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1 Piecewise Polynomial Approximation

We start with a discussion of piecewise polynomial appration inWF')‘ Sobolev
spaces and graded meshes in any dimerdide first compare pointwise approx-
imation over uniform and graded meshes o= 1 in §1.1, which reveals the ad-
vantages of the latter over the former and sets the tone éoretst of the paper. We
continue with the concept of Sobolev numbegin2.

We explore the geometric aspects of mesh refinement for cmirig meshes in
§1.3 and nonconforming meshesgih.7, but postpone a full discussion urgfl. We
include a statement about complexity of the refinement ghos which turns out
to be instrumental later.

We briefly discuss the construction of finite element spaced i4, along with
polynomial interpolation of functions in Sobolev space§irb. This provides local
estimates adequate for comparison of quasi-uniform andegraneshes fod > 1.
We exploit them in developing the so-called error equidisition principle and the
construction of suitably graded meshes via thresholdingli6. We conclude that
graded meshes can deliver optimal interpolation ratesddam classes of singular
functions, and thus supersede quasi-uniform refinement.

1.1 Classical vs Adaptive Pointwise Approximation

We start with a simple motivation in 1d for the use of adappivecedures, due to
DeVore [22]. GivenQ = (0,1), a partitionZy = {x }N_, of Q

O=Xp<X1 < - <Xp<--<xn=1

and a continuous function: Q — R, we consider the problem afiterpolating u

by apiecewise constarftinctionUy over 9. To quantify the difference between
u andUy we resort to themaximum nornand study two cases depending on the
regularity ofu.

Case 1:W}-Regularity. Suppose that is Lipschitz in[0,1]. We consider the ap-
proximation
Un(X) :=u(Xn—1) for all Xn—1 < X< Xn.

Since

[UC) —UN(I[ = [u(X) = u(*n-1)| =

X
/X u’(t)dt‘ < hnHU,HL”(anl,Xn)
n—1

we conclude that 1
[u=UnlL=(q) < NHU/HL“(Q)» (1)
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provided the local mesh-sitg is about constanguasi-uniformmesh), and so pro-
portional toN—* (the reciprocal of the number of degrees of freedom). No# th
the same integrability is used on both sides of (1). A natguastion ariseds it
possible to achieve the same asymptotic decay rafewith weaker regularity de-
mands?

Case 2:W.!-Regularity. To answer this question, we suppdﬁéHLl(Q) =1and
consider the non-decreasing function

o) = [ (o)

which satisfiesp(0) = 0 andg(1) = 1. Let I = {X; ,’}‘:0 be the partition given by
“Xn , 1
[7 WOt = 000 - o601 = &
Y Xn-1
Then, forx € [Xn_1,%n],

1

i —uta-n) = | [ vt < [* Wt [ o= g,

whence 1
[u—UnllL=(q) < NHU/HLl(Q)' (2)

We thus conclude that we could achieve the same rate of ageweeN— for
rougher functions with jusfu’[ 1oy < . The following comments are in order
for Case 2.

Remark 1 (Equidistribution)The optimal meshZy equidistributeghe max-error.
This mesh is graded instead of uniform but, in contrast toifotm mesh, such a
partition may not be adequate for another function with e basic regularity as
u. It is instructive to consider the singular functiafx) = x¥ with y = 0.1 and error
tolerance 102 to quantify the above computationsNi andN, are the number of
degrees of freedom with uniform and graded partitions, wiatN; /N, = 108,

Remark 2 (Nonlinear Approximation].he regularity ofu in (2) is measured in
W (Q) instead ofV2(Q) and, consequently, the fractionategularity measured in
L®(Q) increases to one full derivative when expressed’i{f2). This exchange of
integrability between left and right-hand side of (2), amdhgof differentiability, is
at the heart of the matter and the very reason why suitablgegtaneshes achieve
optimal asymptotic error decay for singular functions. Bgge we mean functions
which are not in the usual linear Sobolev scale, ¥8)(Q) in this example, but
rather in a nonlinear scale [22]. We will get back to this sgu§7.
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1.2 The Sobolev Number: Scaling and Embedding

In order to make Remark 2 more precise, we introduce the ghalimber. Let
Q c RY with d > 1 be a Lipschitz and bounded domain, andkietN,1 < p < oo,
The Sobolev spadA/")‘(Q) is defined by

WE(Q) == {v: Q - R|DWe LP(Q) V]a| <k}

If p=2we setH¥(Q) = WK(Q) and note that this is a Hilbert space. Thebolev
numberof W(Q) is given by
d

SORW) 1= k— = 3)

This number governs the scaling properties of the semi-norm

1/p
Viwgca) = ( |az_k||o“v||ﬁp(m) ,

because rescaling variablle&“%x for all x € Q, transformsR2 into Q andv into v,
while the corresponding norms scale as

_ hsobw) IViwg()-

|\7|W,g<(fz)
In addition, we have the followingompact embedding m> k and soj\W;") >
sol(Wy), then
WN(Q) € Wi(Q).

We say that two Sobolev spaces are in the same nonlinear&Satuale if they have
the same Sobolev number. We note that for compactness the\&ff4Q) must be
above the Sobolev scaIe\A@;(Q). A relevant example fod = 2 are the paiH(Q)

andL*(Q) which have the same Sobolev number, in fact(sbt) = sob(L®) = 0,
but the former is not even contained in the latter: in fact

v(x) = |og|og% e HY(Q)\L™(Q)
in the unit ball. This is a source of difficulties for polynashinterpolation theory
and the need for quasi-interpolation operators. This isutised ir§1.5.

We conclude with a comment about Remark 2. We seedthat and soW}) =
solL®) = 0 butW{(Q) is compactly embedded If°(Q) in this case. This shows
that these two spaces are in the same nonlinear Sobolevaudlthat the above

inequality between Sobolev numbers for a compact embedsliogly sufficient.
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1.3 Conforming Meshes: The Bisection Method

In order to approximate functions WF'J‘(Q) by piecewise polynomials, we decom-
poseQ into simplices. We briefly discuss th®sectionmethod, the most elegant
and successful technique for subdividi@in any dimension into a conforming
mesh. We also discuss briefly nonconforming meshé4 in. We present complete
proofs, especially of the complexity of bisection, lategé

We focus ond = 2 and follow Binev, Dahmen, and DeVore [7], but the results
carry over to any dimensiod > 1 (see Stevenson [53]). We refer to Nochetto,
Siebert, and Veeser [45] for a rather complete discussiod fe 1.

Let 7 denote anesh(triangulation or grid) made of simplicéls, and let7 be
conforming(edge-to-edge). Each element is labeled, namely it has gaEd )
assigned for refinement (and an opposite vevtdy for d = 2); see Figure 1.

V(Tl) = V(Tz) E(Tl)
E(T)
v(T) »
E(T,)

Fig. 1 TriangleT € .7 with vertexv(T) and opposite refinement edg€T). The bisection rule

for d = 2 consists of connecting(T) with the midpoint ofE(T), thereby giving rise to children
T1, T> with common vertex/(T;) = v(T2), the newly created vertex, and opposite refinement edges
E(T1),E(T2).

The bisection method consists of a suitalaleeling of the initial meshZ and
a rule to assign the refinement edge to the two children.d=er2 we consider
the newest vertex bisectias depicted in Figure 1. Far> 2 the situation is more
complicated and one needs the concepts of type and vertex [ 53].

Bisection creates aniquemaster foresit of binary trees with infinite depth,
where each node is a simplex (triangle in 2d), its two suarsswe the two children
created by bisection, and the roots of the binary trees areldments of the initial
conforming partition%. It is important to realize that, no matter how an element
arises in the subdivision process, its associated newegxvis unique and only
depends on the labeling o%: sov(T) andE(T) are independent of the order of the
subdivision process for all € FF; see Lemma 16 if§6. Therefore[F is unique.

A finite subset# C F is called aforestif .75 C .% and the nodes of# satisfy

e all nodes of# \ % have a predecessor;
¢ all nodes inZ have either two successors or none.

Any nodeT € .% is thus uniquely connected with a notgof the initial triangula-
tion 9, i.e.T belongs to the infinite treB(To) emanating fronTy. Furthermore, any
forest may havénterior nodesi.e. nodes with successors, as welleef nodesi.e.



6 R.H. Nochetto and A. Veeser
nodes without successors. The set of leaves correspondsésta(or triangulation,
grid, partition).7 = 7 (%) of 9 which may not be conforming or edge-to-edge.
We thus introduce the s@&tof all conforming refinements ofj:
T:={7 =7(7)| % CFisfinite and7 (%) is conforming.

If 7. =9(%.) €T is a conforming refinement o/ = .7 (%) € T, we write
7. > .7 and understand this inequality in the sense of trees, naffiely.%..

T
Ts To Ts 7
T T X To
T Tio
T3 T T3 T3
Ts Ts
T T T

Fig. 2 Sequence of bisection meshg$i}2_, starting from the initial mest% = {Ti}%; with
longest edges labeled for bisection. Meghis created fromZ upon bisecting; and Ty, whereas
mesh.7, arises from7; upon refiningTs andT;. The bisection rule is described in Figure 1.

Kl
[ Peul

Fig. 3 Forest%, corresponding to the grid sequen{:éi}ﬁzo of Figure 2. The roots of#, form
the initial mesh% and the leaves of#, constitute the conforming bisection mesh. Moreover,
each level of%>, corresponds to all elements with generation equal to the.level

Example: Consider% = {Ti}_; and the longest edge to be the refinement edge.
Figure 2 displays a sequence of conforming mes#es T created by bisection.
Each elemenT; of % is a root of a finite tree emanating from, which together
form the forest%, corresponding to mesh = .7 (.%>). Figure 3 displays#>,
whose leaf nodes are the elements’f

Properties of Bisection.We now discuss several crucial geometric properties of
bisection. We start with the concept of shape regularity.dfy T € .7, we define
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HT :diam(T)
hr = |T|¥d
hr =2sup[r > 0|B(x,r) C T forxe T}.

Then -
hr <hr <hy <ohg VT € 7,

whereo > 1 is the shape regularity constant. We say that a sequencestien

is shape regularf o is uniformly bounded, or in other words that the element
shape does not degenerate with refinement. The next lemmargees that bisec-
tion keepso bounded.

Fig. 4 Bisection produces at most 4 similarity classes for any triangle.

Lemma 1 (Shape Regularity).The partitions.7 generated by newest vertex bi-
section satisfy a uniform minimal angle condition, or eailéwntly o is uniformly
bouunded, only depending on the initial partition.

Proof. EachT € % gives rise to a fixed number of similarity classes, namelyr4 fo
d = 2 according to Figure 4. This, combined with the fact théab#s finite, yields
the assertion. O

We define theeneration (or level) ) of an element € .7 as the number of
bisections needed to creafefrom its ancestoily € J5. Since bisection splits an
element into two children with equal measure, we realizé tha

hr =2790/2h vTeZ. (4)

Referring to Figure 3 we observe that the leaf notig310, T11, T12 have generation
2, whereads, Tg have generation 1 an, T3 have generation 0.
The following geometric property is a simple consequend@pf

Lemma 2 (Element Size vs Generation)There exist constan®< D1 < Dy, only
depending oy, such that

D12 9M2<h <hr <D,2 912 vyTe 7. 5)
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Labeling and Bisection Rule.Whether the recursive application of bisection does
not lead to inconsistencies depends on a suitable initialiiag of edges and a
bisection rule. Fod = 2 they are simple to state [7], but fak> 2 we refer to
Condition (b) of Section 4 of [53]. Giveil € .7 with generationg(T) =i, we
assign the labefi + 1,i 4+ 1,i) to T with i corresponding to the refinement edge
E(T). The following rule dictates how the labeling changes wétfimrement: the side

i is bisected and both new sides as well as the bisector aretiibe2 whereas the
remaining labels do not change. To guarantee that the l&baledge is independent
of the elements sharing this edge, we need a special lalfeling, [7]:

edges of% have label® or 1 and all elements & .7 have
exactly two edges with lab&land one with labeD.

