = 2−K for K integer and extend
the function 1

2x(ε − |x|) defined on(−ε,ε) to a 2ε-periodic C1 function uε on
Ω = (−1,1). Moreover, let the forcing function befε =−u′′, which is 2ε-periodic
and piecewise constant with values±1 that change at multiples ofε; see Fig. 13.
Let Tε be a uniform mesh with mesh-sizeh = 2−k, with k≪ K. We consider piece-

fε

<ε < h T

0 z

ε
T

Fig. 13 An strongly oscillating forcing function.

wise linear finite elementsV(Tε) and corresponding Galerkin solutionUε ∈V(Tε).
Observing thatfε is L2(Ω)-orthogonal to both the space of piecewise constants and
linears overTε , show that

‖u′ε −U ′ε‖L2(Ω) = ‖u′ε‖L2(Ω) =
ε√
6

=
2−K
√

6

≪ 2−k = h = ‖h fε‖L2(Ω) = oscTε (Uε) = ETε (Uε).

Extend this 1d example via a checkerboard pattern to any dimension.
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4 Convergence of AFEM

The purpose of this section is to formulate an adaptive finiteelement method
(AFEM) and to prove that it generates a sequence of approximate solutions con-
verging to the exact one. The method consists in the following main steps:

SOLVE→ ESTIMATE→MARK→ REFINE.

By their nature, adaptive algorithms define the sequence of approximate solu-
tions as well as associated meshes and spaces only implicitly. This fact requires an
approach that differs from ‘classical’ convergence proofs. In particular, a proof of
convergence will hinge on results of an a posteriori analysis as in§§2.4 and 3.

The approach presented in this section covers wide classes of problems, discrete
spaces, estimators and marking strategies. Here we do not strive for such generality
but instead, in order to minimize technicalities, illustrate the main arguments only
in a model case and then hint on possible generalizations.

It is worth noticing that, conceptually, the following convergence proof does not
suppose any additional regularity of the exact solution. Consequently, it does not
(and cannot) provide any information about the convergencespeed. This important
issue will be the concern of§7 for smaller classes of problems and algorithms.

4.1 A Model Adaptive Algorithm

We first present an AFEM for the model problem (24), which is anexample of a
standarditerative process that is often used in practice. In§4.2 we then prove its
convergence and, finally, in§4.3 we comment on generalizations still covered by
the given approach.

AFEM. The main structure of the adaptive finite element method is asfollows:
given an initial gridT0, setk = 0 and iterate

1. Uk = SOLVE(Tk);
2. {Ek(Uk,T)}T∈Tk

= ESTIMATE(Uk,Tk);
3. Mk = MARK

(
{Ek(Uk,T)}T∈Tk

,Tk
)
;

4. Tk+1 = REFINE(Mk,Tk); k← k+1.

Thus, the algorithm produces sequences(Tk)
∞
k=0 of meshes,(Uk)

∞
k=0 of approxi-

mate solutions, and, implicitly,(Vk)
∞
k=0 of discrete spaces.

We next state our main assumptions and define the aforementioned modules for
the problem at hand in detail.

Assumptions on continuous problem.We assume that the model problem (24)
satisfies (25) and (35) so that the a posteriori error bounds of §§2 and 3 are available.

Initial grid. Assume thatT0 is some initial triangulation ofΩ such thatAAA is piece-
wise Lipschitz overT0.
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Solve.Let
Vk := V(Tk) :=

{
V ∈ S

n,0(Tk) |V|∂Ω = 0
}

be the space of continuous functions that are piecewise polynomial of degree≤ n
overTk, and compute the Galerkin solutionUk in Vk given by

Uk ∈ Vk :
∫

Ω
AAA∇Uk ·∇V =

∫

Ω
fV for all V ∈ Vk.

Estimate.Compute the error estimator{Ek(Uk,T)}T∈Tk
given by

Ek(Uk,T) :=
(

h2
T‖r‖2L2(T) +hT‖ j‖2L2(∂T\∂Ω)

)1/2

wherehT = |T|1/d, r and j are the element and jump residuals from (37) associated
to the approximate solutionUk.

Mark. Collect a subsetMk ⊂Tk of marked elements with the following property:

∀T ∈Tk Ek(Uk,T) = Ek,max > 0 =⇒ T ∈Mk (74)

with Ek,max := maxT∈Tk
Ek(Uk,T).

Refine.RefineTk into Tk+1 using bisection, as explained in§1.3, in such a way that
each element inMk is bisected at least once and, finally, incrementk.

Classical convergence proofs consider the case of uniform,or ’non-adaptive’, re-
finement, which is included in the above class of algorithms by choosingMk = Tk,
thereby ignoring the information provided by the estimator. These convergence
proofs rely on the fact that the maximum mesh-size decreasesto 0 and therefore
∪∞

k=0Vk = H1
0(Ω). The above algorithm does not require this property, neither ex-

plicity nor implicitly in general. In fact this property is not desirable in an adaptive
context, since (30) reveals that it is sufficient to approximate only one function of
H1

0(Ω), namely the exact solutionu of (24). In the next section we see that the
above alogrithm ensures just convergence tou by a subtle combination of properties
of estimator and marking strategy.

4.2 Convergence

The goal of this section is to prove the convergence of the AFEM in §4.1. More
precisely, we show that the sequence(Uk)

∞
k=0 of approximate solutions converges to

the exact solutionu of the model problem (24).
Throughout this section ‘.’ stands for ‘≤C’, where the constant is independent

of the iteration numberk in the adaptive algorithm.
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Convergence to Some Function.We expect the Galerkin solutions(Uk)
∞
k=0 to ap-

proximate the exact solutionu in V = H1
0(Ω). In any event, we may regard them as

approximations to the Galerkin solutionU∞ in the limit

V∞ :=
∞⋃

k=0

Vk

of the discrete spaces. Notice thatV∞ is a subspace ofV, which may not coin-
cide withV (see below). In the next lemma we adopt this viewpoint and show that
(Uk)

∞
k=0 converges toU∞.

Lemma 7 (Limit of approximate solutions). The finite element solutions(Uk)
∞
k=0

converge inV to the Galerkin solution U∞ ∈ V∞ given by
∫

Ω
AAA∇U∞ ·∇V =

∫

Ω
fV for all V ∈ V∞.

Proof. Since the sequence of(Vk)
∞
k=0 is nested (see Problem 33), the setV∞ is a

closed linear subspace ofV. HenceV∞ is a Hilbert space and the bilinear formB
is coercive and continuous onV∞. The Lax-Milgram Theorem therefore ensures
existence and uniqueness ofU∞.

Let k∈N0 and note thatVk⊂V∞. We can therefore replaceV by V∞ in Theorem
4 and obtain

‖U∞−Uk‖V ≤ inf
V∈Vk

‖U∞−V‖V.

Sendingk→ ∞ then finishes the proof, because the right-hand side decreases to 0
by the very definition ofV∞. ⊓⊔

Lemma 7 reduces our task to showing thatU∞ = u. Notice that this is equivalent
to the conditionu∈ V∞, illustrating that in general there is no need forV∞ = V.

The identityU∞ = u hinges on the design of the adaptive algorithm. To illustrate
this point, let us consider two extreme examples:

• It may happen that all indicators vanish in iterationk∗. ThenEk∗,max= 0 and (74)
is compatible withMk = /0 andV∞ = Vk for all k≥ k∗. In this case,U∞ =Uk∗ and
convergence is only ensured if a vanishing estimator implies a vanishing error.
The latter is given in particular if the estimator bounds theerror from above.

• It may happen that only the simplices containing a fixed pointare bisected in
each iteration, but the exact solutionu has a more complex structure so thatu 6∈
V∞. Sinceu 6=U∞, and uniform refinement is not enforced, the adaptive procedure
must depend on the unknown functionu.

Convergence therefore will require that the moduleESTIMATE extracts enough
relevant information about the error, the moduleMARK uses this information cor-
rectly, and the moduleREFINE reduces the mesh-size where requested.

Mesh-Size before Bisection.The moduleREFINE bisects elements and so halves
their volume. This implies the following useful property ofelements to be bisected,
which include the marked elements.
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Lemma 8 (Sequences of elements to be bisected).For any sequence(Tk)
∞
k=0 of

elements with Tk ∈Tk \Tk+1 there holdslimk→∞ |Tk|= 0.

Proof. Suppose that limsupk→∞ |Tk| ≥ c > 0, that is there exists a infinite subse-
quence(Tkℓ

)ℓ such that limℓ→∞
∣∣Tkℓ

∣∣≥ c. Recall that the children of a bisection have
half the volume of the parent. Consequently, only a finite number of children of any
generation of eachTkℓ

can appear in the sequence(Tkℓ
)ℓ. Eliminating inductively

these children, we obtain an infinite sequence of simplices with disjoint interiors
and volume greater thanc > 0. This however contradicts the boundedness ofΩ ,
whence limsupk→∞ |Tk| ≤ 0, which is equivalent to the assertion.⊓⊔

It is instructive and convenient to reformulate Lemma 8 in terms of mesh-size
functions.

Lemma 9 (Mesh-size of elements to be bisected).If χk denotes the characteristic
function of the union∪T∈Tk\Tk+1

T of elements to be bisected and hk is the mesh-size
function ofTk, then

lim
k→∞
‖hkχk‖L∞(Ω) = 0

Proof. We may assume thatTk \Tk+1 6= /0 for all k∈N0 without loss of generality.
Choose(Tk)

∞
k=0 such thatTk ∈ Tk \Tk+1 andhTk = maxT∈Tk\Tk+1

hT and, recalling

thathT = |T|1/d, use Lemma 8 to deduce the assertion.⊓⊔

Lemma 9 may be viewed as a generalization of limk→∞ ‖hk‖L∞(Ω) = 0 in the case
of uniform refinement. It may be proven also by invoking the limiting mesh-sizeh∞;
see Problems 34 and 35. The limiting mesh-size describes thelocal structure ofV∞
and may differ from the zero function.

Convergence to Exact Solution.In order to achieveU∞ = u, we may investigate the
residual ofU∞, which is related to the residuals of the finite element solutionsUk.
The latter are in turn controlled by the element indicatorsEk(Uk,T), T ∈Tk, which
are employed in the stepMARK. The fact that indicators with maximum value are
marked yields the following property of the largest elementindicatorEk,max.

Lemma 10 (Convergence of maximum indicator).There holds

lim
k→∞

Ek,max= 0.

Proof. We may assume thatMk 6= /0 for all k∈N0 without loss of generality. Choose
a sequence(Tk)

∞
k=0 of elements such thatTk ∈Tk andEk(Uk,Tk) = Ek,max. Thanks to

(74), we haveTk ∈Mk and so Lemma 8 and moduleREFINE yield limk→∞ |Tk|= 0.
Exploiting the local lower bound in Theorem 7 and the simplified upper bound for
the local oscillation (73), we derive the following estimate for any indicator for
T ∈Tk:

Ek(Uk,T) . ‖∇(Uk−U∞)‖L2(ωT ) +‖∇(U∞−u)‖L2(ωT )

+hT

(
‖ f‖L2(ωT ) +‖∇Uk‖L2(ωT )

)
.

(75)
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TakingT = Tk, we obtain

Ek,max = Ek(Uk,Tk) . ‖Uk−U∞‖V +‖∇(U∞−u)‖L2(ωk)

+ |Tk|1/d
(
‖ f‖L2(ωk)

+‖Uk‖V
)

with ωk := ωTk. Consequently, Lemma 7 and limk→∞ |Tk| = 0, which also entails
limk→∞ |ωk|= 0, prove the assertion.⊓⊔

With these preparations we are ready for the first main resultof this section.

Theorem 8 (Convergence of approximate solutions).Let u be the exact solution
of the model problem(24) satisfying(25) and (35). The finite element solutions
(Uk)

∞
k=0 of the AFEM of§4.1 converge to the exact one inV:

Uk→ u in V as k→ ∞.

Proof. 1 In view of Lemma 7, it remains to show thatU∞ = u. This is equivalent to

0 = 〈R∞, v〉 :=
∫

Ω
f v−

∫

Ω
A∇U∞ ·∇v for all v∈ V = H1

0(Ω). (76)

Here we can take the test functions fromC∞
0 (Ω), becauseC∞

0 (Ω) is a dense subset
of the Hilbert spaceH1

0(Ω). Lemma 7 therefore ensures that (76) follows from

0 = lim
k→∞
〈Rk, ϕ〉 ∀ϕ ∈C∞

0 (Ω), (77)

whereRk ∈ V
∗ is the residual ofUk given by

〈Rk, v〉 :=
∫

Ω
f v−

∫

Ω
A∇Uk ·∇v.

2 In order to show (77), letϕ ∈C∞
0 (Ω) and introduce the set

T
∗

ℓ :=
⋂

m≥ℓ

Tm

of elements inTℓ that will no longer be bisected; note that ifT ∗
ℓ 6= /0, thenV 6= V∞.

Givenℓ≤ k, Vℓ ⊂ Vk and (51) imply

〈Rk, ϕ〉 = 〈Rk, ϕ− Iℓϕ〉 . Sℓ,k +S∗ℓ,k, (78)

where we expect that

Sℓ,k := ∑
T∈Tk\T ∗ℓ

Ek(Uk,T)‖∇(ϕ− Iℓϕ)‖L2(Nk(T))

gets small because of decreasing mesh-size whereas
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S∗ℓ,k := ∑
T∈T ∗ℓ

Ek(Uk,T)‖∇(ϕ− Iℓϕ)‖L2(Nk(T))

gets small because of properties of the adaptive algorithm.
3 We first deal withSℓ,k. The Cauchy-Schwarz inequality in someR

N yields

Sℓ,k ≤ Ek(Uk,Tk \T ∗
ℓ )
(

∑
T∈Tk\T ∗ℓ

‖∇(ϕ− Iℓϕ)‖2L2(Nk(T))

)1/2
,

where the first factor

Ek(Uk,Tk \T ∗
ℓ ) . ‖Uk−U∞‖V +‖U∞−u‖V

+‖hkχℓ‖L∞(Ω)

(
‖ f‖L2(Ω) +‖Uk‖V

)
. 1

(79)

is uniformly bounded thanks to (75) and the second factor satisfies

(
∑

T∈Tk\T ∗ℓ
‖∇(ϕ− Iℓϕ)‖2L2(Nk(T))

)1/2
.
(

∑
T∈Tℓ\T ∗ℓ

‖∇(ϕ− Iℓϕ)‖2L2(Nl (T))

)1/2

. ‖hℓχℓ‖nL∞(Ω)‖Dn+1ϕ‖L2(Ω)

because ofTk ≥Tℓ and Proposition 2. Hence Lemma 9 implies

Sℓ,k→ 0 asℓ→ ∞ uniformly in k. (80)

4 Next, we deal withS∗ℓ,k. Here the Cauchy-Schwarz inequality yields

S∗ℓ,k ≤ Ek(Uk,T
∗

ℓ )
(

∑
T∈T ∗ℓ

‖∇(ϕ− Iℓϕ)‖2L2(Nk(T))

)1/2
,

where the first factor satisfies

Ek(Uk,T
∗

ℓ )≤ #Tℓ Ek,max (81)

and the second factor

(
∑

T∈T ∗ℓ

‖∇(ϕ− Iℓϕ)‖2L2(Nk(T))

)1/2
. ‖hℓ‖nL∞(Ω)‖Dn+1ϕ‖L2(Ω) . 1

is uniformly bounded. Lemma 10 therefore implies

S∗ℓ,k→ 0 ask→ ∞ for any fixedℓ. (82)

5 Givenε > 0, we exploit (80) and (82) by first choosingℓ so thatSℓ,k ≤ ε/2 and
nextk≥ ℓ so thatS∗ℓ,k ≤ ε/2. Inserting this into (78) yields the desired convergence
(77) and finishes the proof.⊓⊔



Primer of AFEM 53

Convergence of Estimator.Theorem 8 ensures convergence of the finite element
solutionsUk but says nothing about the behavior of the estimators

Ek(Uk) =
(

∑
T∈Tk

Ek(Uk,T)2
)1/2

,

which enables one to monitor that convergence. The convergence of the estimators
is ensured by the following theorem. Notice that this is not asimple consequence
of Theorem 8 and Corollary 3 because of the presence of the oscillation osck(Uk) in
the global lower bound; see also Problem 36.