(6)

It is not obvious that such a labeling exists, but if it doesrtfall elements of%
can be split into pairs of compatibly divisible elements. ¥Wéer to Figure 5 for
an example of initial labeling of% satisfying (6) and the way it evolves for two
successive refinementd > .77 > 9y corresponding to Figure 2.

Fig. 5 Initial labeling and its evolution for the sequence of conforg refinements’p < .71 < %
of Figure 2.

To guarantee (6) we can proceed as follows: given a coarsk aiedements’
we can bisect twice eadhand label the 4 grandchildren, as indicated in Figure 6 for
the resulting meskyg to satisfy the initial labeling [7]. A similar, but much tkeer,

Fig. 6 Bisecting each triangle ofj twice and labeling edges in such a way that all boundary
edges have label 1 yields an initial mesh satisfying (6).

construction can be made in any dimensibi 2 (see Stevenson [53]). Fdr=3
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the number of elements increases by an order of magnitudehiidicates that (6)
is a severe restriction in practice. Finding alternativerenpractical, conditions is
an open and important problem.

The ProcedureREFINE. Given.7 € T and a subse C .7 of marked elements,
the procedure
7, =REFINE(Z,.4)

creates a new conforming refineme#it of .7 by bisecting all elements o# at
least once and perhaps additional elements to keep corformi

Conformity is a constraint in the refinement procedure thet@nts it from being
completely local. The propagation of refinement beyond gt@tmarked elements
 is a rather delicate matter, which we discuss latef@inFor instance, we show
that a naive estimate of the form

BT, —#T < No#tll

is not valid with an absolute constariy independent of the refinement level. This
can be repaired upon considering the cumulative effect $@gaience of conforming
bisection meshe$.7}y . This is expressed in the following crucial complexity
result due to Binev, Dahmen, and DeVore [7] b= 2 and Stevenson [53] for
d > 2. We present a complete proof latersié.

Theorem 1 (Complexity of REFINE). If % satisfies the initial labelind6) for
d =2, or that in [53, Section 4] for d> 2, then there exists a constafig > 0 only
depending onZp and d such that for all k> 1

k—1
#I—#To < Mo Z}#///j.
J:

If elementsT € .# are to be bisectel > 1 times, then the proceduREFINE can
be applied recursively, and Theorem 1 remains valid vittalso depending oh.

1.4 Finite Element Spaces

Given a conforming mesl¥ € T we define the finite element space of continuous
piecewise polynomials of degree> 1

S"0(7) :={veC%Q)| V|t €Pn(T) VT € T};

note thatS"%(.7) ¢ H(Q). We refer to Braess [10], Brenner-Scott [11], Ciarlet
[19] and Siebert [50] for a discussion on the local constamcof this space along
with its properties.
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We focus on the piecewise linear case- 1 (Courant elements). Global con-
tinuity can be simply enforced by imposing continuity at theticesz of .7, the
so-callednodal valuesWe denote by the set of verticeg of 7.

However, the following local construction leads to globahtinuity. If T is a
generic simplex of7, namely the convex hull ofz }?:0, then we associate to each
vertexz abarycentric coordinate\,", which is the linear function iT with nodal
value 1 atz and O at the other vertices ®f Upon pasting together the barycentric
coordinates\; of all simplicesT containing vertex € .4, we obtain a continuous
piecewise linear functiom, € S¥(.7) as depicted in Figure 7 fat = 2: The set

?,

A,

Fig. 7 Piecewise linear basis functiap corresponding to interior node supportw, of ¢, and
scheletory,, the latter being composed of all sides within the interiowpf

{@} ;- 4 of all such functions is the nodal basis®¥°(.7), or Courant basis. We
denote byw, := supd ¢,) the support ofg, from now on calledstar associated ta,
and byy, the scheleton ofv,, namely all the sides containirzg

We denote functions i8™°(.7) with capital letters. In view of the definition of
@, we have the following unique representation of any furctios S"°(.7)

VX = T V@

e N

If we further impose/ (z) =0 forallze 9Q N .+, thenV € H}(Q). We denote by
V(7)) :=S"(7)nHA(Q)

the subspace of finite element functions which vanistd &h Note that we do not
explicitly refer to the polynomial degree, which will be alein each context.

For each simplexT € .7, generated by vertice$z;}id=o, the dual functions
{AF 19, € P1(T) to the barycentric coordinatdg }¢_, satisfy the bi-orthogonality
relation [+ A"Aj = §j, and are given by

(1+d)2, 1+d .
A= Aj — Ai vVo<i<d.
TSR AT M
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TheCourant dual basigg € S"~1(.7) are the discontinuous piecewise linear func-
tions over.7 given by

1

= 5 (A" Vze
(2 Vzgz(Z)XT

wherev;, € N is the valence o (hnumber of elements o7 containingz) and xt
is the characteristic function df. These functions have the same supparas the
nodal basigp, and satisfy the global bi-orthogonality relation

/Q(pz*fg,zézy Vzye. V.

1.5 Polynomial Interpolation in Sobolev Spaces

If v C°(Q) we define the_agrange interpolant v of v as follows:

VX = 3 V@)
e N

For functions without point values, such as function$li( Q) for d > 1, we need
to determine nodal values by averaging. For any conform@fiimement? > %
of %, the averaging process extends beyond nodes and so giwds tie discrete
neigborhood

Ny (T):={T'e 7 |T'NT #0}

for each element € .7 along with thelocal quasi-uniformityproperties

IT|
max#N - (T) < C(F max — <C(%
TeT 7(T) < C(%), T'eN,(T) [T/ — (%),

whereC(%) depends only on the shape coefficientZfgiven by

We introduce now one such operatgr due to Scott-Zhang [11, 48], from now
on calledquasi-interpolation operatorWe focus on polynomial degree= 1, but
the construction is valid for any; see [11, 48] for details. We recall thé, },c
is the global Lagrange basis 68£°(.7), {@}, 4 is the global dual basis, and
suppg = suppy, for all z€ 4. We thus defing» : LY(Q) — SY9(.7) to be

lzv="5 (v, @)@,
zeZ/V
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If 0 <s< 2is aregularity index and £ p < « is an integrability index, then we
would like to prove thequasi-local error estimate

WS)— Wt
ID'(v—12V)||Lac) 5“?“( st q)HDSVHLP(N,y(T)) (7)

forall T € .7, provided 0<t <s, 1 < g < w are such that sdlV;) > sob(W).
We first observe that by constructibg is invariant inS°(.7), namely,

loP=P  forallPes0(7).

Since the averaging process giving rise to the valuég-offor each element € .
takes place in the neighborhodld (T ), we also deduce the local invariance

l7PlT =P forall P € P1(N#(T))
as well as the local stability estimate for anyglg < oo
M7 Vilary S [IVIlan, ()
We thus may write
V=IlgzVlr =(V=P)=lo(V-P)|r forall T € .7,

whereP € Ps_; is arbitrary @ = 0 if s= 0). It suffices now to prove (7) in the
reference elemeri and scale back and forth f6; the definition (3) of Sobolev
number accounts precisely for this scaling. We keep thetiootd for T, apply
the inverse estimate for linear polynomidl®' (1 7v)|| oty < [l 7VlLar) tov—P
instead ofv, and use the above local stability estimate, to infer that

D' (V=1 2V)||am) S lV— Pliwg ) < IV —=Pllwsins (1)-

The lastinequality is a consequei§(N~ (T)) C W§ (N~ (T)) because sdlivy) >
sodwcg) andt < s. Estimate (7) now follows from the Bramble-Hilbert lemmad.[1
Lemma 4.3.8], [19, Theorem 3.1.1]

Pepyil?,fly(ﬂ) IV—Pliwgn, (1)) < IDVllLen,(T))- (8)
This proves (7) fon = 1. The construction dofs and ensuing estimate (7) are still
valid for anyn > 1 [11, 48].

Proposition 1 (Quasi-Interpolant without Boundary Values). Let st be regular-
ity indices with0 <t <s<n+1, and1 < p,q < o« be integrability indices so that
soW) > sob(W).

There exists a quasi-interpolation operator | L*(Q) — S™°(.7), which is in-
variant in $'°(.7) and satisfies

WS)— Wt
ID'(v—1 V) llar S BB M DSy o YT e (@)



Primer of AFEM 13

The hidden constant if¥) depends on the shape coefficient/gfand d.

To impose a vanishing trace dpv we may suitably modify the averaging pro-
cess for boundary nodes. We thus define a set of dual funatidthgespect to an
L2-scalar product ovefd — 1)-subsimplices contained ahQ; see again [11, 48]
for details. This retains the invariance propertylgf on S™°(.7) and guarantees
thatl >v has a zero trace if Wll(Q) does. Hence, the above argument applies and
(9) follows provideds > 1.

Proposition 2 (Quasi-Interpolant with Boundary Values). Let st, p,q be as in
Proposition 1. There exists a quasi-interpolation operdtg : Wl (Q) — S"0(.7)
invariant inS™9(.7) which satisfie¢9) for s> 1 and preserves the boundary values
of v provided they are piecewise polynomial of degree. In particular, if ve
W1(Q) has a vanishing trace 0dQ, then so does4v.

Remark 3 (Fractional Regularity)Me observe that (7) does not require the regular-
ity indicest ands to be integer. The proof follows the same lines but replabes t
polynomial degres— 1 by the greatest integer smaller tisathe generalization of
(8) can be taken from [26].

Remark 4 (Local Error Estimate for Lagrange Interpolaritgt the regularity in-
dex s and integrability index 1< p < « satisfys—d/p > 0. This implies that

soh(Ws) > sol(L”), whenceWs(Q) C C(Q) and the Lagrange interpolation op-
eratorl 7 : W3(Q) — S'0(.7) is well defined and satisfies thacal error estimate

S)— t
1D (v—17v) ey S P20

provided 0<t <'s, 1 < ¢ < o are such that sdis) > sodWé). We point out that
N (T) in (7) is now replaced bY in (10). We also remark that ifvanishes 0@ Q
so doed V. The proof of (10) proceeds along the same lines as that @idBition
1 except that the nodal evaluation does not extend beyoneléngentT € .7 and
the inverse and stability estimates over the referenceeieare replaced by

)
IDV]|Lo(T), (10)

HDt|9VH|_q(f) N Hl:?VHLq(f) S HVHLw(f) S ||V||W,§(f)-

We are now in a position to derive a global interpolation egstimate. To this
end, it is convenient to introduce the mesh-size fundienl*(Q) given by

hr=hr forallTe 7. (11)

Notice that the following estimate encompasses the lingavedl as the nonlinear
Sobolev scales.

Theorem 2 (Global Interpolation Error Estimate). Letl <s<n+landl<p<
2 satisfy r:= so{Ws) —sob(H*) > 0. If v € W5(Q), then

10(v=17V)[l2(0) < IN'DV]|Lp(q)- (12)
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Proof. Use Proposition 1 along with the elementary property ofesefi,a, <
(yhahY9foro<q:=p/2<1. O

Quasi-Uniform Meshes. We now apply Theorem 2 to quasi-uniform meshes,
namely meshes” < T for which all its elements are of comparable smegardless
of the refinement level. In this case, we have

h~ #7)" 1/,

Corollary 1 (Quasi-Uniform Meshes).Letl <s<n+landuc HS(Q).If 7 €T
is quasi-uniform, then

[B(v—=17V)l20) < Vls(q) (#7) D/, (13)

Remark 5 (Optimal Rate)f s= n+ 1, and sov has the maximal regularity €
H"™1(Q), then we obtain the optimal convergence rate in a linear Bolszale

10017V l2() S Vi) (#7) . (14)

The order—n/d is just dictated by the polynomial degre@nd cannot be improved
upon assuming either higher regularity ti#t™(Q) or a graded mesht.

Example (Corner Singularity in &). To explore the effect of a geometric singularity
on (13), we letQ be the L-shaped domain of Figure 1.5 and H(Q) be

u(r,8) = r3sin(20/3) — r?/4.

This functionv € H1(Q) exhibits the typical corner singularity of the solution of
—Av = f with suitable Dirichlet boundary condition:c HS(Q) for s< 5/3. Table

1 displays the best approximation error for polynomial @egr= 1,2,3 and the
sequence ofiniform refinements depicted in Figure 1.5 in the semind)rm,l(g).
This gives dower bound for the interpolation error in (13).

h |linear(n = 1)|quadratic(n = 2) |cubic (n = 3)
1/4 1.14 9.64 9.89
1/8 0.74 0.67 0.67
1/16 0.68 0.67 0.67
1/32 0.66 0.67 0.67
1/64 0.66 0.67 0.67
1/128 0.66 0.67 0.67

Table 1 The asymptotic rate of convergence in term of mesh-sieabouth?/3, or equivalently
(#7)1/3, irrespective of the polynomial degreeThis provides a lower bound fdjw — L7Vl 2(0)
and thus shows that (13) is sharp.

Even thouglsis fractional, the error estimate (13) is still valid as sthin Remark
3. In fact, for uniform refinement, (13) can be derived by spaxterpolation be-
tweenH!(Q) andH"™1(Q). The asymptotic rat¢#.7)~1/3 reported in Table 1 is
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Fig. 8 Sequence of consecutive uniform meshes for L-shaped dofhaieated by 2 bisections.

consistent with (13) and independent of the polynomial éegr this shows that
(13) is sharp. It is also suboptimal as compared with thenogitrate(#.7) "2 of
Remark 5.

The question arises whether the rée7)~1/2 in Table 1 is just a consequence
of uniform refinement or unavoidable. It is important to iealthatv ¢ HS(Q) for
s> 5/3 and thus (13) is not applicable. However, the problem istinat second
order derivatives off do not exist but rather that they are not square-integrable.
particular, itis true thaWeWpZ(Q) if 1 < p< 3/2. We therefore may apply Theorem
2 with, e.g.,n=1,s=2, andp € [1,3/2) and then ask whether the structure of (12)
can be exploited, e.g., by compensating the local beha¥i@S%o with the local
mesh-sizén. This enterprise naturally leads gogadedmeshes adapted o

1.6 Adaptive Approximation

Principle of Error Equidistribution. We investigate the relation between local
mesh-size and regularity for the design of graded meshestediaov € H(Q)
for d = 2. We formulate this as an optimization problem:

Given a function & C?(Q) N"WZ(Q) and an integer N> 0 find condi-
tions for a shape regular mes# to minimize the errofv—17V|y1 o)
subject to the constraint that the number of degrees of lesgtl”” < N.

We first convert thigliscreteoptimization problem into aontinuous modefollow-
ing Babska and Rheinboldt [5]. Let

~dx
#HT = | ——
7= oo
be the number of elements 6f and let the Lagrange interpolation error

1801l ) = [ 00?20 Pdx

be dictated by (12) wits= 2 and 1< p < 2; note that = sodwg) —soHY) =2—
2/pwhencerp = 2(p—1) is the exponent dfi(x). We next propose the Lagrangian
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A
- 2(p-1)|p2 p_
ZIhA] /Q (n(2? Y D?u(x)| h(x)z)dx
with Lagrange multiplie € R. The optimality condition reads (Problem 4)
h(x)2(P~U+2|D?y(x)|P = A (15)

where/ > 0 is a constant. In order to interpret this expression, we mdmthe
interpolation errofEr incurred in elementT € .7. According to (10)Er is given
by
EP ~ 3P Y / ID2y(x)|P ~ A
JT

providedD?v(x) is about constant if. Therefore we reach the heuristic, but in-
sightful, conclusion thaEr is about constant, or equivalently

A graded mesh is quasi-optimal if the local error is equidiatted. (16)

Corner Singularities. Meshes satisfying (16) have been constructed by Bledet
al [3] for corner singularities and = 2; see also [30]. If the functiom possess the
typical behavior

v(x) ~r(x)¥, 0<y<1l,

wherer (x) is the distance from € Q to a reentrant corner a2, then (15) implies
the mesh grading

whence
y pdiam(@) 1
#y:/ h(x)—zdx:/\—ﬁ/ Y ldr e A,
Q 0

This crucial relation is valid for any > 0 andp > 1, in fact the only condition on
pisthatr =2—2/p > 0, or equivalently soqwg) > sol(HY). Therefore,

2 _
100 =15V)|2q) = 5 ER=AP#T) = (#7) L (17)
TeT

gives the optimal decay rate fdr=2,n=1, according to Remark 5. We explore the
cased > 2 andn > 1 in Problem 6. What this argument does not address is whether
such meshes’ exist in general and, more importantly, whether they canait

be constructed upon bisecting the initial meghso that7 < T.

Thresholding. We now construct graded bisection meshégor n = 1,d = 2 that
achieve the optimal decay ra(i;éﬁ‘)*l/2 of (14) and (17) under the global regularity
assumption

VEWZ(Q), p>1 (18)

Following the work of Binev et al. [8], we use a thresholdigaithm that is based
on the knowledge of the element errors and on bisection. Tdarithm hinges
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on (16): if d > 0 is a given tolerance, the element error is equidistributiealt is
Er ~ 2, and the global error decays with maximum ré¢e7 ) /2, then

54#9 ~ z E-|2' = ‘V— |9V||%|1(Q) 5 (#9)71
TeT

that is #7 < 62. With this in mind, we impos&r < &2 as a common threshold to
stop refining and expect# < 6~2. The following algorithm implements this idea.

Thresholding Algorithm. Given a toleranc® > 0 and a conforming meshp,
THRESHOLD finds a conforming refinement > .9 of .9 by bisection such that
Er < d2forall T € .7: let. 7 = Jand

THRESHOLD(.7,9)

while .# :={T € T |Er > 8°} #0
7 .= REFINE(.7,.%)

end while

return(’)

We get\Ng(Q) C C%(Q), because > 1, and can use the Lagrange interpolant and
local estimate (10) with = sol{WZ) — sol{H') = 2—2/p > 0. We deduce that

Er < 0 [ID?V]Lecr), (19)

and thatfTHRESHOLD terminatesbecausérr decreases monotonically to 0 with
bisection. The quality of the resulting mesh is assessetd nex

Theorem 3 (Thresholding).If v € H3(Q) verifies(18), then the outputZ € T of
THRESHOLD satisfies

V=1oVlyig) < B2HI)V?,  #T —#T <8 2|Q1YPIDH|eo).

Proof. Letk > 1 be the number of iterations @3HRESHOLD before termination.
Let.# = .#yU---U.#_ 1 be the set of marked elements. We organize the elements
in . by size in such a way that allows for a counting argument.#gtbe the set

of elementsT of .# with size

27 < T <2 = 2702 <hp < 27172,

We proceed in several steps.

We first observe that all’s in &7} aredisjoint This is because iy, T> € &
andflrﬂo'z = 0, then one of them is contained in the other, $ay_ T,, due to the
bisection procedure. Thus

1
Ml <35I
contradicting the definition of?;. This implies

27z <1Q| = #P;<|Q|2 (20)
i J
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In light of (19), we have foll € &7

6% <Er 527 UMDV Lo,
Therefore

522, < 27112 Z] ID?V|IPp () < 2-(i/2)rp ID?VIIf (o)
TeZ]

whence _
#2) < & %2 WA DIy (21)

The two bounds for # in (20) and (21) are complementary. The first is good for
j small whereas the second is suitable fdarge (think ofd <« 1). The crossover
takes place foljp such that

) ) ) D2v||
jot1 o) — 5-2P2—io(rp/2) |12y P jo 0 52 | LP(Q)
2lotl|Q| = 5202 DG, = 20m8 iy

We now compute

#M = z#gj S z 21"_(2‘ +572pHD2VH|’_)D(Q) z (zfrp/z)j'
J

I<lo 1>Jo

Since
2l ~ 2]0’ z (2—TP/2)J < 2=(rp/2)jo — 2—(P—D)jo
i<lo i>Jo
we can write
#tl < (57245 2P%P) | QF P DAV|| (o) & 572 |Q1F P DV e
We finally apply Theorem 1 to arrive at

#T —# Ty SHM < 52Q1YP| DA o).

[s] It remains to estimate the energy error. We have, upon textioin of THRESH-
OLD, thatEr < %forall T € .. Then

|v—|gv|ﬁl<m = 5 Ef<o'#7.
TeT

This concludes the TheoremO

By relating the threshold valu@ and the number of refinements we obtain a
result about the convergence rate.

Corollary 2 (Convergence Rate).Let ve H(}(Q) satisfy(18). Then for N> #5
integer there exists € T such that
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V=17V o) S QI PPV N2, #T —#% SN,

Proof. Choosed? = |Q[*Y/P||D?V|[ p(o)N"* in Theorem 3. Then, there exists

7 €T suchthat# —#5 <N and

— — 1/2
V= 17Vlg) S 1R HPIDV] o) N (N +#5)

S 1QFYP|ID||Lp )N Y2
becausé\ > #.5. This finishes the Corollary. O

Remark 6 (Piecewise smoothnedd)e global regularity (18) can be weakened to
piecewise \jf regularity over the initial mesh%, namelyWs(Q; %), and global
HG(Q). This is becaus#3(T) — C°(T) for all T € %, whencel > can be taken
to be the Lagrange interpolation operator.

Remark 7 (Case g 1). We consider now polynomial degree> 1. The integrabil-
ity p corresponding to differentiability+ 1 results from equating Sobolev numbers:

d 2d

d 1
n+1—5_sot(H )_1—é = p_2n+d'

Depending ord > 2 andn > 1, this may lead to & p < 1, in which caseNS”(Q)

is to be replaced by the Besov spzﬁ%l(g) [22]; see Problem 6. The argument
of Theorem 3 works provided we replace (19) by a modulus ofilegy; in fact,
D™1v would not be locally integrable and so would fail to be a dlisttion.

Remark 8 (Isotropic vs anisotropic elemenfBeorem 3 and Problem 5 show that
isotropic graded meshes can always deal with geometricikiriges ford = 2. This
is no longer the case fal > 2 and is explored in Problem 6.

1.7 Nonconforming Meshes

More general subdivisions d® than those ir§1.3 are used in practice. If the ele-
ments of% are quadrilaterals fait = 2, or their multidimensional variant fat > 2,
then itis natural to allow for improper ¢ranging nodefor the resulting refinements
7 to be graded; see Figure 9 (a). On the other handpifs made of triangles for
d = 2, or simplices ford > 2, then red refinement without green completion also
gives rise to graded meshes with hanging nodes; see Figle & poth cases, the
presence of hanging nodes is inevitable to enforce meslingyaéinally, bisection
may produce meshes with hanging nodes, as depicted in Fdajeif the comple-
tion process is incomplete. All three refinements maintaimpe regularity, but for
both practice and theory, they cannot be arbitrary: we neeggtrict the level of
incompatibility; see Problem 10. We discuss this next.
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N
% AN

Fig. 9 Nonconforming meshes made of quadrilaterals (a), trianglds red refinement (b), and
triangles with bisection (c). The shaded regions depict themaido of influence of a proper or
conforming nodeP.

We start with the notion of domain of influence of a proper nadgoduced by
Babwska and Miller in the context dk-meshes [4]; see Figure 9. For simplicity,
we restrict ourselves to polynomial degnee- 1. We say that a node of .7 is a
proper(or conforming) node if it is a vertex of all elements conta@P; otherwise,
we say thaP is animproper(nonconforming or hanging) node. Since we only pre-
scribe degrees of freedom at the proper nodes, it is natudgdcribe the canonical
continuous piecewise linear basis functigmsassociated with each proper ndele

We do this recursively. As i§1.3, thegeneration ¢T) of an elemenfl € .7
is the number of subdivisions needed to crebtérom its ancestor in the initial
mesh.%, hereafter assumed to be conforming. We first rearrangelémeats in
T = {T}#7, by generationg(Ti) < g(Ti;1) for alli > 0. Suppose thage has been
already defined for each € .7 with g(T) < i. We proceed as follows to defirgg

at each vertexof T € .7 with g(T) =1i:

e if zis a proper node, then we sgi(z) = 1 if z= P andg@-(z) = 0 otherwise;

e if zis a hanging node, therbelongs to an edge of another elem&he .7 with
o(T') < i and sep(2)lr = (2| 7.