Corollary 4 (Estimator convergence).Assume again that the model problem(24)
satisfies(25)and (35). The estimators(Ek(Uk))

∞
k=0 of AFEM in§4.1 converge to0:

lim
k→∞

Ek(Uk) = 0.

Proof. Theorem 8 impliesU∞ = u. Using this andhk ≤ hℓ for ℓ ≤ k, along with
‖Uk−U∞‖V . ‖Uℓ−U∞‖V, after the first inequality of (79) yields

Ek(Uk,Tk \T ∗
ℓ )→ 0 asℓ→ ∞ uniformly in k (83)

with the help of Lemmas 7 and 9. In view of

E
2
k (Uk) = E

2
k (Uk,Tk \T ∗

ℓ )+E
2
k (Uk,T

∗
ℓ ),

we realize that (81), (83), and Lemma 10 complete the proof.⊓⊔

We conclude this section with a few remarks about variants ofTheorem 8 and
Corollary 4 for general estimators. Theorem 8 holds for any estimator that provides
an upper bound of the form

|〈Rk, v〉|. ∑
T∈Tk

Ek(Uk,T)‖∇v‖L2(Nk(T)) for all v∈ V, (84)

which is locally stable in the sense

Ek(Uk,T) . hT‖ f‖L2(ωT ) +‖∇Uk‖L2(ωT ) for all T ∈Tk; (85)

see Problem 37. While the first assumption (84) appears natural, and is in fact cru-
cial in view of the first example after Lemma 7, the second assumption (85) may
appear artificial. However, Problem 38 reveals that is also crucial and, thus, the sug-
gested variant of Theorem 8 is ‘sharp’. Problem 39 proposes the construction of
an estimator verifying the two assumptions (84) and (85) which, however, does not
decrease to 0. On the other hand, Corollary 4 hinges on the local lower bound (75),
which is a sort of minimal requirement of efficiency if the finite element solutions
Uk converge. Roughly speaking, convergence ofUk relies on reliability and stability
of the estimator, while the convergence of the estimator depends on the efficiency of
the estimator. This shows that the assumptions on the estimator for Theorem 8 and
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Corollary 4 are of different nature. In particular, we see that convergence ofUk can
be achieved even with estimators that are too poor to quantify the error.

4.3 Notes

The convergence proof in§4.2 is a simplified version of Siebert [49], which unifies
the work of Morin, Siebert, and Veeser [44] with the standarda priori convergence
theory based on (global) density. In order to further discuss the underlying assump-
tions of the approach in 4.2, we now compare these two works inmore detail.

Solve.Both works [44] and [49] consider well-posed linear problems and invoke
a generalization of Lemma 7 that follows from a discrete inf-sup condition on the
discretization. The latter assumption appears natural since it is necessary for con-
vergence in the particular case of uniform refinement; see [10, Problem 3.9]. In the
case of a problem with potential or ‘energy’, the explicit construction ofU∞ can be
replaced by a convergent sequence of approximate energy minima. Examples are the
convergence analyses for thep-Laplacian by Veeser [55] and for the obstacle prob-
lem by Siebert and Veeser [51], which are the first steps in theterrain of nonlinear
and nonsmooth problems and are predecessors of [44] and [49].

Estimate and Mark. Paper [44] differs from [49] on the assumptions on estimators
and marking strategy. More precisely, [44] assumes that theestimator provides a
discrete local lower bound and that the marking strategy essentially ensures

Ek(Uk,T)≤
(

∑
T ′∈Mk

Ek(Uk,T
′)2
)1/2

for all T ∈Tk \Mk, (86)

whereas [49] essentially assumes (84), (85), and (74). Thus, the assumptions on the
estimator are weaker in [49], while those on the marking strategy are weaker in [44];
see also Problem 40. Since both works verify that their assumptions on the marking
strategy are necessary, this shows that (minimal) assumptions on the estimator and
marking strategy are coupled.

Refine.Both [44, 49] consider the same framework forREFINE. This does not only
include bisection for conforming meshes (see§1.3), but also nonconforming meshes
(see§1.7) and other manners of subdividing elements. Moreover, [44, 49] assume
the minimal requirement of subdividing the marked elements, as in§4.1.

Further Variants and Generalizations. These approaches can be further devel-
oped in several directions:

• Morin, Siebert, and Veeser [43] give a proof of convergence of a variant of the
AFEM in §4.1 when the estimator provides upper and local lower boundsfor the
error in ‘weak’ norms, e.g. similar to theL2-norm in Problem 18.

• Demlow [20] proves convergence of a variant of the AFEM in§4.1 with estima-
tors for local energy norm errors.
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• Garau, Morin, and Zuppa [28] show convergence of a variant ofthe AFEM in
§4.1 for symmetric eigenvalue problems.

• Holst, Tsogtgerel, and Zhu [31] extend [44] to nonlinear partial differential equa-
tions, the linearization of which are well-posed.

4.4 Problems

Problem 33 (Nesting of spaces).Let T1 andT2 be triangulations such thatT1 ≤
T2, that isT2 is a refinement by bisection ofT1. Show that the corresponding
Lagrange finite element spaces from (31) are nested, i. e.,V(T1)⊂ V(T2).

Problem 34 (Limiting mesh-size function).Prove that there exists a limiting mesh-
size functionh∞ ∈ L∞(Ω) such that

‖hk−h∞‖L∞(Ω)→ 0 ask→ ∞.

Can you construct an example withh∞ 6= 0?

Problem 35 (Alternative proof of Lemma 9). For any iterationk, let χk be the
characteristic function of the union∪T∈Tk\Tk+1

T of elements to be bisected andhk

the mesh-size function ofTk. Show

lim
k→∞
‖hkχk‖L∞(Ω) = 0

by means of Problem 34 and the fact that bisection reduces themesh-size.

Problem 36 (Persistence of oscillation).Choosing appropriately the data of the
model problem (24), provide an example where the exact solution is (locally) piece-
wise affine and the (local) oscillation does not vanish.

Problem 37 (Convergence for general estimators).Check that Lemma 10 and
Theorem 8 hold for any estimator{Ek(Uk,T)}T∈Tk

that is reliable in the sense of
(84) and locally stable in the sense of (85).

Problem 38 (‘Necessity’ of local estimator stability).Construct an estimator that
satisfies (84) and its indicators are always largest around afixed point, entailing that
(74) is compatible with refinement only around that fixed point, irrespective of the
exact solutionu.

Problem 39 (No estimator convergence).Assuming that the exact solutionu of
the model problem (24) does not vanish, construct an estimator satisfying (84) and
(85) which does not decrease to 0.

Problem 40 (Assumptions for marking strategies).Check that (86) is weaker that
(74) by considering the bulk-chasing strategy (90).
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5 Contraction Property of AFEM

This section discusses the contraction property for a special AFEM for themodel
problem(23), which we rewrite for convenience:

−div(AAA(x)∇u) = f in Ω (87)

u = 0 on∂Ω ,

with piecewise smooth coefficient matrixAAA on T0. The matrixAAA is assumed to be
(uniformly) SPD so that the problem iscoercive, andsymmetric. We consider a loop
of the form

SOLVE→ ESTIMATE→MARK→ REFINE

that produces a sequence(Tk,Vk,Uk)
∞
k=0 of conforming meshesTk, spaces of con-

forming elementsVk (typically C0 piecewise linearsn = 1), and Galerkin solutions
Uk ∈ Vk.

The desired contraction property hinges onerror monotonicity. Since this is
closely related to a minimization principle, it is natural to consider the coercive
problem (87). We cannot expect a similar theory for problemsgoverned by an inf-
sup condition; this is an important open problem.

We next follow Casćon, Kreuzer, Nochetto and Siebert [14]. We refer to [7, 9,
16, 17, 23, 24, 37, 40, 41, 42] for other approaches and to§5.6 for a discussion.

5.1 Modules of AFEM for the Model Problem

We present further properties of the four basic modules of AFEM for (87). The main
additional restrictions with respect to§4 are symmetry and coercivity of the bilinear
form and the marking strategy.

Module SOLVE. If T ∈ T is a conforming refinement ofT0 andV = V(T ) is the
finite element space ofC0 piecewise polynomials of degree≤ n, then

U = SOLVE(T )

determines the Galerkin solutionexactly, namely,

U ∈ V :
∫

Ω
AAA∇U ·∇V =

∫

Ω
fV for all V ∈ V. (88)

Module ESTIMATE. Given a conforming meshT ∈ T and the Galerkin solution
U ∈ V(T ), the output of

{ET (U,T)}T∈T = ESTIMATE(U,T ).
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are the element indicators defined in (46). For convenience,we recall the definitions
(37) of interior andjump residuals

r(V)|T = f +div(AAA∇V) for all T ∈T

j(V)|S = [[AAA∇V]] ·nnn|S for all S∈S (internal sides ofT ),

and j(V)|S = 0 for boundary sidesS∈S , as well as the element indicator

E
2
T (V,T) = h2

T ‖r(V)‖2L2(T) +hT ‖ j(V)‖2L2(∂T) for all T ∈T . (89)

We observe that we now write explicitly the argumentV in bothr and j because this
dependence is relevant for the present discussion.

Module MARK. GivenT ∈ T, the Galerkin solutionU ∈ V(T ), and element in-
dicators{ET (U,T)}T∈T , the moduleMARK selects elements for refinement using
Dörfler Marking(or bulk chasing), i. e., using a fixed parameterθ ∈ (0,1] the output

M = MARK
(
{ET (U,T)}T∈T ,T

)

satisfies
ET (U,M )≥ θ ET (U,T ). (90)

This marking guarantees thatM contains a substantial part of the total (or bulk),
thus its name. This is a crucial property in our arguments. The choice ofM does
not have to be minimal at this stage, that is, the marked elements T ∈M do not
necessarily must be those with largest indicators. However, minimality of M will
be crucial to derive rates of convergence in§7.

Module REFINE. Let b∈ N be the number of desired bisections per marked ele-
ment. GivenT ∈ T and a subsetM of marked elements, the outputT∗ ∈ T of

T∗ = REFINE
(
T , M

)

is the smallest refinementT∗ of T so that all elements ofM are at least bisectedb
times. Therefore, we havehT∗ ≤ hT and the strict reduction property

hT∗ |T ≤ 2−b/dhT |T for all T ∈M . (91)

We finally letRT→T∗ be the subset of refined elements ofT and note that

M ⊂RT→T∗ .

AFEM. The following procedure is identical to that of§4.1 except for the module
MARK, which uses D̈orfler marking with parameter 0< θ ≤ 1: given an initial grid
T0, setk = 0 and iterate
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1. Uk = SOLVE(Tk);
2. {Ek(Uk,T)}T∈Tk

= ESTIMATE(Uk,Tk);
3. Mk = MARK

(
{Ek(Uk,T)}T∈Tk

,Tk
)
;

4. Tk+1 = REFINE(Tk,Mk); k← k+1.

5.2 Basic Properties of AFEM

We next summarize some basic properties of AFEM that emanatefrom the sym-
metry of the differential operator (i.e. ofAAA) and features of the modules. In doing
this, any explicit constant or hidden constant in. will only depend on the uniform
shape-regularity ofT, the dimensiond, the polynomial degreen, and the (global)
eigenvalues ofAAA, but not on a specific gridT ∈ T, except if explicitly stated. Fur-
thermore,u will always be the weak solution of (24).

The following property relies on the fact that the bilinear formB is coercive and
symmetric, and so induces a scalar product inV equivalent to theH1

0 -scalar product.

Lemma 11 (Pythagoras).Let T ,T∗ ∈ T such thatT ≤ T∗. The corresponding
Galerkin solutions U∈ V(T ) and U∗ ∈ V(T∗) satisfy the following orthogonality
property in the energy norm|||·|||Ω

|||u−U |||2Ω = |||u−U∗|||2Ω + |||U∗−U |||2Ω . (92)

Proof. See Problem 41.⊓⊔

Property (92) is valid for (87) for the energy norm exclusively. This restricts the
subsequent analysis to the energy norm, or equivalent norms, but does not extend
to other, perhaps more practical, norms such as the maximum norm. This is an
important open problem and a serious limitation of this theory.

We now recall the concept of oscillation from§3.1. In view of (65), we denote
by oscT (V,T) theelement oscillationfor anyV ∈ V

oscT (V,T) = ‖h(r(V)− r(V))‖L2(T) +‖h1/2( j(V)− j(V))‖L2(∂T∩Ω), (93)

wherer(V) = P2n−2r(V) and j(V) = P2n−1 j(V) stand forL2-projections of the resid-
ualsr(V) and j(V) onto the polynomialsP2n−2(T) andP2n−1(S) defined on the el-
ementT or sideS⊂ ∂T, respectively. For variableAAA, oscT (V,T) depends on the
discrete functionV ∈ V, and its study is more involved than for piecewise constant
AAA. In the latter case, oscT (V,T) is given by (58) and is calleddata oscillation; see
also Problem 19.

We now rewrite the a posteriori error estimates of Theorems 6and 7 in the energy
norm.

Lemma 12 (A posteriori error estimates).There exist constants0<C2≤C1, such
that for anyT ∈ T and the corresponding Galerkin solution U∈V(T ) there holds
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|||u−U |||2Ω ≤C1E
2
T (U) (94a)

C2E
2
T (U)≤ |||u−U |||2Ω +osc2T (U). (94b)

The constantsC1 andC2 depend on the smallest and largest global eigenvalues ofAAA.
This dependence can be improved if the a posteriori analysisis carried out directly
in the energy norm instead of theH1

0 -norm; see Problem 20. The definitions ofr(V)

and j(V), as well as the lower bound (94b), are immaterial for deriving a contraction
property. However, they will be important for proving convergence rates in§7.

One serious difficulty in dealing with AFEM is that one has access to the energy
error |||u−U |||Ω only through the estimatorET (U). The latter, however, fails to be
monotone because it depends on the discrete solutionU ∈ V(T ) that changes with
the mesh. We first show thatET (V) decreases strictly providedV does not change
(Lemma 13) and next we account for the effect of changingV but keeping the mesh
(Lemma 14). Combining these two lemmas we get Proposition 3.In formulating
these results we rely on the following notation: givenT ∈ T let M ⊂ T denote a
set of elements that are bisectedb≥ 1 times at least, letT∗ ≥ T be a conforming
refinement ofT that contains the bisected elements ofM , and let

λ = 1−2−b/d.