This definition is independent of the choiceTfsince, by constructiorg is con-

tinuous across interelements of lower level. We also olestéat{ ¢} pc_+ is a basis
of the finite element spacé(.7") of continuouspiecewise linear functions, thus

V=S VP VVeV(T).
PeV

Thedomain of influencef a proper nodé is the support ofg:
w7 (T) = supp(¢p).

We say that a sequence of nonconforming megh#&s is admissiblef there is a
universal constam,. < 1, independent of the refinement level a#id such that

diam(wz(T)) < Ahr VT e . (22)
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An important example is quadrilaterals witine hanging node per edge. We ob-
serve, however, that (22) can neither be guaranteed witle ian one hanging
node per edge for quadrilaterals, nor for triangles with baeging node per edge
(see Problem 10).

Given an admissible grid’, a subset# of elements marked for refinement, and
a desired numbep > 1 of subdivisions to be performed in each marked element,
the procedure

7. =REFINE(Z, %)

creates a minimal admissible mesh > .7 such that all the elements o# are
subdivided at leagt times. In order for7, to be admissible, perhaps other elements
not in.# must be partitioned. Despite the fact that admissibilitg ionstraint on
the refinement procedure weaker than conformity, it canwoidathe propagation

of refinements beyond7”. The complexity oREFINE is again an issue which we
discuss ir6.4: we show that Theorem 1 extends to this case.

Lemma 3 (REFINE for Nonconforming Meshes).Let % be an arbitrary con-
forming partition ofQ, except for bisection in which cas® satisfies the labeling
(6) for d = 2 or its higher dimensional counterpart [53]. Then the estiea

k—1
BT —#T < Mo ZO#,///,- V> 1
j=

holds with a constanty depending orp,d andp.

We conclude by emphasizing that the polynomial interpotatind adaptive ap-
proximation theories 0§51.5 and 1.6 extend to nonconforming meshes with fixed
level of incompatibility as well.

1.8 Notes

The use of Sobolev numbers is not so common in the finite elefterature, but
allows as to write compact error estimates and speak abalinear Sobolev scale.
The latter concept is quite natural in nonlinear approxioratheory [22].

The discussion of bisection fat = 2 follows Binev, Dahmen, and DeVore [7].
Stevenson extended the theorydto- 2 [53]. We refer to the survey by Nochetto,
Siebert and Veeser [45] for a rather complete discussiou forl, and to§6 for a
proof of Theorem 1 fod = 2, which easily extends t > 2.

The discussion of finite element spaces [10, 11, 19] and paotyal interpolation
[11, 26, 48] is rather classical. In contrast, the materfi@daptive approximation is
much less documented. The principle of equidistributioeggoack to Balika and
Rheimboldt [5] and the a priori design of optimal meshes twner singularities for
d = 2 is due to Babska, Kellogg, and Pitkranta [3]. The construction of optimal
meshes via bisection using thresholding is extracted frome\B Dahmen, DeVore,
and Petrushev [8].
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Finally the discussion of nonconforming meshes follows iBoand Nochetto
[9], and continues i6 with the proof of Lemma 3.

1.9 Problems

Problem 1 (Nonconforming element).Given ad-simplex T in RY with vertices
2,...,Z4, construct a basido, ..., Aq of P1(T) such thatAi(z;) = §; for all i, ] €
{1,...,d}, wherez; denotes the barycenter of the face opposite to the vestex
Does this local basis also lead to a global on8%fi(.7)?

Problem 2 (Quadratic basis functions) Express the nodal basisB$(T) in terms
of barycentric coordinates df € .7.

Problem 3 (Quadratic dual functions). Derive expressions for the dual functions
of the quadratic local Lagrange basisi(T) for each element € 7. Construct

a global discontinuous dual bagis € S>~1(.7) of the global Lagrange basig €
S?9(7) forall ze A3(7).

Problem 4 (Lagrangian). Let h(x) be a smooth function locally equivalent to the
mesh-size and € C?(Q) ﬂW&(Q). Prove that a stationary point of the Lagrangian

Z[h A :_/

i (h(x)z(p*” ID2v(x)|P — h&)z) dx

satisfies the optimality condition
h(x)2(P~Y+2|D2y(x)|P = constant

Problem 5 (\Ng-regularity). Consider the functiov(r,8) = r¥¢@(6) in polar co-
ordinates(r, 8) for d = 2 with @(6) smooth. Show that € W3(Q) \ H3(Q) for
1<p<2/(2-y).

Problem 6 (Edge singularities).This problem exploreformally the effect of edge
singularities for dimensiod > 2 and polynomial degree> 1. Since edge (or line)
singularities are two dimensional locally, away from cameve assume the behav-
ior v(x) =~ r(x)¥ wherer (x) is the distance of € Q to an edge of2 andy > 0.

(a) Use the Principle of Equidistribution witlh= 2 to determine the mesh grading

h(x) ~ A zar (x)24 ama

(b) Show the following relation betweghand number of elements#= [, h(x)

(d—2)n

- = BT AN B

y >

) Ify> (d’dz)”, then deduce the optimal interpolation error decay
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_n
[O(V—=12V)|l2q) S (#T)d

(d) Prove tha1y> ) is equivalent to the regularity, [D™v|P < o for p >
2n+d If 7:= 2n+d > 1 then this would meawm € W“*l(Q). However, it is easy
to find examplesl > 2 orn > 1 for whicht < 1, in WhICh case the Sobolev space
Wpt(Q) must be replaced by the Besov sp&;'(Q) [22]. Note thatp > T is
precisely what yields the crucial relation between Sobolembers

sol(B};) =n+ 1—(:) >solHY) =1- g

We observe that fod = 2 all singular exponentg > 0 lead to optimal meshes, but
this is not true fod =3:n=1 require9/> 1 whereas1 = 2 needsy > 2. The latter
corresponds to a dihedral angle> and can be easily checked computatlonally
We thus conclude thaﬂ;otroplcgraded meshes are sufficient to deal with geometric
singularities ford = 2 but not ford > 2, for which anisotropicgraded meshes are
the only ones which exhibit optimal behavior. Their adagptenstruction is open.

Problem 7 (Local H2-regularity). Consider the functiow(x) ~ r(x)” wherer (x)

is the distance to the origin amd= 2.

(a) Examine the construction of a graded mesh via the thiéisigoalgorithm.

(b) Repeat the proof of Theorem 3 replacinquéregularity by the corresponding
local H2-regularity ofv depending on the distance to the origin.

Problem 8 (Thresholding ford > 2). Letd > 2,n=1, andv € WpZ(Q) with p >
2+d This implies thatv € H1(Q) but not necessarily i€%(Q). Use the quasi-

interpolantl » of Proposition 1 to define the locélt-error E1 for each element
T € 7 and use the thresholding algorithm to show Theorem 3 andli@oy@.

Problem 9 (Reduced rate)Letd > 2,n= 1, andv € W5(Q) with 1 < s < 2 and
sob(Ws) > sob(H%), namelys— % >1- %. Use the quasi-interpolaht of Propo-
sition 1 to define the locali*-error Er for each elemerit € .7 and use the thresh-

olding algorithm to show Corollary 2: giveN > #% there exists7 € T with
#7 —#75 < N such that

st
V=17Vl @) S IDV]Lp@)N™a .

Problem 10 (Level of incompatibility). This problem shows that keeping the num-
ber of hanging nodes per side bounded does not guarante@ddibievel of incom-
patibility for d = 2. The situation is similar fod > 2.

(a) Square elementsonstruct a selfsimilar quad-refinement of the unit squétk
only 2 hanging nodes per side and unbounded level of incabilitgt

(b) Triangular elementsconstruct selfsimilar red-refinements and bisection e=fin
ments of the unit reference triangle with 1 hanging node ¥ and unbounded
level of incompatibility.
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Problem 11 (Quasi-interpolation of discontinuous functims). Let .7 be an ad-
missible nonconforming mesh. L&Y(.7") denote the space of discontinuous piece-
wise polynomials of degre€ nover.7, andV®(.7) be the subspace of continuous
functions. Construct a local quasi-interpolation operae: V(.7) — VO(.7) with

the following approximation property for ¥l € V(.7) and|a| =0,1

1-|a]
2

DYV =17V)lli2r) < by

IV lleesyory) YT €7,

where X (T) stands for all sides withiNs(T) and[V] denotes the jump o¥
across sides.
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2 Error Bounds for Finite Element Solutions

In §1 we have seen that approximating a given known function migshes which
are adapted to that function can impressively outperforenapproximation with

quasi-uniform meshes. In view of the fact that the solutibra doundary value
problem is given only implicitly, it is not all clear if thisialso true for its adaptive
numerical solution. Considering a simple model problemdiadretization, we now
derive two upper bounds for the error of the finite elemenatsoh: an a priori one

and an a aposteriori one. The a priori bound reveals that aptae variant of the

finite element method has the potential of a similar perforcea The a posteriori
bound is a first step to design such a variant, which has tatfeceomplication that
the target function is given only implicitly.

2.1 Model Boundary Value Problem

In order to minimize technicalities in the presentation ue consider the following
simple boundary value problem as a model problem: find a shatationu = u(x)
such that

—div(AQOu)=f inQ,

23
u=0 onodQ, (23)

whereQ c RY is a bounded domain with Lipschitz bounda@@, A= A(x) a map
into the positive definitel x d matrices, and = f(x) a scalar load term. Introducing
the Hilbert space

1/2
V= M) = (VERY@) [vao =0}, Il = ([ IvE)
and the bilinear form
BV, w| ::/ Alv- Ow, vwevV,
Q

the weak solution of (23) is characterized by
ueVv: Blu,v] = (f, V) forallve V. (24)

calar product and also for a duality paring. We

Hereafter(-, -) stands for th&?(Q)-sc
= H&( )* and that there exist constants@; < a»

assumethat e V' =H"1(Q):
with
vxe Q, EeRY a1|E)? <AXE-E and|AX)E| < azlé|. (25)

The latter implies that the operaterdiv(AO-) is uniformly elliptic. Moreover, the
bilinear form 4 is coercive and continuous with constamtsanday, respectively.
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Lax-Milgram Theorem and PoindadtFriedrichs Inequality
[VIq <diam(Q)||0v]|q forallve V=HQ) (26)

thus ensure existence and uniqueness of the weak solutdn (2

Note thatA is not assumed to be symmetric and so the bilinear fafrmay be
nonsymmetric. For the a posteriori upper bound, we will isgjgome additional
regularity on the datd andAin §2.4.

2.2 Galerkin Solutions

SinceV has infinite dimension, problem (24) cannot be implemente @om-
puter and solved numerically. Given a subspg&ceV, the corresponding Galerkin
solution or approximation of (24) is given by

Uues: PBU, V] = (f,V) forallVv €S. (27)

We simply replaced each occurenceWbin (24) bys. If S is finite-dimensional, we
can choose a basis 8fand the coefficients of the expansiorlbtan be determined
by solving a square linear system.

Residual.Associate the functiona® € V* given by
(Z,V) = (f,v) — AU, V],

toU € S. The functionalZ is called the residual and depends only on the approxi-
mate solutiord and dataA and f. Moreover, it has the following properties:

e ltrelates to the typically unknown error functien-U in the following manner:
(%, V) = Blu—U, V| forallve V. (28)

This is a direct consequence of the characterization (2&)eoéxact solution.

e |t vanishes for discrete test functions, which in the cassyofimetricA corre-
sponds to the so-called Galerkin orthogonality:

Blu—U,V]=(#.,V)=0 forallVeS. (29)

This immediately follows from (28) and the definition (27)tbe Galerkin solu-
tion.

Quasi-Best Approximation. Property (25) ofA, Galerkin orthogonality (29) and
Cauchy-Schwarz Inequality ic?(Q) imply

arfu-UJ§ < Zu—U,u-U] = Bu-U,u-V]
< agllu=U|ly[u=Vlv
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for arbitraryV € S. This proves the famous

Theorem 4 (Céa Lemma). The Galerkin solution is a quasi-best approximation
from S with respect to th&/-norm:

ar .
u—Ully < —=inf [[lu—=V||y. 30
l lv < C(]_VES” 1% (30)

If the bilinear % is also symmetric and one considers the error with respect to
the so-called energy nor#|-, -]1/2, the Galerkin solution is even the best approxi-
mation fromS; see Problem 12.

2.3 Finite Element Solutions and A Priori Bound

Problem (27) can be solved numerically on a computer, if vépake of an imple-
mentable basis df. As an example of such space, [&tbe a conforming triangu-
lation of Q into d-simplices (this imposes further conditions @) and consider

S=V(7):={VeS"(T)|Vjq =0}, (31)

where, as in§1.4, S™(.7) the space of continuous functions that are piecewise
polynomial up to degree. This is in fact a subspace & = H}(Q) thanks to the
continuity requirement and boundary condition for the fimes in V(7). More-
over, the basi$ @} .« +nq from §1.4 can be easily constructed in the computer; see
for example Siebert [50].

The spacé/(7) is a popular choice fd§ in (27) and their combination may be
viewed as a model finite element discretization.

In §1.5 we studied the approximation propertiesS8©(.7) with the help of
(quasi-)interpolation operatots,. Since the right-hand side of (30) is bounded in
terms of [u— I 7ullv = [|[OD(u—l7U)[| 2o With |7 as in Proposition 2, the dis-
cussion of§1.5 applies also to the error of the Galerkin solutidg in V(7). In
particular, the combination of the&@ Lemma and Theorem 2 yields the following
upper bound. Since it does not involve the discrete solufias also comes with
the adjective ‘a priori'.

Theorem 5 (A priori upper bound). Assume that the exact solution u(@4) sat-
isfies ue WSP(Q) with1<s<n+1,1< p<2 and set

r:=solW3(Q)) — sob(H'(Q)) > 0.

Then the error of the finite element solutio W S = V(.7) of (27) satisfies the
global a priori upper bound

lu=Uz v < [N D%llLo(a)- (32)
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The discussion ir§1.6 about adaptively graded meshes only partially carries
over to the error of the finite element solutidh;, from now on denoted). In
view of the GGa Lemmagl1.6 shows that there are sequences of meshes such that
the error ofU decays as # /2 if, for example,d = 2 andu € W2P(Q) with
p > 1. Notice however that the thresholding algorithm utilizbe local errors
Er = [|[O(u—17U)[[ 2, which are typically not computable. The construction of
appropriate meshes when the target function is given onpfiaitly by a boundary
value problem is much more subtle. A first step towards thad gpodeveloped in the
next section.

2.4 A Posteriori Upper Bound

The a priori upper bound (32) is not computable and essentially provaieg
asymptotic information, namely the asymptotic convergerate. The goal of this
section is to derive an alternative bound, so-ca#lgmbsterioribound, that provides
information beyond asymptotics and is computable in terhtita and the approx-
imate solution. It is worth noting that such bounds are useftionly for adaptivity
but also for the quality assessment of the approximateisalut

Since in this section the grid’ is (arbitrary but) fixed, we simplify the notation
by suppressing the subscript indicating the dependencéeqgrid in case of the
approximate solution and similar quantities.

Error and Residual. Our starting point is the algebraic relationship (28) betwe
the residualZ and the error functiom —U. It implies (Problem 13)

1 a
lu=Ully < |2 < =2u=U]v, (33)
as az

which means that the dual norm

1]

v = sup{(6,v) [ VeV, |vlly < 1} (34)

is a good measure for the residudlif we are interested in the errdiu—U ||y =
|0(u—U)l| 2(q)- However the evaluation dfZ |y = [|%|y-1 (o) is impractical
and, moreover, does not provide local information for gugdan adaptive mesh
refinement. We therefore aim at a sharp upper bounﬁi‘%ﬂHflm) in terms of
locally computable quantitites.

Assumptions and Structure of ResidualFor the derivation of a computable upper
bound of the dual norm of the residual, we require that
fel?Q) and AcW*(Q;7) (35)

where the latter means thAtis Lipschitz in each element of". Under these as-
sumptions, we can writé%, v) as integrals over elemenise .7 and elementwise
integration by parts yields the representation:
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<92,v>:/ fv—ADU-Ov= Y /fv—ADU~Dv
JQ Ty /T

(36)
= rv+ / jv,
TZ? T Sez/ S
where
r=f4+div(AOU) inany simplexT € 7,
(ACQU) y simp (37)

j=[ADU]-n=n"-AOU;r+ +n"-AOUr- onany internal sid§e .7

andn™, n~ are unit normals pointing towards*, T~ € .7. We see that the dis-
tribution # consists of a regular part calledinterior or element residualand a
singular partj, calledjump or interelement residual’ he regular part is absolutely
continuous w.r.t. thel-dimensional Lebesgue measure and is related to the strong
form of the PDE. The singular part is supported on the skeléte= | Jg. o, Sof &
and is absolutely continuous w.r.t. thé— 1)-dimensional Hausdorff measure.

We point out that this structure of the residual is not sgeoithe model problem
and its discretization but rather arises from the weak fdation of the PDE and the
piecewise construction of finite element spaces.

Scaled Integral Norms.In view of the structure of the residuat, we make our goal
precise as follows: we aim at a sharp upper bound| 8|, -1 ) in terms of local
Lebesgue norms of the element and interelement residwaisl j, which are con-
sidered to be computable because they can be easily ap@@dmwith numerical
integration. This approach is usually called standard &epiasi error estimation.

The sharpness of these bounds crucially hinges on apptepoizal scaling con-
stants for the aforementioned Lebesgue norms, which depetite local geometry
of the mesh. For simplicity, we will explicitly trace onlyéhdependence on the lo-
cal mesh-size and write<’ instead of < C’, where the constant is bounded in
terms of the shape coefficieat 7)) = maxr< » hr /hy of the triangulation7 and
the dimensiord.

Localization. As a first step, we decompose the resid#ainto local contributions
with the help of the Courant basfgy},» from §1.4. Hereafter/” stands for the set
of vertices of.7, which coincide with the nodes 6f-°(.7). The Courant basis has
the following properties:

e |t provides a partition of unity:

=1 inQ. (38)

z€)

e For each interior vertex, the corresponding basis functigm is contained in
V(.7) and so the residual is orthogonal to the interior contrifmsiof the partition
of unity: i

(Z, @) =0 forallze ¥ =7 nNQ. (39)
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The second property corresponds to the Galerkin orthoggnisbtice that the first
property involves all vertices, while in the second one toergary vertices are
excluded.

Given anyv € H&(Q), we apply (38) and then (39) to write

<'@7V>: z<~@7Vq)z>: z<‘%v (V*CZ)(pl>7 (40)
eV =y

wherec; € R andc, = 0 whenever € 9 Q. Exploiting representation (36),0 ¢, <
1, and the fact that thg, are locally supported, we can bound each local contribution
(%, (V—cz)@) in the following manner:

(. (v=c] <| [ rv-coa + S @

/sz(v_CZ)q)z

where w, := Ur>,T is the star (or patch) around a vertexc ¥ in 7 andy, is
the skeleton otu, i.e. the union of all sides emanating framote that in (41) is
computed elementwise. We examine the two terms on the hightt side separately.

Bounding the Element Residual We first consider the terms associated with the
element residual. The key tool for a sharp bound is the following local Poirgcar
type inequality. Let

hy 1= |,/

and notice that this quantity is, up to the shape coeffiaEr¥ ), equivalent to the

diameter ofw,, to hy = [T|Y9 if T is ad-simplex ofw, and tohg := |§¥ @V if S
is a side ofy,.

Lemma 4 (Local Poincaie-type inequality). For any ve H&(Q) and ze 7 there
exists ¢ € R such that

IV —=Call 20y < hell OVl 20y - (42)
If ze 0Q is a boundary vertex, then we can take-0.

We postpone the proof of Lemma 4. Combining the Cauchy-Schimaquality
in L?(w,) and Lemma 4 readily yields

1/2 1/2
[ v < I @ i 19l S el 0z V- 43

Notice that the right-hand side consists of two factors: mgatable one in the
desired form and one that involves the test function in alleaaant of the norm of
the test space.

Bounding the Jump Residual.Next, we consider the terms associated to the jump
residual j. Recall thatj is supported on sides and so proceeding similarly as for
the element residual will bring up traces of the test functidbhe following trace
inequality exactly meets our needs.
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Lemma 5 (Scaled trace inequality) For any side S of a d-simplex T the following
inequality holds:

Wllzg < s IWl o) +he ZIOWll2ry  forallw e HY(T).  (44)

We again postpone the proof, now of Lemma 5. We apply first thacBy-
Schwarz inequality in.2(y;), then Lemma 5 and finally Lemma 4 to obtain

hy/2 1/2

1/2
300 < 1 Py v iz <071 0z | 45)

where the right-hand side has the same structure as that efément residual.

Upper Bound for Residual Norm. We collect the local estimates and sum them up
in order to arrive at the desired bound for the dual norm ofrdmdual. Inserting
the estimates (43) and (45) for element and jump residutdg41) gives

1/2 1 2 1/2
(.00 5 (Nellr @ o)+ 1221 2l 2 )1 W e

Recalling the decomposition (40), we sum oger ¥ and use Cauchy-Schwarz in
R*7 to arrive at

1/2 1/2 12
(@015 (3 I 1R+l 022y, ) ( 5 10,
eV ey
For bounding the second factor, we resort to the finite oppiteg property of stars,
namely
> Xen() <d+1,
eV
and infer that
3 1OV g S 11OV
=V
Since mesh refinement is typically based upon element sisimiiy we regroup
the terms within the first factor. To this end, denotehbyQ — R* the mesh-size
function given byh(x) := |§/¥ if x belongs to the interior of thesubsimplexS of
J withk e {1,...,d}. Then for allx € w, we haveh, < h(x). Therefore employing
(38) once more and recalling thiatis the union of all interior sides o¥”, we deduce

1/2 1/2 12 1/2
S N2l @ 2122y + Nl i @ Py S T DTG PR ) + 1N 6P
eV eV
= [l q +|\h1/2mﬁzr
(Q)

Thus, introducing thelement indicators

éa%(U,T) —h-|-||l’|| +hT||JH|_2 (AT\0Q) (46)
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and theerror estimator

EZU)= 3 E5U,T) (47)
TeT

we arrive at the following upper bound for the dual norm of tesidual:
12||n-1q) < €7 (V). (48)
Hereafter, we writef'» (U, .# ) to indicate that the estimator is computed aw&rC

7, whereast’s (U, ) = & (U) if no confusion arises.

Proofs of Poincae-Type and Trace Inequalities.We now prove Lemmas 4 and
5. We start with a formula for the mean value of a trace, whilloWs from the
Divergence Theorem.

Lemma 6 (Trace identity). Let T be a d-simplex, S a side of T, and z the vertex
opposite to S. Defining the vector fiejg loy
As(x) :=x~2

the following equality holds

|S4/ |T\/ +d‘_|_|/q5 Ow  forallwe W (T).

Proof. We start with properties of the vector fietd. Let S be an arbitrary side of
T and fix somey € S. We then se@g(X) - Nt = gg(y) -t + (X—Y) -nr = qg(y) - Nt
for anyx € S sincex —y is a tangent vector t8. Therefore, on each side @f the
associated normal flugs- nt is constant. In particular, we seg- nt vanishes on
JT \ Shy choosingy = zfor sides emanating fromm Moreover, divgs = d. Thus, if
w € CY(T), the Divergence Theorem yields

/TqS~Dw:—d/Tw+(qS~nT)|s/sw.

Takew = 1 to show(qs- nr);s = d|T|/|§ and extend the result to € WL(T) by
density. O

Proof of Lemma 5Apply Lemma 6 tojw|?; for the details see Problem 170

Proof of Lemma 4.1] For anyz € ¥ the value

6—1/v
Z\%\wz

is an optimal choice and (42) follows from (8) with = C,.

If ze 0Q, then we observe that there exists a Sde dw,NdQ such thav =0
on S. We therefore can write

= |a/ V=)= |S4/V°Z
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whence, using Lemma 5 and Step 1 for the second term,
IVll2(ay) S 11V = Calli2(a) + el OVl 20y < Dell VIl 20y

which establishes the supplement for boundary vertices.