Lemma 13 (Reduction ofET (V) wrt T ). For any V∈ V(T ), we have

E
2
T∗(V,T∗)≤ E

2
T (V,T )−λE

2
T (V,M ). (95)

Proof. We decomposeE 2
T∗(V,T∗) over elementsT ∈ T , and distinguish whether

or notT ∈M . If T ∈M , thenT is bisected at leastb times and soT can be written
as the union of elementsT ′ ∈T∗ We denote this set of elementsT∗(T) and observe
that, according with (91),hT ′ ≤ 2−b/d hT for all T ′ ∈T∗(T). Therefore

∑
T ′∈T∗(T)

h2
T ′‖r(V)‖2L2(T ′) ≤ 2−2b/d h2

T‖r(V)‖2L2(T)

and

∑
T ′∈T∗(T)

hT ′ ‖ j(V)‖2L2(∂T ′∩Ω) ≤ 2−b/d hT ‖ j(V)‖2L2(∂T∩Ω),

becauseV ∈ V(T ) only jumps across the boundary ofT. This implies

E
2
T∗(V,T)≤ 2−b/d

E
2
T (V,T) for all T ∈M .

For the remaining elementsT ∈ T \M we only know that mesh-size does not
increased becauseT ≤T∗, whence

E
2
T∗(V,T)≤ E

2
T (V,T) for all T ∈T \M .

Combining the two estimates we see that



60 R. H. Nochetto and A. Veeser

E
2
T∗(V,T∗)≤ 2−b/d

E
2
T (V,M )+E

2
T (V,T \M )

= E
2
T (V,T )−

(
1−2−b/d)

E
2
T (V,M ),

which, in light of the definition ofλ , is the desired estimate.⊓⊔

Lemma 14 (Lipschitz property of ET (V,T) wrt V). For all T ∈T , let ωT denote
the union of elements sharing a side with T ,divAAA∈ L∞(Ω ;Rd) be the divergence
of AAA computed by rows, and

ηT (AAA,T) := hT‖divAAA‖L∞(T) +‖AAA‖L∞(ωT ).

Then the following estimate is valid

|ET (V,T)−ET (W,T)|. ηT (AAA,T)‖∇(V−W)‖L2(ωT ) for all V,W ∈ V(T ).

Proof. Recalling the definition of the indicators, the triangle inequality yields

|ET (V,T)−ET (W,T)| ≤ hT‖r(V)− r(W)‖L2(T) +h1/2
T ‖ j(V)− j(W)‖L2(∂T).

We setE := V−W ∈ V(T ), and observe that

r(V)− r(W) = div(AAA∇E) = divAAA·∇E +AAA : D2E,

whereD2E is the Hessian ofE. SinceE is a polynomial of degree≤ n in T, applying
the inverse estimate‖D2E‖L2(T) . h−1

T ‖∇E‖L2(T), we deduce

hT‖r(V)− r(W)‖L2(T) . ηT (AAA,T)‖∇E‖L2(T).

On the other hand, for anyS⊂ ∂T applying the inverse estimate of Problem 43 gives

‖ j(V)− j(W)‖L2(S) = ‖ j(E)‖L2(S) = ‖ [[A∇E]] ‖L2(S) . h−1/2
T ‖∇E‖L2(ωT )

where the hidden constant is proportional toηT (AAA,T). This finishes the proof. ⊓⊔

Proposition 3 (Estimator reduction). Given T ∈ T and a subsetM ⊂ T of
marked elements, letT∗ = REFINE

(
T ,M

)
. Then there exists a constantΛ > 0,

such that for all V∈ V(T ), V∗ ∈ V∗(T∗) and anyδ > 0 we have

E
2
T∗(V∗,T∗)≤ (1+δ )

(
E

2
T (V,T )−λ E

2
T (V,M )

)

+(1+δ−1)Λ η2
T (AAA,T ) |||V∗−V|||2Ω .

Proof. Apply Lemma 14 toV,V∗ ∈V(T∗) in conjunction with Lemma 13 forV (see
Problem 44). ⊓⊔
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5.3 Contraction Property of AFEM

A key question to ask is what is (are) the quantity(ies) that AFEM may contract. In
light of (92), an obvious candidate is the energy error|||u−Uk|||Ω . We first show, in
the simplest scenario of piecewise constant dataAAA and f , that this is in fact the case
provided an interior node property holds; see Lemma 15. However, the energy error
may not contract in general unlessREFINE enforces several levels of refinement;
see Example 1. We then present a more general approach that eliminates the interior
node property at the expense of a more complicated contractive quantity, the quasi
error; see Theorem 9.

Piecewise Constant Data.We now assume that bothf andAAA are piecewise constant
in the initial meshT0, so that osck(Uk) = 0 for all k≥ 0. The following property
was introduced by Morin, Nochetto, and Siebert [40].

Definition 1 (Interior node property). The refinementTk+1 ≥ Tk satisfies an in-
terior node property with respect toTk if each elementT ∈Mk contains at least one
node ofTk+1 in the interiors ofT and of each side ofT.

This property is valid upon enforcing a fixed numberb∗ of bisections (b∗ = 3,6
for d = 2,3). An immediate consequence of this property, proved in [40, 41], is the
following discretelower a posteriori bound:

C2E
2
k (Uk,Mk)≤ |||Uk−Uk+1|||2Ω +osc2k(Uk); (96)

see also Problem 23 for a related result.

Lemma 15 (Contraction property for piecewise constant data). Let AAA, f be
piecewise constant in the initial meshT0. If Tk+1 satisfies an interior node property
with respect toTk, then forα := (1−θ 2C2

C1
)1/2 < 1 there holds

|||u−Uk+1|||Ω ≤ α |||u−Uk|||Ω , (97)

where0 < θ < 1 is the parameter in(90)and C1≥C2 are the constants in(94).

Proof. For convenience, we use the notation

ek = |||u−Uk|||Ω , Ek = |||Uk+1−Uk|||Ω , Ek = Ek(Uk,Tk), Ek(Mk) = Ek(Uk,Mk).

The key idea is to use the Pythagoras equality (11)

e2
k+1 = e2

k−E2
k ,

and show thatEk is a significant portion ofek. Since (96) with osck(Uk) = 0 implies

C2E
2
k (Mk)≤ E2

k , (98)

applying D̈orfler marking (90) and the upper bound (94a), we deduce
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E2
k ≥C2θ 2

E
2
k ≥

C2

C1
θ 2e2

k.

This is the desired property ofEk and leads to (97). ⊓⊔

Example 1 (Strict monotoniticity).Let Ω = (0,1)2, AAA= III , f = 1 (constant data), and
consider the following sequences of meshes depicted in Figure 14. Ifφ0 denotes the
basis function associated with the only interior node of theinitial meshT0, then

U0 = U1 =
1
12

φ0, U2 6= U1.

Fig. 14 Grids T0, T1, andT2 of Example 1. The meshT1 has nodes in the middle of sides of
T0, but onlyT2 has nodes in the interior of elements ofT0. Hence,T2 satisfies the interior node
property of Definition 1 with respect toT0.

The meshT1 ≥ T0 is produced by a standard 2-step bisection(b = 2) in 2d. Since
U0 = U1 we conclude that the energy error may not change

|||u−U0|||Ω = |||u−U1|||Ω

between two consecutive steps of AFEM forb = d = 2. This is no longer true pro-
vided an interior node in each marked element is created, as in Definition 1, because
then Lemma 15 holds. This example appeared first in [40, 41], and was used to
justify the interior node property.

General Data. If osck(Uk) 6= 0, then the contraction property of AFEM becomes
trickier because the energy error and estimator are no longer equivalent regardless
of the interior node property. The first question to ask is what quantity replaces
the energy error in the analysis. We explore this next and remove the interior node
property.

Heuristics. According to (92), the energy error is monotone

|||u−Uk+1|||Ω ≤ |||u−Uk|||Ω ,

but the previous example shows that strict inequality may fail. However, ifUk+1 =
Uk, estimate (95) reveals a strict estimator reductionEk+1(Uk) < Ek(Uk). We thus
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expect that, for a suitable scaling factorγ > 0, the so-calledquasi error

|||u−Uk|||2Ω + γ E
2
k (Uk) (99)

may be contractive. This heuristics illustrates a distinctaspect of AFEM theory,
the interplay between continuous quantities such the energy error |||u−Uk|||Ω and
discrete ones such as the estimatorEk(Uk): no one alone has the requisite properties
to yield a contraction between consecutive adaptive steps.

Theorem 9 (Contraction property). Let θ ∈ (0,1] be the D̈orfler Marking param-
eter, and{Tk,Vk,Uk}∞

k=0 be a sequence of conforming meshes, finite element spaces
and discrete solutions created by AFEM for the model problem(87).

Then there exist constantsγ > 0 and0 < α < 1, additionally depending on the
number b≥ 1 of bisections andθ , such that for all k≥ 0

|||u−Uk+1|||2Ω + γ E
2
k+1(Uk+1)≤ α2

(
|||u−Uk|||2Ω + γ E

2
k (Uk)

)
. (100)

Proof. We split the proof into four steps and use the notation in Lemma 15.
1 The error orthogonality (92) reads

e2
k+1 = e2

k−E2
k . (101)

Employing Proposition 3 withT = Tk, T∗ = Tk+1, V = Uk andV∗ = Uk+1 gives

E
2
k+1≤ (1+δ )

(
E

2
k −λ E

2
k (Mk)

)
+(1+δ−1)Λ0E2

k , (102)

whereΛ0 = Λη2
T0

(AAA,T0) ≥ Λη2
Tk

(AAA,Tk). After multiplying (102) byγ > 0, to be
determined later, we add (101) and (102) to obtain

e2
k+1 + γ E

2
k+1≤ e2

k +
(
γ (1+δ−1)Λ0−1

)
E2

k + γ (1+δ )
(
E

2
k −λ E

2
k (Mk)

)
.

2 We now choose the parametersδ ,γ, the former so that

(1+δ )
(
1−λθ 2)= 1− λθ 2

2
,

and the latter to verify
γ (1+δ−1)Λ0 = 1.

Note that this choice ofγ yields

e2
k+1 + γ E

2
k+1≤ e2

k + γ (1+δ )
(
E

2
k −λ E

2
k (Mk)

)
.

3 We next employ D̈orfler Marking, namelyEk(Mk)≥ θEk, to deduce

e2
k+1 + γ E

2
k+1≤ e2

k + γ(1+δ )(1−λθ 2)E 2
k

which, in conjunction with the choice ofδ , gives
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e2
k+1 + γ E

2
k+1≤ e2

k + γ
(

1− λθ 2

2

)
E

2
k = e2

k−
γλθ 2

4
E

2
k + γ

(
1− λθ 2

4

)
E

2
k .

4 Finally, the upper bound (94a), namelye2
k ≤C1E 2

k , implies that

e2
k+1 + γ E

2
k+1≤

(
1− γλθ 2

4C1

)
e2

k + γ
(

1− λθ 2

4

)
E

2
k .

This in turn leads to
e2

k+1 + γ E
2
k+1≤ α2(e2

k + γ E
2
k

)
,

with

α2 := max

{
1− γλθ 2

4C1
,1− λθ 2

4

}
,

and proves the theorem becauseα2 < 1. ⊓⊔

Remark 9 (Ingredients).The basic ingredients of this proof are: Dörfler marking;
coercivity and symmetry ofB and nesting of spaces, which imply the Pythagoras
identity (Lemma 11); the a posteriori upper bound (Lemma 12); and the estimator
reduction property (Proposition 3). It does not use the lower bound (94b) and does
not require marking by oscillation, as previous proofs do [17, 37, 40, 41, 42].

Remark 10 (Separate marking).MARK is driven byEk exclusively, as it happens in
all practical AFEM. Previous proofs in [17, 37, 40, 41, 42] require separate marking
by estimator and oscillation. It is shown in [14] that separate marking may lead
to suboptimal convergence rates. On the other hand, we will prove in §7 that the
present AFEM yields quasi-optimal convergence rates.

5.4 Example: Discontinuous Coefficients

We invoke the formulas derived by Kellogg [34] to construct an exact solution of an
elliptic problem with piecewise constant coefficients and vanishing right-hand side
f ; data oscillation is thus immaterial. We now write these formulas in the particular
caseΩ = (−1,1)2, AAA = a1III in the first and third quadrants, andAAA = a2III in the
second and fourth quadrants. An exact weak solutionu of the model problem (87)
for f ≡ 0 is given in polar coordinates byu(r,θ) = rγ µ(θ) (see Figure 15), where

µ(θ) =






cos((π/2−σ)γ) ·cos((θ −π/2+ρ)γ) if 0 ≤ θ ≤ π/2,

cos(ργ) ·cos((θ −π +σ)γ) if π/2≤ θ ≤ π,

cos(σγ) ·cos((θ −π−ρ)γ) if π ≤ θ < 3π/2,

cos((π/2−ρ)γ) ·cos((θ −3π/2−σ)γ) if 3π/2≤ θ ≤ 2π,

and the numbersγ, ρ, σ satisfy the nonlinear relations
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Fig. 15 Discontinuous coefficients in checkerboard pattern: Graph of the discrete solution, which
is u≈ r0.1, and underlying strongly graded grid. Notice the singularityof u at the origin.






R := a1/a2 =− tan((π/2−σ)γ) ·cot(ργ),

1/R=− tan(ργ) ·cot(σγ),

R=− tan(σγ) ·cot((π/2−ρ)γ),

0 < γ < 2,

max{0,πγ−π}< 2γρ < min{πγ,π},
max{0,π−πγ}<−2γσ < min{π,2π−πγ}.

(103)

Since we want to test the algorithm AFEM in a worst case scenario, we choose
γ = 0.1, which produces a very singular solutionu that is barely inH1; in fact
u∈ Hs(Ω) for s< 1.1 and piecewise inW2

p (Ω) for p > 1. We then solve (103) for
R, ρ, andσ using Newton’s method to obtain

R= a1/a2
∼= 161.4476387975881, ρ = π/4, σ ∼=−14.92256510455152,

and finally choosea1 = Randa2 = 1. A smallerγ would lead to a larger ratioR, but
in principleγ may be as close to 0 as desired.

We realize from Figure 16 that AFEM attains optimal decay rate for the energy
norm. This is consistent with adaptive approximation for functions piecewise in
W2

p (Ω) (see§1.6), but nonobvious for AFEM which does not have direct access to
u; this is the topic of§7. We also notice from Figure 17 that a graded mesh with
mesh-size of order 10−10 at the origin is achieved with about 2×103 elements. To
reach a similar resolution with a uniform mesh we would needN ≈ 1020 elements!
This example clearly reveals the advantages and potentialsof adaptivity for the FEM
even with modest computational resources.
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Fig. 16 Quasi-optimality of AFEM for discontinuous coefficients: estimate and true error. The
optimal decay for piecewise linear elements in 2d is indicated by the line with slope−1/2.

Fig. 17 Discontinuous coefficients in checkerboard pattern: Final grid (full grid with < 2000
nodes) (top left), zooms to(−10−3,10−3)2 (top right), (−10−6,10−6)2 (bottom left), and
(−10−9,10−9)2 (bottom right). The grid is highly graded towards the origin. For a similar res-
olution, a uniform grid would requireN≈ 1020 elements.

What is missing is an explanation of the recovery of optimal error decayN−1/2

through mesh grading. This is the subject of§7, where we have to deal with the
interplay between continuous and discrete quantities as already alluded to in the
heuristics.
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5.5 Extensions and Restrictions

It is important to take a critical look at the theory just developed and wonder about
its applicability. Below we list a few extensions of the theory and acknowledge some
restrictions.

Nonconforming Meshes.Theorem 9 easily extends to non-conforming meshes
since conformity plays no role. This is reported in Bonito and Nochetto [9].

Non-Residual Estimators.The contraction property (100) has been derived for
residual estimatorsEk(Uk). This is because the estimator reduction property (95)
is not known to hold for other estimators, such as hierarchical, Zienkiewicz-Zhu,
and Braess-Schoerbel estimators, as well as those based on the solution of local
problems. A common feature of these estimatorsηT (U) is the lack of reliability in
the preasymptotic regime, in which oscillation oscT (U) may dominate. In fact, we
recall the upper a posteriori bound from (72)

|||u−U |||2Ω ≤C1

(
η2

T (U)+osc2T (U)
)

=: E
2
T (U),

which gives rise to D̈orfler marking for the total estimatorET (U). Casćon and No-
chetto [15] have recently extended Theorem 9 forn = 1 upon allowing an interior
node property after a fixed number of adaptive loops and combining Lemma 15 with
Theorem 9; this is easy to implement within ALBERTA [50]. At the same time, us-
ing the local equivalence of the above estimators with the residual one, Kreuzer and
Siebert have proved an error reduction property after several adaptive loops [35].

Elliptic PDE on Manifolds. Meckhay, Morin and Nochetto extended this theory to
the Laplace-Beltrami operator [38]. In this case, an additional geometric error due
to piecewise polynomial approximation of the surface must be accounted for.

Discontinuous Galerkin Methods (dG).The convergence results available in the
literature are for theinterior penaltymethod [9, 32, 33]. The simplest contraction
property (97) for a right-hand sidef in the finite element space and the Laplace
operator was first derived by Karakashian and Pascal [33], and later improved by
Hoppe, Kanschat, and Warburton [32] forf ∈ L2 and just one bisection per marked
element. In both cases, the theory is developed ford = 2. The most general re-
sult, valid ford≥ 2, operators with discontinuous variable coefficients, andL2 data,
has been developed by Bonito and Nochetto [9]. The theory in [9] deals with non-
conforming meshes made of quadrilaterals or triangles, or their multidimensional
generalizations, which are natural in the dG context. A key theoretical issue is the
control of the jump term, which is not monotone with refinement [33, 9].

Saddle Point Problems.The contraction properties (97) and (100) rely crucially
on the Pythagoras orthogonality property (92) and does not extend to saddle point
problems. However, a modified AFEM based on an inexact Uzawa iteration and
separate marking was shown to converge by Bänsch, Morin, and Nochetto for the
Stokes equation [6]. The situation is somewhat simpler for mixed FEM for scalar
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second order elliptic PDE, and has been tackled directly ford = 2 by Carstensen and
Hoppe for the lowest order Raviart-Thomas element [13], andby Chen, Holst, and
Xu for any order [18]. They exploit the underlying special structure: the flux error
is L2-orthogonal to the discrete divergence free subspace, whereas the nonvanishing
divergence component of the flux error can be bounded by data oscillation. This is
not valid for the Stokes system, which remains open.

Beyond the Energy Framework.The contraction properties (97) and (100) may
fail also for other norms of practical interest. An example is the maximum norm,
for which there is no convergence result known yet of AFEM. Demlow proved a
contraction property for local energy errors [20], and Demlow and Stevenson [21]
showed a contraction property for theL2 norm provided that the mesh grading is
sufficiently mild.

5.6 Notes

The theory for conforming meshes in dimensiond > 1 started with D̈orfler [24],
who introduced the crucial marking (90), the so-calledDörfler marking, and proved
strict energy error reduction for the Laplacian provided the initial meshT0 satisfies a
fineness assumption. This marking plays an essential role inthe present discussion,
which does not seem to extend to other marking strategies such as those in§4.
Morin, Nochetto, and Siebert [40, 41] showed that such strict energy error reduction
does not hold in general even for the Laplacian. They introduced the concept of data
oscillation and the interior node property, and proved convergence of the AFEM
without restrictions onT0. The latter result, however, is valid only forAAA in (23)
piecewise constant onT0. Inspired by the work of Chen and Feng [17], Mekchay
and Nochetto [37] proved a contraction property for thetotal error, namely the sum
of the energy error plus oscillation forAAA piecewise smooth. The total error will
reappear in the study of convergence rates in§7.

Diening and Kreuzer proved a similar contraction property for the p-Laplacian
replacing the energy norm by a so-called quasi-norm [23]. They were able to avoid
marking for oscillation by using the fact that oscillation is dominated by the es-
timator. Most results for nonlinear problems utilize the equivalence of the energy
error and error in the associated (nonlinear) energy; compare with Problem 42. This
equivalence was first used by Veeser in a convergence analysis for thep-Laplacian
[55] and later on by Siebert and Veeser for the obstacle problem [51].

The result of Diening and Kreuzer inspired the work by Cascón, Kreuzer, No-
chetto, and Siebert [14]. This approach hinges solely on a strict reduction of the
mesh-size within refined elements, the upper a posteriori error bound, an orthogo-
nality property natural for (87) in nested approximation spaces, and D̈orfler mark-
ing. This appears to be the simplest approach currently available.
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5.7 Problems

Problem 41 (Pythagoras).Let V1 ⊂ V2 ⊂ V = H1
0(Ω) be nested, conforming and

closed subspaces. Letu∈ V be the weak solution to (87),U1 ∈ V1 andU2 ∈ V2 the
respective Ritz-Galerkin approximations tou. Prove the orthogonality property

|||u−U1|||2Ω = |||u−U2|||2Ω + |||U2−U1|||2Ω . (104)

Problem 42 (Error in energy). Let V1⊂V2⊂V andU1,U2,u be as in Problem 41.
Recall thatu,U1,U2 are the unique minimizers of the quadratic energy

I [v] := 1
2B[v, v]−〈 f , v〉

in V,V1,V2 respectively. Show that (104) is equivalent to the identity

I [U1]− I [u] = (I [U2]− I [u])+(I [U1]− I [U2]).

To this end prove

I [Ui ]− I [u] = 1
2 |||Ui−u|||2Ω and I [U1]− I [U2] = 1

2 |||U1−U2|||2Ω .

Problem 43 (Inverse estimate).Let S∈ S be an interior side ofT ∈ T , and let
AAA∈ L∞(S). Make use of a scaling argument to the reference element to show

‖AAA∇V‖S . h−1/2
S ‖∇V‖T for all V ∈ V(T ),

where the hidden constant depends on the shape coefficient ofT , the dimensiond,
and‖AAA‖L∞(S).

Problem 44 (Proposition 3). Complete the proof of Proposition 3 upon using
Young inequality

(a+b)2≤ (1+δ )a2 +(1+δ−1)b2 for all a,b∈ R.

Problem 45 (Quasi-local Lipschitz property). Let AAA ∈W1
∞(T) for all T ∈ T .

Prove

|oscT (V,T)−oscT (W,T)|. oscT (AAA,T)‖V−W‖H1(ωT ) for all V,W ∈ V,

where oscT (AAA,T) = hT ‖divAAA−P∞
n−1(divAAA)‖L∞(T) +‖AAA−P∞

n AAA‖L∞(ωT ). Proceed as
in the proof of Lemma 14 and use Problem 28.

Problem 46 (Perturbation). Let T ,T∗ ∈ T, with T ≤ T∗. Use Problem 45 to
prove that, for allV ∈ V(T ) andV∗ ∈ V(T∗), there is a constantΛ1 > 0 such that

osc2T (V,T ∩T∗)≤ 2osc2T∗(V∗,T ∩T∗)+Λ1oscT0(AAA,T0)
2 |||V−V∗|||2Ω .
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6 Complexity of Refinement

This section is devoted to proving Theorem 1 for conforming meshes and Lemma 3
for nonconforming meshes. The results of Sections 6.1 and 6.2 are valid ford = 2
but the proofs of Theorem 1 in Section 6.3 and Lemma 3 in Section 6.4 extend easily
to d > 2. We refer to the survey [45] for a full discussion ford≥ 2.

6.1 Chains and Labeling ford = 2

In order to study nonlocal effects of bisection ford = 2 we introduce now the con-
cept of chain [7]; this concept is not adequate ford > 2 [45, 53]. Recall thatE(T)
denotes the edge ofT assigned for refinement. To eachT ∈ T we associate the
elementF(T) ∈ T sharing the edgeE(T) if E(T) is interior andF(T) = /0 if
E(T) is on ∂Ω . A chain C (T,T ), with starting elementT ∈ T , is a sequence
{T,F(T), . . . ,Fm(T)} with no repetitions of elements and with

Fm+1(T) = Fk(T) for k∈ {0, . . . ,m−1} or Fm+1(T) = /0;

see Figure 18. We observe that if an elementT belongs to two different grids, then
the corresponding chains may be different as well. Two adjacent elementsT,T ′ =

������
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������

������
������
������
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=T

1
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i
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T
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T
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Fig. 18 Typical chainC (T,T ) = {Tj}ij=0 emanating fromT = T0 ∈T with Tj = F(Tj−1), j ≥ 1.

F(T) are compatibly divisible(or equivalentlyT,T ′ form a compatible bisection
patch) if F(T ′) = T. Hence,C (T,T ) = {T,T ′} and a bisection of eitherT or T ′

does not propagate outside the patch.

Example (Chains): LetF = {Ti}12
i=1 be the forest of Figure 3. ThenC (T6,T ) =

{T6,T7},C (T9,T ) = {T9}, and C (T10,T ) = {T10,T8,T2} are chains, but only
C (T6,T ) is a compatible bisection patch.

To study the structure of chains we rely on the initial labeling (6) and the bisec-
tion rule of Section 1.3 (see Figure 5):

every triangle T∈ T with generation g(T) = i receives the label
(i + 1, i + 1, i) with i corresponding to the refinement edge E(T),
its side i is bisected and both new sides as well as the bisector are
labeled i+2 whereas the remaining labels do not change.

(105)
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We first show that once the initial labeling and bisection rule are set, the resulting
master forestF is uniquely determined: the label of an edge is independent of the
elements sharing this edge and no ambiguity arises in the recursion process.

Lemma 16 (Labeling).Let the initial labeling(6) for T0 and above bisection rule
be enforced. IfT0 ≤ T1 ≤ ·· · ≤ Tn are generated according to(105), then each
side inTk has a unique label independent of the two triangles sharing this edge.

Proof. We argue by induction overTk. For k = 0 the assertion is valid due to the
initial labeling. Suppose the statement is true forTk. An edgeS in Tk+1 can be
obtained in two ways. The first is thatS is a bisector, and so a new edge, in which
case there is nothing to prove about its label being unique. The second possibility
is thatSwas obtained by bisecting an edgeS′ ∈Sk. Let T, T ′ ∈Tk be the elements
sharingS′, and let us assume thatE(T ′) = S′. Let (i +1, i +1, i) be the label ofT ′,
which means thatSis assigned the labeli +2. By induction assumption overTk, the
label ofS′ as an edge ofT is alsoi. There are two possible cases for the label ofT:

• Label (i + 1, i + 1, i): this situation is symmetric,E(T) = S′, andS′ is bisected
with both halves getting labeli +2. This is depicted in the figure below.

i+1

i+1

i+1

i+1

i+1

i+1

i+1

i+1

i+2

i+2

i+2

i+2

T

T ’

i

’ = E(TS ’ ) = E(T)

• Label(i, i, i−1): a bisection of sideE(T) with label i−1 creates a childrenT ′′

with label (i + 1, i + 1, i) that is compatibly divisible withT ′. Joining the new
node ofT with the midpoint ofS′ creates a conforming partition with leveli +2
assigned toS. This is depicted in the figure below.
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Therefore, in both cases the labeli +2 assigned toS is the same from both sides, as
asserted. ⊓⊔

The two possible configurations displayed in the two figures above lead readily
to the following statement about generations.

Corollary 5 (Generation of Consecutive Elements).For anyT ∈ T and T, T ′ =
F(T) ∈T we either have:

(a) g(T) = g(T ′) and T, T′ are compatibly divisible, or

(b) g(T ′) = g(T)−1 and T is compatibly divisible with a child of T′.

Corollary 6 (Generations within a Chain). For all T ∈ T and T∈ T , its chain
C (T,T ) = {Tk}mk=0 with Tk = Fk(T) have the property

g(Tk) = g(T)−k 0≤ k≤m−1

and Tm = Fm(T) has generation g(Tm) = g(Tm−1) or it is a boundary element with
lowest labeled edge on∂Ω . In the first case, Tm−1 and Tm are compatibly divisible.

Proof. Apply Corollary 5 repeatly to consecutive elements ofC (T,T ). ⊓⊔

6.2 Recursive Bisection

Given an elementT ∈M to be refined, the routineREFINE RECURSIVE (T ,T)
recursively refines the chainC (T,T ) of T, from the end back toT, and creates a
minimal conforming partitionT∗ ≥T such thatT is bisected once. This procedure
reads as follows:

REFINE RECURSIVE (T ,T)
if g(F(T)) < g(T)

T := REFINE RECURSIVE (T ,F(T));
else

bisect the compatible bisection patchC (T,T );
updateT ;

end if
return (T )

We denote byC∗(T,T ) ⊂ T∗ the recursive refinement ofC (T,T ) (or completion
of C (T,T )) caused by bisection ofT. SinceREFINE RECURSIVE refines solely
compatible bisection patches, intermediate meshes are always conforming.

We refer to Figure 19 for an example of recursive bisectionC∗(T10,T ) of
C (T10,T )= {T10,T8,T2} in Figure 2:REFINE RECURSIVE starts bisecting from
the end ofC (T10,T ), namelyT2, which is a boundary element, and goes back the
chain bisecting elements twice until it gets toT10.

We now establish a fundamental property ofREFINE RECURSIVE (T ,T)
relating the generation of elements withinC∗(T,T ).
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Fig. 19 Recursive refinement ofT10 ∈ T in Figure 2 byREFINE RECURSIVE. This entails
refining the chainC (T10,T ) = {T10,T8,T2}, starting from the last elementT2 ∈ T , which form
alone a compatible bisection patch because its refinement edge ison the boundary, and continuing
with T8 ∈T and finallyT10∈T . Note that the successive meshes are always conforming and that
REFINE RECURSIVE bisects elements inC (T10,T ) twice before getting back toT10.