Upper Bound for Error. Inserting the bound (48) for the dual norm of the residual
in the first bound of (33), we obtain the main result of thistigec

Theorem 6 (A posteriori upper bound). Let u be the exact solution of the model
problem(24) satisfying(25) and (35). The error of the finite element solutiond)
S=V(Z) of (27)is bounded in terms of the estimai@7) as follows:

1
[u-Ullv £ —&7(U), (49)
ax

where the hidden constant depends only on the shape casaftigi€”) of the trian-
gulation 7 and on the dimension d.

Notice that the a posteriori bound in Theorem 6 does not reqadditional regu-
larity on the exact solution as the a priori one in Theorem 5. On the other hand, the
dependence of the estimator on the approximate solutiorepte us from directly
extracting information such as asymptotic decay rate o&thar. The question thus
arises how sharp the a posteriori bound in Theorem 6 is.

In this context it is worth noticing that if we did not explaitthogonality and
used a global Poinca#type inequality instead of the local ones, the resultcay-s
ings of the element and jump residuals would be, respe;zti&kefimdh{l/2 and the
corresponding upper bound would have a lower asymptotiayete. We will show
in the next§3 that the upper bound in Theorem 6 is sharp in an asymptatsese

2.5 Notes

The discussion of the quasi-best approximation and the aiprpper bound of
the error of the finite element solution are classical; seseBs [10], Brenner-Scott
[11], and Ciarlet [19]. The core of the a posteriori upperthois a bound of the dual
norm of the residual in terms of scaled Lebesgue norms. Tgpscach is usually
calledstandard a posteriori error estimatioand has been successfully used for a
variety of problems and discretizations. For alternatippraaches we refer to the
monographs of Ainsworth and Oden [2] and \feth [58] on a posteriori errror
estimation.

Typically standard a posteriori error estimation is catroait with the help of er-
ror estimates for quasi-interpolation assth 5, which in turn rely on local Bramble-
Hilbert lemmas. The above presentation invokes only theiapease of Poincér
type inequalities. It is a simplified version of derivation\eeser and Veiirth [56],
which has been influenced by Baia and Rheinboldt [5], Carstensen and Funken
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[12], and Morin, Nochetto and Siebert [42], and provides artjgular constants
that are explicit in terms of local Poin@aconstants. It is worth mentioning that the
ensuing constants are found in [56] for sample meshes arelvadwes close to 1.

The setting and assumption of the model problem and diget@ih in this sec-
tion avoids the following complications: numerical intatjon, approximation of
boundary values, approximation of the domain, and inexalatisn of the discrete
system. While all these issues have been analyzed in an agoigext, only some
of them have been considered in a posteriori error estimatiee Ainsworth and
Kelly [1], Dorfler and Rumpf [25], Morin, Nochetto, and Siebert [42], Ketto,
Siebert, Schmidt and Veeser [46], and Sacchi and Veeser [47]

2.6 Problems

Problem 12 (Best approximation for symmetric problems).Consider the model
problem (24), assume in addition to (25) tiaits symmetric and denote the energy
norm associated with the differential operatediv(AC-) by

, 1/2
Vllg == Alv- v .
Il = ( f, A0v-ov)

Prove that the Galerkin solution is the best approximatiomfS = V(.7) with
respect to the energy norm:

—u =minllu=V]||,. 50
llu=Ullg = minflu—Vilg (50)

Derive from this that in this case (30) improves to

ar .
u—Ully < /= inf [u—=V||y.
Ju=Ullv < /52 it Jlu=Vy

Problem 13 (Equivalence of error and residual norm).Prove the equivalence
(33) between error and dual norm of the residual. Considentbdel problem also
with a symmetricA and derive a similar relationship for the energy norm error.

Problem 14 (Dominance of jump residual).Considering the model problem (24)
and its discretization (27) with (31) amd= 1, show that, up to higher order terms,
the jump residual

_ 1/2
nr W)= (3 I2i1Zg)
S

bounds|Z||;-1(q). Which entails that the estimatét; (U ) is dominated by 7 (U).
To this end, revise the proof of the upper bound|f@||,;-1 (o), use

c—i/ fo
‘ fwzqolwz -
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and rewritef,, f (v—c;) @, by exploiting this weightedi?-orthogonality.

Problem 15 (A posteriori upper bound with quasi-interpolation). Consider the
model problem (24) and its discretization (27) with speee V(.7), and derive the
upper a posteriori error bound without using the discreteitien of unity. To this
end, use (36) and combine the scaled trace inequality (4#)the local interpola-
tion error estimate (7). Show as an intermediate step therupgund

(2SS E7UT)OVIzw, m) (51)
TeT

with N (T) from §1.5. This bound will be useful if4.

Problem 16 (Upper bound for certain singular loads).Revising the proof of The-
orem 6, derive an a posteriori upper bound in the case of-tighd sides of the form

(v = [gov+ [aw  vev—Hi(@)
r

wheregp € L2(Q), g1 € L?(I"), andl™ stands for the skeleton of the mesh

Problem 17 (Scaled trace inequality)Work out the details of the proof of Lemma
5, taking into account théditr ~ |T|/|S ~ hs.

Problem 18 (A posteriori upper bound for L?-error). Assuming that2 is convex
and applying a duality argument, establish a variant of (83jveen the_?-error
[u—Ul| 2., and a suitable dual norm of the residual. Use this to derieeathos-
teriori upper bound

1/2
[u=Ull20) < < > h%gf/.(u,T)z) ;
TeT

where the hidden constant depends in addition on the dofain
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3 Lower A Posteriori Bounds

The goal of this section is to assess the sharpness of theteripdasupper bound
for the model problem and discretization. We show not onbt ihis sharp in an
asymptotic sense like the a priori bound but also in a loaads@nd, for certain data,
in a non-asymptotic sense. Moreover, we verify that thetatannot be true for all
data and argue that this is the price to pay for the upper btmhd computable.

Asin §2.4, ‘<’ stands for < C’, where the constari is bounded in terms of the
shape coefficentr(.7) of the triangulation7 and the dimensiod and, often, we
do not indicate the dependence on the arbitrary but fixedgdtitation.

3.1 Local Lower Bounds

The first step in the derivation of the upper bound (49) is thaterror is bounded in
terms of an appropriate dual norm of the residual. In the csige model problem
(24) this relies on the continuity ¢f- div(AJ:)] "1 : H=1(Q) — H}(Q). Notice that
the inverse is a global operator, whilediv(AC-) in the classical sense is a local
one. One thus may suspect that an appropriate local dual obthe residual is
bounded in terms of the local error. Let us verify this for thedel problem (24).

Local Dual Norms. Let w be a subdomain a2 and notice thaH ~*(w) is a good
candidate for the local counterpartidf-1(Q). Givenv € H}(w) (and extending it
by zero onQ \ w), the algebraic relationship (28), the Cauchy-Schwargiadity

in L?(w), and (25) readily yield

(#,V) = Blu-U, V| = /wAD(U—U) -0v < a2|[0(u=U)l 20 1BVl 2 0)-

Consequently,
1241wy < @2/ DU=U)|[2(g), (52)

entailing that lower bounds for the local errgitl(u—U)/[ 2, may be shown by
bounding the local dual norZ |41, from below.

Local Dual and Scaled Integral Norms.As for the a posteriori upper bound, we
assume (35). If we take =T € .7 in the preceding paragraph, then there holds

|y sy = sup (@)= sup [v=rllyxr,  (59)
”DVHLZ(T)S]- HDV”LZ(T)S]- T

thanks to the representation (36). Recall that the corredipg indicator&’» (U, T)
contains the ternfir(|r[| 2ty and therefore we wonder about the relationship of
[{l4-1(r) @ndhr {|r{|_2(r). Mimicking the local part in the derivation of the a poste-
riori upper bound ir§2.4, we obtain
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/TrV < IrllezemylIVilzery < hrlirllizeny 1OV 2
with the help of the PoincéarFriedrichs inequality (26). Hence there holds
Irllw-2¢r) S brllrlieeny (54)

Sincel?(Q) is a proper subspace &f1(Q), the inverse inequality cannot hold
for arbitraryr. Consequentlyhir [|r{| 2.ty may overestimatdr ||, -1.r). On the other
hand, ifr € R is constantandn = nt denotes a non-negative funcnon with proper-
ties

TIS [0, supm =T, [Onlleer) S hy? (55)

(postpone the question of existence until (59) below), wadude

IFZaqr) S [ r(en) < ellaaer) 15 ez
< Il -amy I ez 19 oy B2l -agmy Iz
whence
brlirllzery S I lla-1cr)- (56)

This shows that overestimation in (54) is causedbyillationof r at a scale finer
than the mesh-size. Notice that (56) is a so-called invesgmate, where one norm
is a dual norm. It is also valid far € P»(T), but the constant deteriorates with the
degreen; see Problem 22.

Local Lower Bound with Element Residual.Motivated by the observations of the
preceding paragraph, we expect thaf|r || 2r) bounds asymptoticallyZ ||, -1,
from below and introduce thescillation of the interior residuain T defined by

hr{lr =Tl 2T

wherert denotes the mean valueoin T. Replacing by rr in (56) and byr —
in (54), as well as recalling (53), we derive
hrlirllzery < belrrlfizer +hrllr =Trfle
S IFrl-aery +hrllr =Tr iz
Srlla-2ery +lIr =Trlla-1 +hT||r—rTHLz
S 2|1 +hT||r—TT||Lz

(57)

This is the desired statement because the oscillétigin — 7 [| 2(1) is expected to
convergence faster thaw [r|[ 2.y under refinement. In particular, if = 1, then
r = f and the oscillation of the interior residual becondesa oscillation

oscy (,T) == |Ih(f—fr)| 2, forall Te.7. (58)
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Note that in this case there is one additional order of cageree iff € H1(Q).

The inequality (57) holds also withr chosen fronPy, (T), with ny > 1, at the
price of a larger constant hidden 8. We postpone the discussion of the higher
order nature of the oscillation in this case after Theoreneldw.

We conclude this paragraph by commenting on the choice afutieff function
nt € WX(T) with (55). For example, we may take

nr=d+)" 1 A (59)

Y NT

whereA;, z€ 7 N T, are the barycentric coordinates Bffrom §1.4. This choice

is due to Veriirth [57, 58]. Another choice, due todfler [24], can be defined as
follows: refineT such that there appears an interior node and take the corrdsp
ing Courant basis function on the virtual triangulationTgf see Fig. 10 for the

2-dimensional case.

suppn

Fig. 10 Virtual refinement of a triangle for the @fler cut-off function.

The Dorfler cut-off function has the additional property thatstan element of
a refined finite element space. This is not important here befull when proving
lower bounds for the differences of two discrete soluti@es e.g. Problem 23. Such
estimates are therefore calldiscrete lower boundvhereas the bound for the true
error is calledcontinuous lower bound

Local Lower Bound with Jump Residual. We next strive for a local lower bound

for the error in terms of the jump residuhi/2||jH,_z<S), Se ., and use the local
lower bound in terms of the element residual as guideline.

We first notice thaj = [[ACJU]] may not be constant on an interior siflie . due
to the presence &. We therefore introduce thescillation of the jump residuah S,

1/2. =
hs/ 17— sl
wherejg stands for the mean value pbn S, and write

1/2 - 1/2,= 1/2 - -
heillzs < hg I Tsllieg +he 2l —Tsllizs - (60)

Notice that here the important question about the orderisfdbcillation is not ob-
vious because, in contrast to the oscillation of the elemesitiual in the case=1,
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the approximate solutiod is involved. We postpone the corresponding discussion
until after Theorem 7 below.

To choose a counterpart @fy, let ws denote the patch composed of the two
elements of7 sharingS,; see Fig. 11 (left) for the 2-dimensional case. Obviously
has a nonempty interior. Lefs € W (ws) be a cut-off function with the properties

IS < /S’"IS, supms = ws, [INslowy =1 100s]lLe(wg) < hgl. (61)

Following Verfurth [57, 58] we may takgs given by

d T
nst =d AL, (62)
| zel;lﬁs ‘

whereT C ws and/\zT, ze ¥ NT, are the barycentric coordinates Bf Also here

Z;
(*)s; j y
Z; g

Fig. 11 Patchaws of triangles associated to interior side (left) and its refinemf@nDorfler cut-off
function (right).