Lemma 17 (Recursive Refinement).LetT0 satisfy the labeling(6), and letT ∈ T

be a conforming refinement ofT0. A call toREFINE RECURSIVE (T ,T) termi-
nates, for all T∈M , and outputs the smallest conforming refinementT∗ of T such
that T is bisected. In addition, all newly created T′ ∈ C∗(T,T ) satisfy

g(T ′)≤ g(T)+1. (106)

Proof. We first observe thatT has maximal generation withinC (T,T ). So recur-
sion is applied to elements with generation≤ g(T), whence the recursion terminates.
We also note that this procedure creates children ofT and either children or grand-
children of trianglesTk ∈ C (T,T ) = {Ti}mi=0 with k≥ 1. If T ′ is a child ofT there
is nothing to prove. If not, we consider firstm= 1, in which caseT ′ is a child ofT1

becauseT0 andT1 are compatibly divisible and so have the same generation; thus
g(T ′) = g(T1)+ 1 = g(T0)+ 1. Finally, if m> 1, theng(Tk) < g(T) and we apply
Corollary 6 to deduce

g(T ′)≤ g(Tk)+2≤ g(T)+1,

as asserted.⊓⊔

The following crucial lemma links generation and distance betweenT andT ′ ∈
C∗(T,T ), the latter being defined as

dist(T ′,T) := inf
x′∈T ′,x∈T

|x′−x|.

Lemma 18 (Distance and Generation).Let T ∈ M . Any newly created T′ ∈
C∗(T,T ) byREFINE RECURSIVE (T ,T) satisfies

dist(T ′,T)≤ D2
2√

2−1
2−g(T ′)/2, (107)

where D2 > 0 is the constant in(5).
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Proof. SupposeT ′ ⊂ Ti ∈ C (T,T ) have been created by subdividingTi (see Figure
18). If i ≤ 1 then dist(T ′,T) = 0 and there is nothing to prove. Ifi > 1, then we
observe that dist(T ′,Ti−1) = 0, whence

dist(T ′,T)≤ dist(Ti−1,T)+diam(Ti−1)≤
i−1

∑
k=1

diam(Tk)

≤ D2

i−1

∑
k=1

2−g(Tk)/2 < D2
1

1−2−1/2
2−g(Ti−1)/2,

because the generations decrease exactly by 1 along the chain C (T) according to
Corollary 5(b). SinceT ′ is a child or grandchild ofTi , we deduce

g(T ′)≤ g(Ti)+2 = g(Ti−1)+1,

whence

dist(T ′,T) < D2
21/2

1−2−1/2
2−g(T ′)/2.

This is the desired estimate.⊓⊔

The recursive procedureREFINE RECURSIVE is the core of the routine
REFINE of Section 1.3: given a conforming meshT ∈ T and a subsetM ⊂ T

of marked elements,REFINE creates a conforming refinementT∗ ≥T of T such
that all elements ofM are bisected at least once:

REFINE (T ,M )
for all T ∈M ∩T do

T := REFINE RECURSIVE (T ,T);
end
return (T )

It may happen that an elementT ′ ∈M is scheduled prior toT for refinement and
T ∈ C (T ′,T ). Since the callREFINE RECURSIVE (T ,T ′) bisectsT, its two
children replaceT in T . This implies thatT /∈M ∩T , which prevents further
refinement ofT.

In practice, one often likes to bisect selected elements several times, for instance
each marked element is scheduled forb≥ 1 bisections. This can be done by assign-
ing the numberb(T) = b of bisections that have to be executed for each marked
elementT. If T is bisected then we assignb(T)−1 as the number of pending bisec-
tions to its children and the set of marked elements isM := {T ∈T | b(T) > 0}.

6.3 Conforming Meshes: Proof of Theorem 1

Figure 19 reveals that the issue of propagation of mesh refinement to keep confor-
mity is rather delicate. In particular, an estimate of the form
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#Tk−#Tk−1≤Λ#Mk−1

is not valid with a constantΛ independent ofk; in fact the constant can be propor-
tional tok according to Figure 19.

Binev, Dahmen, and DeVore [7] ford = 2 and Stevenson [53] ford > 2 show that
control of the propagation of refinement by bisection is possible when considering
the collective effect:

#Tk−#T0≤Λ0

k−1

∑
j=0

#M j .

This can be heuristically motivated as follows. Consider the setM :=
⋃k−1

j=0M j

used to generate the sequenceT0≤T1≤ ·· · ≤Tk =: T . Suppose that each element
T∗ ∈M is assigned a fixed amountC1 of money to spend on refined elements inT ,
i. e., onT ∈ T \T0. Assume further thatλ (T,T∗) is the portion of money spent by
T∗ onT. Then it must hold

∑
T∈T \T0

λ (T,T∗)≤C1 for all T∗ ∈M . (108a)

In addition, we suppose that the investment of all elements in M is fair in the sense
that eachT ∈T \T0 gets at least a fixed amountC2, whence

∑
T∗∈M

λ (T,T∗)≥C2 for all T ∈T \T0. (108b)

Therefore, summing up (108b) and using the upper bound (108a) we readily obtain

C2(#T −#T0)≤ ∑
T∈T \T0

∑
T∗∈M

λ (T,T∗) = ∑
T∗∈M

∑
T∈T \T0

λ (T,T∗)≤C1#M ,

which proves Theorem 1 forT andM . In the remainder of this section we de-
sign such an allocation functionλ : T ×M → R

+ in several steps and prove that
recurrent refinement by bisection yields (108) providedT0 satisfies (6).

Construction of the Allocation Function. The functionλ (T,T∗) is defined with the
help of two sequences

(
a(ℓ)

)∞
ℓ=−1,

(
b(ℓ)

)∞
ℓ=0⊂ R

+ of positive numbers satisfying

∑
ℓ≥−1

a(ℓ) = A < ∞, ∑
ℓ≥0

2−ℓ/2b(ℓ) = B < ∞, inf
ℓ≥1

b(ℓ)a(ℓ) = c∗ > 0,

andb(0)≥ 1. Valid instances area(ℓ) = (ℓ+2)−2 andb(ℓ) = 2ℓ/3.
With these settings we are prepared to defineλ : T ×M → R

+ by

λ (T,T∗) :=

{
a(g(T∗)−g(T)), dist(T,T∗) < D3B2−g(T)/d andg(T)≤ g(T∗)+1

0, else,
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whereD3 := D2
(
1+2(

√
2−1)−1

)
. Therefore, the investment of money byT∗ ∈M

is restricted to cellsT that are sufficiently close and are of generationg(T) ≤
g(T∗) + 1. Only elements of such generation can be created during refinement of
T∗ according to Lemma 17. We stress that except for the definition of B, this con-
struction is mutidimensional and we refer to [45, 53] for details.

The following lemma shows that the total amount of money spend by the alloca-
tion functionλ (T,T∗) per marked elementT∗ is bounded.

Lemma 19 (Upper Bound).There exists a constant C1 > 0 only depending onT0

such thatλ satisfies(108a), i. e.,

∑
T∈T \T0

λ (T,T∗)≤C1 for all T∗ ∈M .

Proof. 1 GivenT∗ ∈M we setg∗= g(T∗) and we let 0≤ g≤ g∗+1 be a generation
of interest in the definition ofλ . We claim that for suchg the cardinality of the set

T (T∗,g) = {T ∈T | dist(T,T∗) < D3B2−g/2 andg(T) = g}

is uniformly bounded, i. e., #T (T∗,g)≤C with C solely depending onD1,D2,D3,B.
From (5) we learn that diam(T∗) ≤ D22−g∗/2 ≤ 2D22−(g∗+1)/2 ≤ 2D22−g/2 as

well as diam(T) ≤ D22−g/2 for any T ∈ T (T∗,g). Hence, all elements of the set
T (T∗,g) lie inside a ball centered at the barycenter ofT∗ with radius (D3B +
3D2)2−g/2. Again relying on (5) we thus conclude

#T (T∗,g)D12−g≤ ∑
T∈T (T∗,g)

|T| ≤ c(D3B+3D2)
22−g,

whence #T (T∗,g)≤ cD−1
1 (D3B+3D2)

2 =: C.
2 Accounting only for non-zero contributionsλ (T,T∗) we deduce

∑
T∈T \T0

λ (T,T∗) =
g∗+1

∑
g=0

∑
T∈T (T∗,g)

a(g∗−g)≤C
∞

∑
ℓ=−1

a(ℓ) = CA=: C1,

which is the desired upper bound.⊓⊔

The definition ofλ also implies that each refined element receives a fixed amount
of money. We show this next.

Lemma 20 (Lower Bound).There exists a constant C2 > 0 only depending onT0

such thatλ satisfies(108b), i. e.,

∑
T∗∈M

λ (T,T∗)≥C2 for all T ∈T \T0.

Proof. 1 Fix an arbitraryT0 ∈ T \T0. Then there is an iteration count 1≤ k0 ≤ k
such thatT0 ∈ Tk0 and T0 /∈ Tk0−1. Therefore there exists anT1 ∈Mk0−1 ⊂M
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such thatT0 is generated duringREFINE RECURSIVE (Tk0−1,T1). Iterating this
process we construct a sequence{Tj}Jj=1⊂M with corresponding iteration counts

{k j}Jj=1 such thatTj is created byREFINE RECURSIVE (Tk j−1,Tj+1). The se-
quence is finite since the iteration counts are strictly decreasing and thuskJ = 0 for
someJ > 0, or equivalentlyTJ ∈T0.

SinceTj is created during refinement ofTj+1 we infer from (106) that

g(Tj+1)≥ g(Tj)−1.

Accordingly,g(Tj+1) can decrease the previous value ofg(Tj) at most by 1. Since
g(TJ) = 0 there exists a smallest values such thatg(Ts) = g(T0)−1. Note that for
j = 1, . . . ,swe haveλ (T0,Tj) > 0 if dist(T0,Tj)≤ D3Bg−g(T0)/d.
2 We next estimate the distance dist(T0,Tj). For 1≤ j ≤ s andℓ≥ 0 we define the

set
T (T0, ℓ, j) := {T ∈ {T0, . . . ,Tj−1} | g(T) = g(T0)+ ℓ}

and denote bym(ℓ, j) its cardinality. The triangle inequality combined with an in-
duction argument yields

dist(T0,Tj)≤ dist(T0,T1)+diam(T1)+dist(T1,Tj)

≤
j

∑
i=1

dist(Ti−1,Ti)+
j−1

∑
i=1

diam(Ti).

We apply (107) for the terms of the first sum and (5) for the terms of the second sum
to obtain

dist(T0,Tj) < D2
2√

2−1

j

∑
i=1

2−g(Ti−1)/2 +D2

j−1

∑
i=1

2−g(Ti)/2

≤ D2

(
1+

2√
2−1

) j−1

∑
i=0

2−g(Ti)/2

= D3

∞

∑
ℓ=0

m(ℓ, j)2−(g(T0)+ℓ)/2

= D32−g(T0)/2
∞

∑
ℓ=0

m(ℓ, j)2−ℓ/2.

For establishing the lower bound we distinguish two cases depending on the size of
m(ℓ,s). This is done next.

3 Case 1: m(ℓ,s)≤ b(ℓ) for all ℓ≥ 0. From this we conclude

dist(T0,Ts) < D32−g(T0)/2
∞

∑
ℓ=0

b(ℓ)2−ℓ/2 = D3B2−g(T0)/2

and the definition ofλ then readily implies
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∑
T∗∈M

λ (T0,T∗)≥ λ (T0,Ts) = a(g(Ts)−g(T0)) = a(−1) > 0.

4 Case 2:There existsℓ ≥ 0 such thatm(ℓ,s) > b(ℓ). For each of theseℓ’s there
exists a smallestj = j(ℓ) such thatm(ℓ, j(ℓ)) > b(ℓ). We letℓ∗ be the indexℓ that
gives rise to the smallestj(ℓ), and setj∗ = j(ℓ∗). Consequently

m(ℓ, j∗−1)≤ b(ℓ) for all ℓ≥ 0 and m(ℓ∗, j∗) > b(ℓ∗).

As in Case 1 we see dist(T0,Ti) < D3B2−g(T0)/2 for all i ≤ j∗−1, or equivalently

dist(T0,Ti) < D3B2−g(T0)/2 for all Ti ∈T (T0, ℓ, j∗).

We next show that the elements inT (T0, ℓ
∗, j∗) spend enough money onT0. We

first considerℓ∗ = 0 and note thatT0 ∈ T (T0,0, j∗). Sincem(0, j∗) > b(0) ≥ 1 we
discoverj∗ ≥ 2. Hence, there is anTi ∈T (T0,0, j∗)∩M , which yields the estimate

∑
T∗∈M

λ (T0,T∗)≥ λ (T0,Ti) = a(g(Ti)−g(T0)) = a(0) > 0.

Forℓ∗> 0 we see thatT0 6∈T (T0, ℓ
∗, j∗), whenceT (T0, ℓ

∗, j∗)⊂M . In addition,
λ (T0,Ti) = a(ℓ∗) for all Ti ∈T (T0, ℓ

∗, j∗). From this we conclude

∑
T∗∈M

λ (T0,T∗)≥ ∑
T∗∈T (T0,ℓ∗, j∗)

λ (T0,T∗) = m(ℓ∗, j∗)a(ℓ∗)

> b(ℓ∗)a(ℓ∗)≥ inf
ℓ≥1

b(ℓ)a(ℓ) = c∗ > 0.

5 In summary we have proved the assertion since for anyT0 ∈T \T0

∑
T∗∈M

λ (T0,T∗)≥min{a(−1),a(0),c∗}=: C2 > 0. ⊓⊔

Remark 11 (Complexity with b> 1 Bisections).To show the complexity estimate
whenREFINE performsb > 1 bisections, the setMk is to be understood as a se-
quence ofsinglebisections recorded in sets{Mk( j)}bj=1, which belong to interme-

diate triangulations betweenTk andTk+1 with #Mk( j) ≤ 2 j−1#Mk, j = 1, . . . ,b.
Then we also obtain Theorem 1 because

b

∑
j=1

#Mk( j)≤
b

∑
j=1

2 j−1#Mk = (2b−1)#Mk.

In practice, it is customary to takeb = d [50].
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6.4 Nonconforming Meshes: Proof of Lemma 3

We now examine briefly the refinement process for quadrilaterals with one hanging
node per edge, which gives rise to the so-called1-meshes. The refinement ofT ∈T

might affect four elements ofT for d = 2 (or 2d elements for any dimensiond≥ 2),
all contained in therefinement patch R(T,T ) of T in T . The latter is defined as

R(T,T ) := {T ′ ∈T | T ′ andT share an edge andg(T ′)≤ g(T)},

and is calledcompatibleprovidedg(T ′) = g(T) for all T ′ ∈R(T,T ). The generation
gap between elements sharing an edge, in particular those inR(T,T ), is always≤ 1
for 1-meshes, and is 0 ifR(T,T ) is compatible. The element size satisfies

hT = 2−g(T)hT0 ∀T ∈T

whereT0 ∈T0 is the ancestor ofT in the initial meshT0. Lemma 2 is thus valid

hT < h̄T ≤ D22−g(T) ∀T ∈T . (109)

Given an elementT ∈M to be refined, the routineREFINE RECURSIVE (T ,T)
refines recursivelyR(T,T ) in such a way that the intermediate meshes are always
1-meshes, and reads as follows:

REFINE RECURSIVE (T ,T)
if g = min{g(T ′′) : T ′′ ∈ R(T,T }< g(T)

let T ′ ∈ R(T,T ) satisfyg(T ′) = g
T := REFINE RECURSIVE (T ,T ′);

else
subdivideT;
updateT upon replacingT by its children;

end if
return (T )

The conditional prevents the generation gap withinR(T,T ) from getting larger
than 1. If it fails, then the refinement patchR(T,T ) is compatible and refinining
T increases the generation gap from 0 to 1 without violating the 1-mesh structure.
This implies Lemma 17: for all newly created elementsT ′ ∈T∗

g(T ′)≤ g(T)+1. (110)

In addition,REFINE RECURSIVE (T ,T) creates a minimal 1-meshT∗ ≥ T

refinement ofT so thatT is subdivided onlyonce. This yields Lemma 18: there
exist a geometric constantD > 0 such that for all newly created elementsT ′ ∈T∗

dist(T,T ′)≤ D2g(T ′). (111)
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The procedureREFINE RECURSIVE is the core ofREFINE, which is con-
ceptually identical to that in Section 6.2. Suppose that each marked elementT ∈M

is to be subdividedρ ≥ 1 times. We assign a flagq(T) to each elementT which
is initialized q(T) = ρ if T ∈M andq(T) = 0 otherwise. The marked setM is
then the set of elementsT with q(T) > 0, and every timeT is subdivided it is re-
moved fromT and replaced by its children, which inherit the flagq(T)−1. This
avoids the conflict of subdividing again an element that has been previously refined
by REFINE RECURSIVE. The procedureREFINE (T ,M ) reads

REFINE (T ,M )
for all T ∈M ∩T do

T := REFINE RECURSIVE (T ,T);
end
return (T )

and its output is a minimal 1-meshT∗ ≥ T , refinement ofT , so that all marked
elements ofM are refined at leastρ times. SinceT∗ has one hanging node per side
it is thus admissible in the sense (22). However, the refinement may spread outside
M and the issue of complexity ofREFINE again becomes non-trivial.

With the above ingredients in place, the proof of Lemma 3 follows along the lines
of Section 6.3; see Problem 50.

6.5 Notes

The complexity theory for bisection hinges on the initial labeling (6) ford = 2. That
such a labeling exists is due to Mitchell [39, Theorem 2.9] and Binev, Dahmen, and
DeVore [7, Lemma 2.1], but the proofs are not constructive. Acouple of global bi-
sections ofT0, as depicted in Figure 6, guarantee (6) over the ensuing mesh. For
d > 2 the corresponding initial labeling is due to Stevenson [53, Section 4 - Condi-
tion (b)], who in turn improves upon Maubach [36] and Traxler[54] and shows how
to impose it upon further refining each element ofT0. We refer to the survey [45] for
a discussion of this condition: a key consequence is that every uniform refinement
of T0 gives a conforming bisection mesh.

The fundamental properties of chains, especially Lemmas 17and 18, along with
the clever ideas of Section 6.3 are due to Binev, Dahmen, and DeVore [7] ford = 2,
and Stevenson ford > 2; see [45]. Bonito and Nochetto [9] observed, in the context
of dG methods, that such properties extend to admissible nonconforming meshes.

6.6 Problems

Problem 47 (Largest number of bisections).Show thatREFINE RECURSIVE
(T ,T) for d = 2 bisectsT exactly once and all the elements in the chainC (T,T ) at
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most twice. This property extends tod > 2 provided the initial labeling of Stevenson
[53, Section 4 - Condition (b)] is enforced.

Problem 48 (Properties of generation for quad-refinement).Prove (110) and
(111).

Problem 49 (Largest number of subdivisions for quads).Show that the proce-
dureREFINE RECURSIVE (T ,T) subdividesT exactly once and never subdi-
vides any other quadrilateral ofT more than once.

Problem 50 (Lemma 3).Combine (110) and (111) to prove Lemma 3 for anyρ ≥1.



82 R. H. Nochetto and A. Veeser

7 Convergence Rates

We have already realized in§1.6 that we can a priori accommodate the degrees of
freedom in such a way that the finite element approximation retains optimal energy
error decay for a class of singular functions. This presumesknowledge of the exact
solution u. At the same time, we have seen numerical evidence in§5.4 that the
standard AFEM of§5.1, achieves such a performance without direct access to the
exact solutionu. Practical experience strongly suggests that this is even true for
a much larger class of problems and adaptive methods. The challenge ahead is to
reconcile these two distinct aspects of AFEM.

A crucial insight in such a connection for the simplest scenario, the Laplacian
and piecewise constant forcingf , is due to Stevenson [52]:

any marking strategy that reduces the energy error relativeto the cur-
rent value must contain a substantial portion ofET (U), and so it can
be related to D̈orfler Marking.

(112)

This allows one to compare meshes produced by AFEM with optimal ones and to
conclude a quasi-optimal error decay. We discuss this issuein §7.3. However, this is
not enough to handle the model problem (87) with variableAAA and f .

The objective of this section is to study (87) for general dataAAA and f . This study
hinges on the total error and its relation with the quasi error, which is contracted
by AFEM. This approach allows us to improve upon and extend Stevenson [52]
to variable data. In doing so, we follow closely Cascón, Kreuzer, Nochetto, and
Siebert [14]. The present theory, however, does not extend to noncoercive problems
and marking strategies other than Dörfler’s. These remain important open questions.

As in §5, u will always be the weak solution of (87) and, except when stated
otherwise, any explicit constant or hidden constant in. may depend on the uniform
shape-regularity ofT, the dimensiond, the polynomial degreen, the (global) eigen-
values ofAAA, and the oscillation oscT0(AAA) of AAA on the initial meshT0, but not on a
specific gridT ∈ T.

7.1 The Total Error

We first introduce the concept oftotal error for the Galerkin functionU ∈ V(T )

|||u−U |||2Ω +osc2T (U), (113)

(see Mekchay and Nochetto [37]), and next assert its equivalence to the quasi error
(99). In fact, in view of the upper and lower a posteriori error bounds (94), and

osc2T (U)≤ E
2
T (U),

we have
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C2E
2
T (U)≤ |||u−U |||2Ω +osc2T (U)

≤ |||u−U |||2Ω +E
2
T (U)≤ (1+C1)E

2
T (U),

whence
E

2
T (U)≈ |||u−U |||2Ω +osc2T (U). (114)

Since AFEM selects elements for refinement based on information extracted exclu-
sively from the error indicators{ET (U,T)}T∈T , we realize that the decay rate of
AFEM must be characterized by the total error. Moreover, on invoking the upper
bound (94a) again, we also see that the total error is equivalent to the quasi error

|||u−U |||2Ω +osc2T (U)≈ |||u−U |||2Ω +E
2
T (U).

The latter is the quantity being strictly reduced by AFEM (Theorem 9). Finally, the
total error satisfies the following Cea’s type-lemma, or equivalently AFEM is quasi-
optimal regarding the total error. In fact, if the oscillation vanishes, then this is Cea’s
Lemma stated in Theorem 4; see also Problem 12.

Lemma 21 (Quasi-optimality of total error). There exists an explicit constantΛ2,
which depends on AAA T0, n and d, such that for anyT ∈ T and the corresponding
Galerkin solution U∈ V(T ) there holds

|||u−U |||2Ω +osc2T (U)≤Λ2 inf
V∈V(T )

(
|||u−V|||2Ω +osc2T (V)

)
.

Proof. For ε > 0 chooseVε ∈ V(T ), with

|||u−Vε |||2Ω +osc2T (Vε)≤ (1+ ε) inf
V∈V(T )

(
|||u−V|||2Ω +osc2T (V)

)
.

Applying Problem 46 withT∗ = T , V = U , andV∗ = Vε yields

osc2T (U)≤ 2 osc2T (Vε)+C3 |||U−Vε |||2Ω ,

with
C3 := Λ1oscT0(AAA)2.

SinceU ∈V(T ) is the Galerkin solution,U−Vε ∈V(T ) is orthogonal tou−U in
the energy norm, whence|||u−U |||2Ω + |||U−Vε |||2Ω = |||u−Vε |||2Ω and

|||u−U |||2Ω +osc2T (U)≤
(
1+C3

)
|||u−Vε |||2Ω +2 osc2T (Vε)

≤ (1+ ε)Λ2 inf
V∈V(T )

(
|||u−U |||2Ω +osc2T (V)

)
,

with Λ2 = max
{

2,1+C3
}

. The assertion follows upon takingε → 0. ⊓⊔
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7.2 Approximation Classes

In view of (114) and Lemma 21, the definition of approximationclassAs hinges on
the concept of best total error:

inf
V∈V(T )

(
|||u−V|||2Ω +osc2T (V)

)
.

We first letTN ⊂ T be the set of all possible conforming refinements ofT0 with at
mostN elements more thanT0, i. e.,

TN = {T ∈ T | #T −#T0≤ N}.

The quality of the best approximation inTN with respect to the total error is char-
acterized by

σ(N;u, f ,AAA) := inf
T ∈TN

inf
V∈V(T )

(
|||u−V|||2Ω +osc2T (V)

)1/2
,

and the approximation classAs for s> 0 is defined by

As :=
{

(v, f ,AAA) | |v, f ,AAA|s := sup
N>0

(
Nsσ(N;v, f ,AAA)

)
< ∞

}
.

Therefore, if(v, f ,AAA)∈As, thenσ(N;v, f ,AAA) . N−s decays with rateN−s. We point
out the upper bounds≤ n/d for polynomial degreen≥ 1; this can be seen with full
regularity and uniform refinement (see (14)). Note that if(v, f ,AAA) ∈ As then for all
ε > 0 there existTε ≥T0 conforming andVε ∈ V(Tε) such that (see Problem 51)

|||v−Vε |||2Ω +osc2Tε (Vε)≤ ε2 and #Tε −#T0≤ |v, f ,AAA|1/s
s ε−1/s. (115)

In addition, thanks to Lemma 21, the solutionu with data( f ,AAA) satisfies

σ(N;u, f ,AAA)≈ inf
T ∈TN

{
ET (U,T ) |U = SOLVE(V(T ))

}
. (116)

This establishes a direct connection betweenAs and AFEM.

Mesh Overlay. For the subsequent discussion it will be convenient to mergetwo
conforming meshesT1,T2 ∈ T. Given the corresponding forestsF1,F2 ∈ F we
consider the setF1∪F2 ∈ F, which satisfiesT0 ⊂F1∪F2. ThenF1∪F2 is a
forest and its leaves are called theoverlayof F1 andF2:

T1⊕T2 = T (F1∪F2).

We next bound the cardinality ofT1⊕T2 in terms of that ofT1 andT2; see [14, 52].

Lemma 22 (Overlay).The overlayT = T1⊕T2 is conforming and

#T ≤ #T1 +#T2−#T0. (117)
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Proof. See Problem 52.⊓⊔

Discussion ofAs. We now would like to show a few examples of membership inAs

and highlight some important open questions. We first investigate the classAs for
piecewise polynomial coefficient matrixAAA of degree≤ n overT0. In this simplified
scenario, the oscillation oscT (U) reduces todata oscillation(see (58) and (93)):

oscT (U) = oscT ( f ) := ‖h( f −P2n−2 f )‖L2(Ω).

We then have the following characterization ofAs in terms of the standard approxi-
mation classes [7, 8, 52]:

As :=
{

v∈ V | |v|
As

:= sup
N>0

(
Ns inf

T ∈TN
inf

V∈V(T )
|||v−V|||Ω

)
< ∞

}
,

¯As :=
{

g∈ L2(Ω) | |g| ¯As
:= sup

N>0

(
Ns inf

T ∈TN
oscT (g)

)
< ∞

}
.

Lemma 23 (Equivalence of classes).Let AAA be piecewise polynomial of degree≤ n
overT0. Then(u, f ,AAA) ∈ As if and only if(u, f ) ∈As× ¯As and

|u, f ,AAA|s≈ |u|As
+ | f | ¯As

. (118)

Proof. It is obvious that(u, f ,AAA)∈As implies(u, f )∈As× ¯As as well as the bound
|u|

As
+ | f | ¯As

. |u, f ,AAA|s.
In order to prove the reverse inequality, let(u, f ) ∈ As× ¯As. Then there exist

T1,T2 ∈ TN so that
∣∣∣∣∣∣u−UT1

∣∣∣∣∣∣
Ω ≤ |u|As

N−s whereUT1 ∈ V(T1) is the best ap-
proximation and oscT2( f ,T2)≤ | f | ¯As

N−s.
The overlayT = T1⊕T2 ∈ T2N according to (117), and

|||u−UT |||Ω +oscT ( f )≤
∣∣∣∣∣∣u−UT1

∣∣∣∣∣∣
Ω +oscT2( f )≤ 2s( |u|

As
+ | f | ¯As

)
(2N)−s.

This yields(u, f ,AAA) ∈ As together with the bound|u, f ,AAA|s . |u|
As

+ | f | ¯As
. ⊓⊔

Corollary 7 (Membership in A1/2 with piecewise linear AAA). Let d = 2, n = 1,
and u∈ H1

0(Ω) be the solution of the model problem with piecewise linear AAA and
f ∈ L2(Ω). If u ∈W2

p (Ω ;T0) is piecewise W2
p over the initial gridT0 and p> 1,

then(u, f ,AAA) ∈ A1/2 and

|u, f ,AAA|1/2 . ‖D2u‖Lp(Ω ;T0) +‖ f‖L2(Ω). (119)

Proof. Since f ∈ L2(Ω), we realize that for all uniform refinementsT ∈T we have

oscT ( f ) = ‖h( f −P0 f )‖L2(Ω) ≤ hmax(T )‖ f‖L2(Ω) . (#T )−1/2‖ f‖L2(Ω),

This implies f ∈ ¯A1/2 with | f | ¯A1/2
. ‖ f‖L2(Ω). Moreover, foru ∈ W2

p (Ω ;T0)

we learn from Corollary 2 and Remark 6 of§1.6 thatu ∈ A1/2 and |u|
A1/2

.