Dorfler [24] proposed the following alternative: refing such that there appears an
interior node ofS and take the corresponding Courant basis function on theair
triangulation ofws; see Fig. 11 (right) for the 2-dimensional case.

After these preparations we are ready to derive a countegp@b7). In view of
the properties ofjs, we have

ITslZg < [Isisns) = [ivs+ [[(is=ivs (63

with vs = jgns. We rewrite the first term on the right-hand side with the esgnta-
tion formula (36) as follows:

/jVS:—/ er+<%,Vs>;
S ws

in contrast to (53), the jump residual couples with the eletmesidual. Hence

’/ jVs
ws

In view of the Poinca-Friedrichs inequality (26)ws| < hs|S and (61), we have

< I llz(eag) Vsl Lz (@ag) + (12111 eog) 1DVl L2 -
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- 1/2,~
Vsl 2y S sl TSI L2(og) < Nl T8l L2y 100l o) < N8 - [Tl (s-

We thus infer that

‘/ jvs
ws

and, using (44),

s iws

Inserting these estimates into (63) yields

1/2 —-1/2 -
< (W27l 2y + s 21 1) ) Tl 2o

< lis=illzg Ivsllizg < lis— illzg lsllzs)-

- 1/2 ~1/2 - -
||Jstz<S) S (hs/ I llL2(eg) +hs / H%IIH—l(wS)+HJs—JHL2(S))||JSHL2(S)

whence, recalling (60),
1/2) ; 12~ .
he 21 ilizis) S 12 h-1(wg) +hslFlliziag + e ZITs = illizs- (64)

This estimate also holds j§ € Py, (S) is a polynomial of degree: n, (Problem 27).

Local Lower Bound with Indicator. We combine the two results on interior and
jump residual and exploit also the local relationship betwessidual and error in
order to obtain a local lower bound in terms of a single intlica

To this end, we introduce the following notation for the diations. Recall the
mesh-size functioh from §1.5 and let

F=Pnaf, |=Pn_1j,

where Pon_orir and Por-1jjs are theL2-orthogonal projections of and j onto
Pon_2(T) andPyn_1(S), respectively. The choice of the polynomial degrees arise
from the desire that the oscillations are of higher ordetaid® are discussed after
Theorem 7. Moreover, we associate with each simplex.7 the patch

wr= |J s
SCaT\0Q

(see Fig. 12 for the 2-dimensional case), and define thelatsail in cor by
0s¢7 (U, wr) = [h(r =T)l|2(eor) + 1720 = Dl 207 00)- (65)

In general, as indicated by the notation, the oscillatiqmesiels on the approximation
U. However, in certain situations, it may be independent efpproximatiotJ and
then becomedataoscillation (58); see also Problem 19.

Theorem 7 (Local lower bound).Let u be the exact solution of the model problem
(24) satisfying(25) and (35). Each element indicator ai46) bounds, up to oscilla-
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Fig. 12 Patch associated to a triangle in the local lower bound.

tion, the local error of an approximation & V(.7) from below:
E7(U,T) S az[[0(u—U)|lL2(e) +0sc7 (U, wr) forall T € 7, (66)

where the hidden constant depends only on the shape caafioithe simplices in
wr, the dimension d and the polynomial degree n.

Proof. We combine (57) and (64), whefand] are piecewise polynomial of degree
2n—2 and 21— 1, respectively. Notindis ~ ht for all interior sidesS € . with
Sc aT and and|Z||y 11y < |2 |ln-1(er) for T C T, we thus derive

E7(U,T) SN2 n-1(p) + 100 =)l L2y + IhY/2(F - Dlzemoo)-
Thus, the special case
2] l4-1(0r) < A2 |BU=U)I| 2(eor)
of (52) finishes the proof. O

A discussion of the significance of local lower bound in Theenr7 is in order.
To this end, we first consider the decay properties of thellaon terms, which
are crucial for the relevance of the aforementioned boureénTwe remark about
the importance of the fact that the bound in Theorem 7 is Id€aklly, in the next
section, we provide a global lower bound as corollary andudis its relationship
with the upper bound in Theorem 6.

Higher Order Nature of Oscillation. In some sense the oscillation pollutes the
local lower bound in Theorem 7. It is therefore importanttttiee oscillaton is or
gets small relative to the local error. We therefore complageconvergence order of
the oscillation (65) with that of the local error.

To this end, let us first observe that the choices of the pathyabdegrees in
the oscillation allow us to derive the following upper bousfthe oscillation (see
Problem 29):

oscz (U, wr) < [Ih(f —Pon—2f)l[ 2(0)

| | (67)
+ (IIn(div A= P2 (dVA)) 1= o) + 1A= oAl )1V 2
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If f andA are smooth, one expects that the local error vanishes like
d/2+
18u=U)ll 2 = O(hF*™)

and, in view of (67), oscillation like

0scr (U, wr) = 0(hy2Y),
See also Problem 30 for a stronger result for the jump residua

The oscillation osg¢ (U, wr) is therefore expected to be of higher ordehag 0.
However, as Problem 32 below illustrates, it may be relewntelatively coarse
triangulations7 .

Local Lower Bound and Marking. In contrast to the upper bound in Theorem 6,
the lower bound in Theorem 7 is local. This is very welcome @oatext of adaptiv-
ity. In fact, if osc7 (U, wr) < [|[O(u—U)|[ 24 ), as we expect asymptotically, then
(66) translates into

E7(U,T) S az||0U—U)l 2 (68)

This means that an elemehtwith relatively large error indicator contains a large
portion of the error. To improve the solutidh effectively, suchT must be split
giving rise to a procedure that tries to equidistribute exrdhis is consistent with
the discussion of adaptive approximation@fl ford = 1 and of§1.6 ford > 1.

3.2 Global Lower Bound

We derive a global lower bound from the local one in Theorernd discuss its
relationship with the global upper bound in Theorem 6.
The global counterpart of osqU, wr) from (65) is given by

oscz (U) = [[h(r =) ([ 2(0) + 102 (] = Dlleary (69)
wherer is computed elementwise ovéf andl” is the interior skeleton of7.

Corollary 3 (Global lower bound). Let u be the exact solution of the model prob-
lem (24) satisfying(25) and (35). The estimato(47) bounds, up to oscillation, the
error of an approximation Us V(.7) from below:

¢7(U) S azu—Ully +oscr(U) (70)

where the hidden constant depends on the shape coefficient thie dimension d,
and the polynomial degree n.

Proof. Sum (66) over all € .7 and take into account that each element is contained
in at most byd + 2 patchegor. 0O
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Supposing that the approximatithis the Galerkin solution (27) with (31), the
upper and lower a posteriori bounds in Theorem 6 and CoyoBamply

1 o 1
lu=Ully £ —&7(U) S 2[lu—Ully +—oscz(U). (72)
ay ag ay

In other words, the error and estimator are equivalent ugstdlation.

In Problem 32 we present an example for which the rdtio- U ||yv/&#(U)
can be made arbitrarily small. Consequently, a lower bouitbout pollution and
a perfect equivalence of error and estimator cannot be trigeneral. Moreover,
for that example there hold$, (U) = osc» (U), indicating that os¢ (U ) is a good
measure to account for the discrepancy.

We see that osg(U) intervenes in the relationship of error and estimator and,
therefore, cannot be ignored in an analysis of an adaptgerithm using the esti-
matoré&’s (U); we will come back to this i§7. The case of data oscillation will be
simpler than the general case in which ggtd) depends on the approximatiah
the latter dependence creates a nonlinear interactioreindhptive algorithm.

The presence of oscillation is also consistent with our ipev comparison of
local dual norms and scaled integral norms. Since we invekatkd integral norm
in order to have an (almost) computable upper bound, thigestg that, at least for
standard a posteriori error estimation, oscillation is iagthat we have to pay for
computability.

Fortunately, as we have illustrated§B.1, oscillation is typically of higher order
and then the a posteriori upper bound in Theorem 6 is asyiogligtsharp in that
its decay rate coincides with the one of the error, as theaiground of Theorem
5. Notice however the lower bound in Corollary 3 providesomfiation beyond
asymptotics: for example, if we consider the linear finiteneént method, that is
n=1, then osg (U) vanishes for all triangulations on whidhandA are piecewise
constant and in this class of meshes error and estimatonasesgjuivalent:

[0(u—=U)ll2(q) = &7 ().

In summary: the estimataf(U) from (47) is computable, it may be used to
quantify the error and, in view of the local propertiesB11, its indicators may be
employed to provide the problem-specific information fardbrefinement.

3.3 Notes

Local lower bounds first appear in the work of Bdka and Miller [4]. Their deriva-
tion with continuous bubble functions is due to \Math [57], while the discrete
lower bounds are due todfler [24].

The discussion of the relationship between local dual nantsscaled integral
norms as the reason for oscillation is an elaborated vesi@acchi-Veeser's one
[47, Remark 3.1]. It is worth mentioning that there the iradars associated with
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the approximation of the Dirichlet boundary values do notdhéo invoke scaled
Lebesgue norms and are overestimation-free. Binev, DatandrDeVore [7] and
Stevenson [52] arrange the a posteriori analysis such witation is measured in
H~1(Q). This avoids overestimation but brings back the questiom tao(approxi-
mately) evaluate thel ~1(Q)-norm at acceptable cost. This question is open.

One may think that the issue of oscillation is specific to déad a posteriori
error estimation. However all estimators we are aware desfifom oscillations of
the data that are finer than the mesh-size. For example, ioae of hierarchical
estimatorsy#(U) [2, 55, 58], as well as those based upon local discrete prable
[2,12, 42] or on gradient recovery [2, 27], the oscillatiaisas in the upper but not
in the lower bounds and so creates a similar gap as that disdueere, namely

N7(U) < 0U—U)ll2() S 17 (U) +0scs (U). (72)

3.4 Problems

Problem 19 (Data oscillation).Check that osg (U, wr) in (65) does not depend
on the approximatiot if U is piecewise affine anA is piecewise constant, and is
given by

osd f, cr) = [In(f — )l 2(g)
which corresponds to element data oscillation in (58).

Problem 20 (Energy norm case)Consider model problem (24) and discretization
(27) withS = V() andA symmetric. Derive the counterparts of (66) and (71) for
the energy norm and discuss the difference to the case peesesre.

Problem 21 (Cut-off functions for simplices). Verify that a suitable multiple of
the Verfurth cut-off function (59) satisfies the properties (55).th@ end, exploit
affine equivalence of to a fixed reference simplex and shape regularity. Repeat for
the corresponding &fler cut-off function.

Problem 22 (Inverse estimate for general polynomials)(Try this problem after
Problem 21.) Show that the choice (59) fpr verifies, for allp € P(T),

Lo [ofnr. 100l Sheiplem

with constants depending orand the shape coefficient ®f To this end, recall the
equivalence of norms in finite-dimensional spaces. Deheeeistimate

brlirllzery S IPllp-2r)
forr € Pp(T).

Problem 23 (Lower bound for correction). Consider the model problem and its
discretization ford = 2 andn = 1. LetU; be the solution over a triangulatiofi,
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andU, the solution over7,, where 7, has been obtained by applying at least 3
bisections to every triangle af;. Moreover, suppose thdtis piecewise constant
over.7;. Show

[0U2—=U1)l[2(0) = Ihafll2q),
whereh, is the mesh-size function of;.

Problem 24 (Cut-off functions for sides).Verify that a suitable multiple of the
Verfurth cut-off function (62) satisfies the properties (61).pRat for the corre-
sponding rfler cut-off function.