‖D2u‖L2(Ω ;T0)
. The assertion then follows from Lemma 23.⊓⊔
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Corollary 8 (Membership in A1/2 with variable AAA). Let d= 2, n= 1, p> 1, f ∈
L2(Ω). Let AAA∈W1

∞(Ω ,T0) be piecewise Lipschitz and u∈W2
p (Ω ;T0)∩H1

0(Ω) be
piecewise W2

p over the initial meshT0. Then(u, f ,AAA) ∈ A1/2 and

|u, f ,AAA|1/2 . ‖D2u‖Lp(Ω ;T0) +‖ f‖L2(Ω) +‖AAA‖W1
∞(Ω ;T0)

. (120)

Proof. Combine Problem 55 with Corollary 2.⊓⊔

Corollary 9 (Membership in As with s< 1/d). Let d≥ 2, n= 1, 1< t < 2, p> 1,
and f ∈ L2(Ω). Let AAA ∈W1

∞(Ω ,T0) be piecewise Lipschitz and u∈Wt
p(Ω ;T0)∩

H1
0(Ω) be piecewise Wtp over the initial meshT0 with t− d

p > 1− d
2 . Then(u, f ,AAA)∈

A(t−1)/d and

|u, f ,AAA|(t−1)/d . ‖Dtu‖Lp(Ω ;T0) +‖ f‖L2(Ω) +‖AAA‖W1
∞(Ω ;T0)

. (121)

Proof. Combine Problem 9 with Problem 55.⊓⊔

Example 2 (Pre-asymptotics).Corollary 7 shows that oscillation decays with rate
1/2 for f ∈ L2(Ω). Since the decay rate of the total error iss≤ 1/2, oscilla-
tion can be ignored asymptotically; this is verified in Problems 56, 57, and 58.
However, oscillation may dominate the total error, or equivalently the classAs

may fail to describe the behavior of|||u−Uk|||Ω , in the early stages of adaptiv-
ity. In fact, we recall from Problem 32 that the discrete solution Uk = 0, and
|||u−Uk|||Ω ≈ 2−K is constant for as many stepsk ≤ K as desired. In contrast,
Ek(Uk) = osck(Uk) = ‖h( f − f̄ )‖L2(Ω) = ‖h f‖L2(Ω) reduces strictly fork≤ K but
overestimates|||u−Uk|||Ω . The fact that the preasymptotic regimek≤ K for the en-
ergy error could be made arbitrarily long would be problematic if we were to focus
exclusively on|||u−Uk|||Ω .
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Fig. 20 Decay of the energy error (left) and the estimator (right) for the smooth solutionuS of
(122) with frequenciesκ = 5,10, and 15. The energy error exhibits a frequency-dependentplateau
in the preasymptotic regime and later an optimal decay. This behavior is allowed byAs.

In practice, this effect is typically less dramatic becausef is not orthogonal to
V(Tk). Figure 20 displays the behavior of the AFEM for the smooth solution uS

uS(x,y) = 10−2a−1
i (x2 +y2)sin2(κπx)sin2(κπy), 1≤ i ≤ 4, (122)
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of the model problem (87) with discontinuous coefficients{ai}4i=1 in checkerboard
pattern as in§5.4 and frequenciesκ = 5,10, and 15. We can see that the error ex-
hibits a frequency-dependent plateau in the preasymptoticregime and later an op-
timal decay. In contrast, the estimator decays always with the optimal rate. Since
all decisions of the AFEM are based on the estimator, this behavior has to be ex-
pected and is consistent with our notion of approximation classAs, which can be
characterized just by the estimator according to (116).

7.3 Quasi-Optimal Cardinality: Vanishing Oscillation

In this section we follow the ideas of Stevenson [52] for the simplest scenario with
vanishing oscillation oscT (U) = 0, and thereby explore the insight (112). We recall
that in this case the a posteriori error estimates (94) become

C2E
2
T (U)≤ |||u−U |||2Ω ≤C1E

2
T (U). (123)

It is then evident that the ratioC2/C1 ≤ 1, between thereliability constantC1 and
theefficiencyconstantC2, is a quality measure of the estimatiorET (U): the closer
to 1 the better! This ratio is usually closer to 1 for non-residual estimators, such as
those discussed in§5.5, but their theory is a bit more cumbersome.

Assumptions for Optimal Decay Rate.The following are further restrictions on
AFEM to achieve optimal error decay, as predicted by the approximation classAs.

Assumption 1 (Marking parameter: vanishing oscillation). The parameterθ of
Dörfler marking satisfiesθ ∈ (0,θ∗) with

θ∗ :=

√
C2

C1
(124)

Assumption 2 (Cardinality of M ). MARK selects a setM with minimal cardi-
nality.

Assumption 3 (Initial labeling). The labeling of the initial meshT0 satisfies(6) for
d = 2 or its multimensional counterpart for d> 2 [52, 45].

A few comments about these assumptions are now in order.

Remark 12 (Thresholdθ∗ < 1). It is reasonable to be cautious in making marking
decisions if the constantsC1 andC2 are very disparate, and thus the ratioC2/C1 is
far from 1. This justifies the upper boundθ∗ ≤ 1 in Assumption 1.

Remark 13 (MinimalM ). According to the equidistribution principle (16) and the
local lower bound (68) without oscillation, it is natural tomark elements with largest
error indicators. This leads to a minimal setM , as stated in Assumption 2, and turns
out to be crucial to link AFEM with optimal meshes and approximation classes.
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Remark 14 (Initial triangulation).Assumption 3 guarantees the complexity estimate
of moduleREFINE stated in Theorem 1 and proved in§6.3:

#Tk−#T0≤Λ0

k−1

∑
j=0

#M j .

Assumption 3 is rather restrictive for dimensiond > 2. Any other refinement giving
the same complexity estimate can replaceREFINE together with Assumption 3.

Even though we cannot expect local upper bounds between the continuous and
discrete solution, the following crucial result shows thatthis is not the case between
discrete solutions on nested meshesT∗ ≥T : what matters is the set of elements of
T which are no longer inT∗.

Lemma 24 (Localized upper bound).Let T ,T∗ ∈ T satisfy T∗ ≥ T and let
R := RT→T∗ be the refined set. If U∈V, U∗ ∈ V∗ are the corresponding Galerkin
solutions, then

|||U∗−U |||2Ω ≤C1E
2
T (U,R). (125)

Proof. See Problem 53.⊓⊔

We are now ready to explore Stevenson’s insight (112) for thesimplest scenario.

Lemma 25 (Dörfler marking: vanishing oscillation). Let θ satisfy Assumption 1
and setµ := 1−θ 2/θ 2

∗ > 0. LetT∗ ≥ T and the corresponding Galerkin solution
U∗ ∈ V(T∗) satisfy

|||u−U∗|||2Ω ≤ µ |||u−U |||2Ω . (126)

Then the refined setR = RT→T∗ satisfies the D̈orfler property

ET (U,R)≥ θ ET (U,T ). (127)

Proof. Sinceµ < 1 we use the lower bound in (123), in conjunction with (126) and
Pythagoras equality (92), to derive

(1−µ)C2E
2
T (U,T )≤ (1−µ) |||u−U |||2Ω

≤ |||u−U |||2Ω −|||u−U∗|||2Ω = |||U−U∗|||2Ω .

In view of Lemma 24, we thus deduce

(1−µ)C2E
2
T (U,T )≤C1E

2
T (U,R),

which is the assertion in disguise.⊓⊔

To examine the cardinality ofMk in terms of|||u−Uk|||Ω we must relate AFEM
with the approximation classAs. Even though this might appear like an undoable
task, the key to unravel this connection is given by Lemma 25.We show this now.
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Lemma 26 (Cardinality of Mk). Let Assumptions 1 and 2 hold. If u∈As then

#Mk . |u|1/s
s |||u−Uk|||−1/s

Ω ∀k≥ 0. (128)

Proof. We invoke thatu∈ As, together with Problem 51 withε2 = µ |||u−Uk|||2Ω ,
to find a meshTε ∈ T and the Galerkin solutionUε ∈ V(Tε) so that

|||u−Uε |||2Ω ≤ ε2, #Tε −#T0 . |u|
1
s
s ε−

1
s .

SinceTε may be totally unrelated toTk, we introduce the overlayT∗ = Tε ⊕Tk.
We exploit the propertyT∗ ≥Tε to conclude that the Galerkin solutionU∗ ∈V(T∗)
satisfies (127):

|||u−U∗|||2Ω ≤ |||u−Uε |||2Ω ≤ ε2 = µ |||u−U |||2Ω .

Therefore, Lemma 25 implies that the refined setR = RT→T∗ satisfies a D̈orfler
marking with parameterθ < θ∗. But MARK delivers a minimal setMk with this
property, according to Assumption 2, whence

#Mk ≤ #R ≤ #T∗−#Tk ≤ #Tε −#T0 . |u|
1
s
s ε−

1
s ,

where we use Lemma 22 to account for the overlay. The proof is complete. ⊓⊔

Proposition 4 (Quasi-optimality: vanishing oscillation). Let Assumptions 1, 2,
and 3 hold. If u∈ As, then AFEM gives rise to a sequence(Tk,Vk,Uk)

∞
k=0 such

that
|||u−Uk|||Ω . |u|s(#Tk−#T0)

−s ∀k≥ 1.

Proof. We make use of Assumption 3, along with Theorem 1, to infer that

#Tk−#T0≤Λ0

k−1

∑
j=0

#M j . |u|
1
s
s

k−1

∑
j=0

∣∣∣∣∣∣u−U j
∣∣∣∣∣∣− 1

s
Ω .

We now use the contraction property (97) of Lemma 15

|||u−Uk|||Ω ≤ αk− j
∣∣∣∣∣∣u−U j

∣∣∣∣∣∣
Ω

to replace the sum above by

k−1

∑
j=0

∣∣∣∣∣∣u−U j
∣∣∣∣∣∣− 1

s
Ω ≤ |||u−Uk|||

− 1
s

Ω

k−1

∑
j=0

α
k− j

s <
α 1

s

1−α
1
s

|||u−Uk|||
− 1

s
Ω ,

becauseα < 1 and the series is summable. This completes the proof.⊓⊔
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7.4 Quasi-Optimal Cardinality: General Data

In this section we remove the restriction oscT (U) = 0, and thereby make use of the
basic ingredients developed in§7.1 and§7.2. Therefore, we replace the energy error
by the total error and the linear approximation classAs for u by the nonlinear class
As for the triple(u, f ,AAA). To account for the presence of generalf andAAA, we need
to make an even more stringent assumption on the thresholdθ∗.

Assumption 4 (Marking parameter: general data).Let C3 = Λ1osc2
T0

(AAA) be the
constant in Problem 46 and Lemma 21. The marking parameterθ satisfiesθ ∈
(0,θ∗) with

θ∗ =

√
C2

1+C1(1+C3)
. (129)

We now proceed along the same lines as those of§7.3.

Lemma 27 (Dörfler marking: general data). Let Assumption 4 hold and setµ :=
1
2(1− θ2

θ2∗
) > 0. If T∗ ≥ T and the corresponding Galerkin solution U∗ ∈ V(T∗)

satisfy
|||u−U∗|||2Ω +osc2T∗(U∗)≤ µ

(
|||u−U |||2Ω +osc2T (U)

)
, (130)

then the refined setR = RT→T∗ satisfies the D̈orfler property

ET (U,R)≥ θ ET (U,T ). (131)

Proof. We split the proof into four steps.
1 In view of the global lower bound (94b)

C2E
2
T (U)≤ |||u−U |||2Ω +osc2T (U)

and (130), we can write

(1−2µ)C2E
2
T (U)≤ (1−2µ)

(
|||u−U |||2Ω +osc2T (U)

)

≤
(
|||u−U |||2Ω −2|||u−U∗|||2Ω

)
+
(

osc2T (U)−2osc2T∗(U∗)
)
.

2 Combining the Pythagoras orthogonality relation (92)

|||u−U |||2Ω −|||u−U∗|||2Ω = |||U−U∗|||2Ω .

with the localized upper bound Lemma 24 yields

|||u−U |||2Ω −2|||u−U∗|||2Ω ≤ |||U−U∗|||2Ω ≤C1E
2
T (U,R).

3 To deal with oscillation we decompose the elements ofT into two disjoint sets:
R andT \R. In the former case, we have

osc2T (U,R)−2osc2T∗(U∗,R)≤ osc2T (U,R)≤ E
2
T (U,R),
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because oscT (U,T) ≤ ET (U,T) for all T ∈ T . On the other hand, we use that
T \R = T ∩T∗ and apply Problem 46 in conjunction with Lemma 24 to arrive at

osc2T (U,T \R)−2osc2T∗(U∗,T \R)≤C3 |||U−U∗|||2Ω ≤C1C3E
2
T (U,R).

Adding these two estimates gives

osc2T (U)−2osc2T∗(U∗)≤ (1+C1C3)E
2
T (U,R).

4 Returning to 1 we realize that

(1−2µ)C2E
2
T (U,T )≤

(
1+C1(1+C3)

)
E

2
T (U,R),

which is the asserted estimate (131) in disguise.⊓⊔

Lemma 28 (Cardinality of Mk: general data).Let Assumptions 2 and 4 hold. If
(u, f ,AAA) ∈ As, then

#Mk . |u, f ,AAA|1/s
s
(
|||u−Uk|||Ω +osck(Uk)

)−1/s ∀k≥ 0. (132)

Proof. We split the proof into three steps.
1 We setε2 := µΛ−1

2

(
|||u−Uk|||2Ω + osc2k(Uk)

)
with µ = 1

2

(
1− θ2

θ2∗

)
> 0 as in

Lemma 27 andΛ2 given Lemma 21. Since(u, f ,AAA) ∈ As, in view of Problem 51
there existsTε ∈ T andUε ∈ V(Tε) such that

|||u−Uε |||2Ω +osc2ε(Uε)≤ ε2 and #Tε −#T0 . |u, f ,AAA|1/2
s ε−1/s.

SinceTε may be totally unrelated toTk we introduce the overlayT∗ = Tk⊕Tε .
2 We claim that the total error overT∗ reduces by a factorµ relative to that one

overTk. In fact, sinceT∗ ≥Tε and soV(T∗)⊃V(Tε), we use Lemma 21 to obtain

|||u−U∗|||2Ω +osc2T∗(U∗)≤Λ2

(
|||u−Uε |||2Ω +osc2ε(Uε)

)

≤Λ2ε2 = µ
(
|||u−Uk|||2Ω +osc2k(Uk)

)
.

Upon applying Lemma 27 we conclude that the setR = RTk→T∗ of refined elements
satisfies a D̈orfler marking (131) with parameterθ < θ∗.

3 According to Assumption 2,MARK selects a minimal setMk satisfying this
property. Therefore, we deduce

#Mk ≤ #R ≤ #T∗−#Tk ≤ #Tε −#T0 . |u, f ,AAA|1/s
s ε−1/s,

where we have employed Lemma 22 to account for the cardinality of the overlay.
Finally, recalling the definition ofε we end up with the asserted estimate (132).⊓⊔

Remark 15 (Blow-up of constant).The constant hidden in (132) blows up asθ ↑ θ∗
becauseµ ↓ 0; see Problem 54.
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We are ready to prove the main result of this section, which combines Theorem
9 and Lemma 28.

Theorem 10 (Quasi-optimality: general data).Let Assumptions 2, 3 and 4 hold.
If (u, f ,AAA) ∈ As, then AFEM gives rise to a sequence(Tk,Vk,Uk)

∞
k=0 such that

|||u−Uk|||Ω +osck(Uk) . |u, f ,AAA|s(#Tk−#T0)
−s ∀k≥ 1.

Proof. 1 Since no confusion arises, we use the notation oscj = oscj(U j) andE j =
E j(U j). In light of Assumption 3, which yields Theorem 1, and (132) we have

#Tk−#T0 .
k−1

∑
j=0

#M j . |u, f ,AAA|1/s
s

k−1

∑
j=0

(∣∣∣∣∣∣u−U j
∣∣∣∣∣∣2

Ω +osc2j
)−1/(2s)

.

2 Let γ > 0 be the scaling factor in the (contraction) Theorem 9. The lower bound
(94b) along with oscj ≤ E j implies

∣∣∣∣∣∣u−U j
∣∣∣∣∣∣2

Ω + γ osc2j ≤
∣∣∣∣∣∣u−U j

∣∣∣∣∣∣2
Ω + γ E

2
j ≤

(
1+

γ
C2

)(∣∣∣∣∣∣u−U j
∣∣∣∣∣∣2

Ω +osc2j
)
.

3 Theorem 9 yields for 0≤ j < k

|||u−Uk|||2Ω + γ E
2
k ≤ α2(k− j) (∣∣∣∣∣∣u−U j

∣∣∣∣∣∣2
Ω + γ E

2
j

)
,

whence

#Tk−#T0 . |u, f ,AAA|1/s
s
(
|||u−Uk|||2Ω + γ E

2
k

)−1/(2s)
k−1

∑
j=0

α(k− j)/s.

Since∑k−1
j=0 α(k− j)/s = ∑k

j=1 α j/s < ∑∞
j=1 α j/s < ∞ becauseα < 1, the assertion fol-

lows immediately. ⊓⊔
We conclude this section with several applications of Theorem 10.

Corollary 10 (Estimator decay). Let Assumptions 2,, 3 and 4 be satisfied. If
(u, f ,AAA) ∈ As then the estimatorEk(Uk) satisfies

Ek(Uk) . |u, f ,AAA|1/s
s (#Tk−#T0)

−s ∀k≥ 1.

Proof. Use (114) and Theorem 10.⊓⊔
Corollary 11 (W2

p -regularity with piecewise linear AAA). Let d = 2, the polyno-
mial degree n= 1, f ∈ L2(Ω), and let AAA be piecewise linear overT0. If u ∈
W2

p (Ω ;T0) for p > 1, then AFEM gives rise to a sequence{Tk,Vk,Uk}∞
k=0 sat-

isfyingosck(Uk) = ‖hk( f −P0 f )‖L2(Ω) and for all k≥ 1

|||u−Uk|||Ω +osck(Uk) .
(
‖D2u‖Lp(Ω ;T0) +‖ f‖L2(Ω)

)
(#Tk−#T0)

−1/2.
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Proof. Combine Corollary 7 with Theorem 10.⊓⊔

Corollary 12 (W2
p -regularity with variable AAA). Assume the setting of Corollary 11,

but let AAA be piecewise Lipschitz over the initial gridT0. Then AFEM gives rise to a
sequence{Tk,Vk,Uk}∞

k=0 satisfying for all k≥ 1

|||u−Uk|||Ω +osck(Uk)

.
(
‖D2u‖Lp(Ω ;T0) +‖ f‖L2(Ω) +‖AAA‖W1

∞(Ω ;T0)

)
(#Tk−#T0)

−1/2.

Proof. Combine Corollary 8 with Theorem 10.⊓⊔

Corollary 13 (Ws
p-regularity with s < 1/d). Let d≥ 2, n = 1, 1 < t < 2, p > 1,

f ∈ L2(Ω), and AAA∈W1
∞(Ω ,T0) be piecewise Lipschitz. If u∈Wt

p(Ω ;T0)∩H1
0(Ω)

is piecewise Wt
p over the initial meshT0 with t− d

p > 1− d
2 , then AFEM gives rise

to a sequence{Tk,Vk,Uk}∞
k=0 satisfying for all k≥ 1

|||u−Uk|||Ω +osck(Uk)

.
(
‖Dtu‖Lp(Ω ;T0) +‖ f‖L2(Ω) +‖AAA‖W1

∞(Ω ;T0)

)
(#Tk−#T0)

−(t−1)/d.

Proof. Combine Corollary 9 with Theorem 10.⊓⊔

7.5 Extensions and Restrictions

We conclude with a brief discussion of extensions of the theory and some of its
restrictions.

Optimal Complexity: Inexact Solvers, Quadrature, and Storage.We point out
that we have never mentioned the notion ofcomplexityso far. This is because com-
plexity estimates entail crucial issues that we have ignored: inexact solvers to ap-
proximate the Galerkin solution; quadrature; and optimal storage. We comment on
them now.

Multilevel solversare known to deliver an approximate solution with cost pro-
portional to the number of degrees of freedom. Even though the theory is well de-
veloped for uniform refinement, it is much less understood for adaptive refinement.
This is due to the fact that the adaptive bisection meshes do not satisfy the so-called
nested refinement assumption. Recently, Xu, Chen, and Nochetto [60] have bridged
the gap between graded and quasi-uniform grids exploiting the geometric structure
of bisection grids and a resulting new space decomposition.They designed and an-
alyzed optimal additive and multiplicative multilevel methods for any dimension
d ≥ 2 and poynomial degreen≥ 1, thereby improving upon Wu and Chen [59].
The theories of§5 and§7 can be suitably modified to account for optimal iterative
solvers; we refer to Stevenson [52].
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Quadratureis a very delicate issue in a purely a posteriori context, that is without
a priori knowledge of the functions involved. Even if we wereto replace both dataf
andAAA by piecewise polynomials so that quadrature would be simple, we would need
to account for the discrepancy in adequate norms between exact and approximate
data, again a rather delicate matter. This issue is to a largeextend open.

Optimal storageis an essential, but often disregarded, aspect of a complexity
analysis. For instance, ALBERTA is an excellent library forAFEM but does not
have optimal storage capabilities [50].

Non-Residual Estimators.The cardinality analysis of this section extends to esti-
mators other than the residual; we refer to Cascón and Nochetto [15] and Kreuzer
and Siebert [35]. They include the hierarchical, Zienkiewicz-Zhu [2, 27, 55, 58], and
Braess-Schoerbel estimators, as well as those based on the solution of local prob-
lems [12, 42]. Even though the contraction property of Theorem 9 is no longer valid
between consecutive iterates, it is true after a fixed numberof iterations, which is
enough for the arguments in Proposition 4 and Theorem 10 to apply. The resulting
error estimates possess constants proportional to this gap.

Nonconforming Meshes.SinceREFINE exhibits optimal complexity for admissi-
ble nonconforming meshes, according to§6.4, and this is the only ingredient where
nonconformity might play a role, the theory of this section extends. We refer to
Bonito and Nochetto [9].

Discontinuous Galerkin Methods (dG).The study of cardinality for adaptive dG
methods is rather technical. This is in part due to the fact that key Lemmas 26 and
28 hinge on mesh overlay, which in turn does not provide control of the level of
refinement. This makes it difficult to compare broken energy norms

|||v|||2
T

= ‖AAA1/2∇v‖2L2(Ω ;T ) +‖h
−1/2 [[v]] ‖2L2(Σ),

which contain jump terms with negative powers of the mesh-size over the scheleton
Σ of T . Consequently, the monotonicity of energy norms used in Lemmas 26 and
28 is no longer true!

To circumvent this difficulty, Bonito and Nochetto [9] resorted to continuous fi-
nite elementsV0(T ) over the (admissible nonconforming) meshT , which have
the same degree as their discontinuous counterpartV(T ). This leads to a cardinal-
ity theory very much in the spirit of this section. However, it raises the question
whether discontinuous elements deliver a better asymptotic rate over admissible
nonconforming meshes. Since this result is of intrinsic interest, we report it now.

Lemma 29 (Equivalence of classes).Let As be the approximation class using dis-
continuous elements of degree≤ n andA

0
s be the continuous counterpart. Then, for

0 < s≤ n/d, total errors are equivalent on the same mesh, whenceAs = A
0
s.

Proof. We use the notation of Problem 11. SinceV
0(T ) ⊂ V(T ), the inclusion

A
0
s ⊂ As is obvious. To prove the converse, we let(u, f ,AAA) ∈ As and, forN > #T0,

let T∗ ∈ TN be an admissible nonconforming grid andU∗ ∈ V(T∗) be so that
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|||u−U∗|||T∗ +oscT∗(U∗) = inf
T ∈TN

inf
V∈V(T )

(
|||u−V|||

T
+oscT (V)

)
. N−s.

Let IT : V(T )→V
0(T ) be the interpolation operator of Problem 11. SinceIT∗U∗ ∈

V
0(T∗), if we were able to prove

|||u− IT∗U∗|||T∗ +oscT∗(IT∗U∗) . N−s,

then(u, f ,AAA) ∈ A
0
s. Using the triangle inequality, we get

|||u− IT∗U∗|||T∗ ≤ ‖AAA
1/2∇(u−U∗)‖L2(Ω ;T∗) +‖AAA

1/2∇(U∗− IT∗U
∗)‖L2(Ω ;T∗),

because[[u− IT∗U∗]] vanish onΣ . Problem 11 implies the estimate

‖AAA1/2∇(U∗− IT∗U
∗)‖L2(Ω ;T∗) . ‖h−1/2 [[U∗]] ‖L2(Σ∗) ≤ |||u−U∗|||T∗ ,

whence
|||u− IT∗U∗|||T∗ . |||u−U∗|||T∗ .

Since‖AAA1/2∇(U∗− IT∗U∗)‖L2(Ω ;T∗) . |||U∗− IT∗U∗|||T∗ , the oscillation term can be
treated similarly. In fact, Problem 46 adapted to discontinuous functions yields

oscT∗(IT∗U∗) . oscT∗(U∗)+ |||u−U∗|||T∗ .

Coupling the two estimates above, we end up with

|||u− IT∗U∗|||T∗ +oscT∗(IT∗U∗) . |||u−U∗|||T∗ +oscT∗(U∗) . N−s.

Therefore,(u, f ,AAA) ∈ A
0
s as desired. ⊓⊔

7.6 Notes

The theory presented in this section is rather recent. It started with the breakthrough
(112) by Stevenson [52] for vanishing oscillation. Iff is variable andAAA is piecewise
constant, then Stevenson extended this idea upon adding an inner loop to handle
data oscillation to the usual AFEM. This idea does not extendto the model problem
(87) with variableAAA, because the oscillation then depends on the Galerkin solution.

The next crucial step was made by Cascón, Kreuzer, Nochetto, and Siebert [14],
who dealt with the notion of total error of§7.1, as previously done by Mekchay and
Nochetto [37], and introduced the nonlinear approximationclassAs of §7.2. They
derived the convergence rates of§7.4.

The analysis for nonconforming meshes is due to Bonito and Nochetto [9], who
developed this theory in the context of dG methods for which they also derived con-
vergence rates. The study of non-residual estimators is dueto Kreuzer and Siebert
[35] and Casćon and Nochetto [15].
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The theory is almost exclusively devoted to the energy norm,except for theL2-
analysis of Demlow and Stevenson [21], who proved an optimalconvergence rate
for mildly varying graded meshes. Convergence rates have been proved for Raviart-
Thomas mixed FEM by Chen, Holst, and Xu [18].

7.7 Problems

Problem 51 (Alternative definition of As). Show that(v, f ,AAA) ∈ As if and only
there exists a constantΛ > 0 such that for allε > 0 there existTε ≥T0 conforming
andVε ∈ V(Tε) such that

|||v−Vε |||2Ω +osc2Tε (Vε)≤ ε2 and #Tε −#T0≤Λ1/sε−1/s;

in this case|v, f ,AAA|s≤Λ . Hint: LetTε be minimal for|||v−Vε |||2Ω +osc2
Tε

(Vε)≤ ε2.

This means that for allT ∈ T such that #T = #Tε − 1 we have|||v−Vε |||2Ω +
osc2

Tε
(Vε) > ε.

Problem 52 (Lemma 22).Prove that the overlayT = T1⊕T2 is conforming and

#T ≤ #T1 +#T2−#T0.

Hint: for eachT ∈T0, consider two casesT1(T)∩T2(T) 6= /0 andT1(T)∩T2(T) =
/0, whereTi(T) is the portion of the meshTi contained inT.

Problem 53 (Lemma 24).Prove that ifT ,T∗ ∈ T satisfyT∗ ≥ T , R := RT→T∗
is the refined set to go fromT to T∗, andU ∈ V, U∗ ∈ V∗ are the corresponding
Galerkin solutions, then

|||U∗−U |||2Ω ≤C1E
2
T (U,R).

To this end, write the equation fulfilled byU∗−U ∈ V∗ and use as a test function
the local quasi-interpolantIT (U∗−U) of U∗−U introduced in Proposition 2.

Problem 54 (Explicit dependence onθ and s). Trace the dependence onθ ands,
asθ → θ∗ ands→ 0, in the hidden constants in Lemma 28 and Theorem 10.

Problem 55 (Asymptotic decay of oscillation).Let AAA∈W1
∞(Ω ;T0) be piecewise

Lipschitz over the initial gridT0 and f ∈ L2(Ω). Show that

inf
T ∈TN

oscT (U) .
(
‖ f‖L2(Ω) +‖AAA‖W1

∞(Ω ;T0)

)
N−1/d

is attained with uniform meshes.

Problem 56 (Faster decay of data oscillation).Let d = 2 andn = 1. Let f be
piecewiseW1

1 over the initial meshT0, namely f ∈W1
1 (Ω ;T0). Show that
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inf
T ∈TN

‖hT ( f −P0 f )‖L2(Ω) . ‖ f‖W1
1 (Ω ;T0)

N−1,

using the thresholding algorithm of§1.6. Therefore, data oscillation decays twice as
fast as the energy error asymptotically on suitably graded meshes.

Problem 57 (Faster decay of coefficient oscillation).Consider the coefficient os-
cillation weighted locally by the energy of the discrete solutionU :

η2
T (AAA,U) = ∑

T∈T

osc2T (AAA,T)‖∇U‖2L2(ωT ),

where oscT (AAA,T) is defined in Problem 45. Letd = 2,n = 1, p > 2, andAAA ∈
W2

p (Ω ;T0) be piecewise inW2
p over the initial gridT0. Use the thresholding al-

gorithm of§1.6 to show thatηT (AAA,U) decays with a rate twice as fast as the energy
error:

inf
T ∈TN

ηT (AAA,U) . ‖AAA‖W2
p (Ω ;T0)

‖∇U‖L2(Ω)N
−1.

Problem 58 (Faster decay of oscillation).Combine Problems 29, 56 and 57 for
d = 2,n= 1 andp> 2 to prove that iff ∈W1

1 (Ω ;T0) andAAA∈W2
p (Ω ;T0), then the

oscillation oscT (U,T ) decays with a rate twice as fast as the energy error:

inf
T ∈TN

oscT (U) .
(
‖ f‖W1

1 (Ω ;T0)
+‖AAA‖W2

p (Ω ;T0)

)
N−1.
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56. A. VEESER ANDR. VERFÜRTH, Explicit upper bounds for dual norms of residuals, SIAM J.
Numer. Anal., 47 (2009), pp. 2387–2405.
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58. R. VERFÜRTH, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement
Techniques, Adv. Numer. Math. John Wiley, Chichester, UK (1996).

59. H. WU AND Z. CHEN, Uniform convergence of multigrid V-cycle on adaptively refined finite
element meshes for second order elliptic problems, Science in China: Series A Mathematics,
49 (2006), pp. 1–28.

60. J. XU, L. CHEN, AND R.H. NOCHETTO, Adaptive multilevel methods on graded bisection
grids, in Multiscale, Nonlinear and Adaptive Approximation, Springer, 2009, pp. 599–659.