Problem 25 (Polynomial extension)Let Sbe a side of a simpleX. Show that for
eachq € Py(S) there exists @ € P(T) such that

2
p=qonS and  |plizm <M lallzs-

Problem 26 (Norm equivalences with cut-off functions of sids).Let She a side
of a simplexT. Show that the choice (62) fays verifies, for allq € P,(S) and all

pePm(T),

J s [dfns 1008 Iz < Pl

with constants depending an n, and the shape coefficient ®f

Problem 27 (Lower bound with jump residual and general oscilation). Exploit
the claims in Problems 25 and 26, to rederive the estimafeli@this time withr
and] piecewise polynomials of degreen; andn,.

Problem 28 (Best approximation of a product).Let K be either a or a(d — 1)-
simplex. For¢ € N denote byPh: LP(K,RY) — P(K,R’) the operator of bedtP-
approximation irk. Prove that, for al € L*(K,R), V € P,(K,R) andm> n,

IW = PEW) L2y < IV =P aVlLe ) IV Lok

Problem 29 (Upper bound for oscillation). Verify the upper bound (67) for the
oscillation by exploiting Problem 28.

Problem 30 (Superconvergence of jump residual oscillation Show that ifA is
smooth across interelement boundaries, then the osaillati the jump residual is
superconvergent in that
11 =Tslzg =03 llillzg  ashs™\0.
Problem 31 (Simplified bound of oscillation).Using (67), show that (35) implies
0567 (U, @r) S hr (| llez(n) + 10Uz ) (73)

where the hidden constant depends alsé\on
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Problem 32 (Necessity of oscillation)Let £ = 27X for K integer and extend
the function %x(s — |x|) defined on(—¢,¢) to a Z-periodic C! function ug on
Q = (—1,1). Moreover, let the forcing function b& = —u”, which is Z-periodic
and piecewise constant with valugd that change at multiples af see Fig. 13.
Let .Z; be a uniform mesh with mesh-sihe= 2%, with k < K. We consider piece-

Fig. 13 An strongly oscillating forcing function.

wise linear finite element8(.7;) and corresponding Galerkin solutibl € V(.%).
Observing thaf, is L2(Q)-orthogonal to both the space of piecewise constants and
linears overZ;, show that

~

£ 2”
lug = Ugllizio) = U ll20) = NG

<27 =h= el zq) = 05z (Ue) = &7 (Ue).

Extend this 1d example via a checkerboard pattern to anyrdiioe.
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4 Convergence of AFEM

The purpose of this section is to formulate an adaptive fielement method
(AFEM) and to prove that it generates a sequence of apprdgisautions con-
verging to the exact one. The method consists in the follgwiain steps:

SOLVE — ESTIMATE — MARK — REFINE.

By their nature, adaptive algorithms define the sequenceppfoximate solu-
tions as well as associated meshes and spaces only inyplidiik fact requires an
approach that differs from ‘classical’ convergence protisparticular, a proof of
convergence will hinge on results of an a posteriori analgsiing§2.4 and 3.

The approach presented in this section covers wide clagestdems, discrete
spaces, estimators and marking strategies. Here we dorivetfsir such generality
but instead, in order to minimize technicalities, illuséréhe main arguments only
in a model case and then hint on possible generalizations.

It is worth noticing that, conceptually, the following cargence proof does not
suppose any additional regularity of the exact solutionngggjuently, it does not
(and cannot) provide any information about the convergepesd. This important
issue will be the concern @f7 for smaller classes of problems and algorithms.

4.1 A Model Adaptive Algorithm

We first present an AFEM for the model problem (24), which isesaample of a
standarditerative process that is often used in practicegdm?2 we then prove its
convergence and, finally, if4.3 we comment on generalizations still covered by
the given approach.

AFEM. The main structure of the adaptive finite element method ifobews:
given an initial grid%, setk = 0 and iterate

1. U = SOLVE(%);

2. {gk(ukaT)}Teﬂk = EST|MATE(U|(7 c7|(),
3. Q//k = MARK({éak(Uk,T)}Tegk, ,%(),

4. Fi,1 = REFINE(#, Z); K — k+1.

Thus, the algorithm produces sequencég),_, of meshes(Uy)y_, of approxi-
mate solutions, and, implicitly,Vy )., of discrete spaces.

We next state our main assumptions and define the aforemedtimodules for
the problem at hand in detail.

Assumptions on continuous problemWe assume that the model problem (24)
satisfies (25) and (35) so that the a posteriori error bouhg$and 3 are available.

Initial grid. Assume that7 is some initial triangulation of2 such thatA is piece-
wise Lipschitz over%.
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Solve.Let
Vici=V(R) = {V € S"(R) | Vgq =0}

be the space of continuous functions that are piecewisenpoiial of degree< n
over %, and compute the Galerkin solutitl in Vi given by

Uy € Vi : /QADUK-DV:/QfV forall V € V.

Estimate. Compute the error estimat¢gi (Ux, T) } 1< 5, given by

) 1/2

AU T) = (R 22, + 1 02 om0
wherehr = |T|1/d, r andj are the element and jump residuals from (37) associated
to the approximate solutiddy.

Mark. Collect a subsetz C i of marked elements with the following property:
VT € % & (U, T) = Skmax>0 = Te¢ My (74)

Wlth C/)@k7max = ma)('reqk éak(uk7 T).

Refine.Refine.% into 7 1 using bisection, as explainedj.3, in such a way that
each element inZj is bisected at least once and, finally, increment

Classical convergence proofs consider the case of unifermpn-adaptive’, re-
finement, which is included in the above class of algorithjnshmoosing 7 = %,
thereby ignoring the information provided by the estimafbinese convergence
proofs rely on the fact that the maximum mesh-size decretas@sand therefore
U oVk = H(}(Q). The above algorithm does not require this property, neitxe
plicity nor implicitly in general. In fact this property isot desirable in an adaptive
context, since (30) reveals that it is sufficient to appraatienonly one function of
Hol(Q), namely the exact solution of (24). In the next section we see that the
above alogrithm ensures just convergencelty a subtle combination of properties
of estimator and marking strategy.

4.2 Convergence

The goal of this section is to prove the convergence of the MK §4.1. More
precisely, we show that the sequeridg)y_, of approximate solutions converges to
the exact solutiom of the model problem (24).

Throughout this section<’ stands for < C’, where the constant is independent
of the iteration numbek in the adaptive algorithm.
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Convergence to Some FunctionWe expect the Galerkin solutiorigy)y_, to ap-
proximate the exact solutiamin V = H}(Q). In any event, we may regard them as
approximations to the Galerkin solutiaf, in the limit

Voo i= [ Vi
k=0

of the discrete spaces. Notice tHé, is a subspace o¥, which may not coin-
cide withV (see below). In the next lemma we adopt this viewpoint andvshat
(Uk)k_o converges tdJe.

Lemma 7 (Limit of approximate solutions). The finite element solutiorfsly )y _,
converge inV to the Galerkin solution U € V, given by

/ADUWDV:/ fv  forallV e V.
Q Q

Proof. Since the sequence V) is nested (see Problem 33), the $gt is a
closed linear subspace ®f HenceV,, is a Hilbert space and the bilinear forz
is coercive and continuous O0%.. The Lax-Milgram Theorem therefore ensures
existence and uniquenesslhf.
Letk € Ng and note thaVy C V... We can therefore repladéby V., in Theorem
4 and obtain
Vo — Ukl < jnf U =V

Sendingk — oo then finishes the proof, because the right-hand side dexgd¢a
by the very definition of,,. O

Lemma 7 reduces our task to showing tbiat= u. Notice that this is equivalent
to the conditioru € V., illustrating that in general there is no need T = V.

The identityU., = u hinges on the design of the adaptive algorithm. To illustrat
this point, let us consider two extreme examples:

¢ It may happen that all indicators vanish in iteratidn Thendj: max= 0 and (74)
is compatible withz = 0 andV., = V for all k > k*. In this caselJ., = Uy and
convergence is only ensured if a vanishing estimator irspdieszanishing error.
The latter is given in particular if the estimator bounds ¢ner from above.

e It may happen that only the simplices containing a fixed panet bisected in
each iteration, but the exact solutiarhas a more complex structure so thiat
V. Sinceu # U, and uniform refinement is not enforced, the adaptive proced
must depend on the unknown function

Convergence therefore will require that the moda&TIMATE extracts enough
relevant information about the error, the modMARK uses this information cor-
rectly, and the modulREFINE reduces the mesh-size where requested.

Mesh-Size before BisectionThe moduleREFINE bisects elements and so halves
their volume. This implies the following useful property@&ments to be bisected,
which include the marked elements.
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Lemma 8 (Sequences of elements to be bisecte@r any sequencéTy)y_, of
elements with e i\ k.1 there holddimy_. | Tx| = 0.

Proof. Suppose that limsyp,, | Tc| > ¢ > 0, that is there exists a infinite subse-
quence(Ti, ), such that lim_, |Tk€| > c. Recall that the children of a bisection have
half the volume of the parent. Consequently, only a finite benof children of any
generation of eacfi,, can appear in the sequencg,),. Eliminating inductively
these children, we obtain an infinite sequence of simplicéls @isjoint interiors
and volume greater tham> 0. This however contradicts the boundednes£of
whence limsup .., |Tk| < 0, which is equivalent to the assertion

It is instructive and convenient to reformulate Lemma 8 imis of mesh-size
functions.

Lemma 9 (Mesh-size of elements to be bisected).xx denotes the characteristic
function of the unionrc 5, 4, T of elements to be bisected andsithe mesh-size
function of.%, then

l!i_':QOHthkHLw(Q) =0

Proof. We may assume thak \ .1 # 0 for all k € Ng without loss of generality.
Choose(Tk)i_o such thafly € Jk\ k1 andhy, = maxrc 5, 4, hr and, recalling

thathy = \T|1/d, use Lemma 8 to deduce the assertion.

Lemma 9 may be viewed as a generalization oflim ||hg/|_»(o) = 0 in the case
of uniform refinement. It may be proven also by invoking tlmeiting mesh-sizé..;
see Problems 34 and 35. The limiting mesh-size describdedhkstructure ofV
and may differ from the zero function.

Convergence to Exact Solutionln order to achievé,, = u, we may investigate the
residual ofU.,, which is related to the residuals of the finite element sohstUy.
The latter are in turn controlled by the element indicat&@J, T), T € %, which
are employed in the stddARK. The fact that indicators with maximum value are
marked yields the following property of the largest elemiedicator & max.

Lemma 10 (Convergence of maximum indicator)There holds
‘!Im éak7ma>(: O.

Proof. We may assume tha# # 0 for all k € Ng without loss of generality. Choose
asequencgly)y_o of elements such thak € 7 andéi(Uk, Tk) = &k max. Thanks to
(74), we havely € ., and so Lemma 8 and modUREFINE yield limy_.., | Ty| = 0.
Exploiting the local lower bound in Theorem 7 and the simgtifupper bound for
the local oscillation (73), we derive the following estimdbr any indicator for
T e %

k(Ui T) S 18Uk = Ueo) | L2(gop) + 1 B(Ueo — U)][ 2o

(75)
1 (11 ez + 1 0Uklz(ar) )
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Taking T = Ty, we obtain
éak,max: Cg}k(uk»Tk) S ”Uk - U°°||V + || D(Um - U)HLZ(oq()

+ Tl (1l 2y + Vel )

with «y := wr,. Consequently, Lemma 7 and kms |Tx| = 0, which also entails
limy_.. |ax| = 0, prove the assertion.O

With these preparations we are ready for the first main regutiis section.

Theorem 8 (Convergence of approximate solutions)l.et u be the exact solution
of the model problen(24) satisfying(25) and (35). The finite element solutions
(Uk)p_, of the AFEM oft4.1 converge to the exact one¥h

U —uinVas k— oo,

Proof. [ 1|In view of Lemma 7, it remains to show thdt, = u. This is equivalent to
0= (%o, V) ::/ fv—/ ADU,-Ov  forallve V=HQ).  (76)
Q Q

Here we can take the test functions fr@§i(Q), becaus€g (Q) is a dense subset
of the Hilbert spacdﬁ(}(Q). Lemma 7 therefore ensures that (76) follows from

0=lim (% ¢) V¢ €Cy(Q), (77)
whereZy € V* is the residual oy given by

(%, V) = /Q fv—/QADUk~ Ov.
In order to show (77), lep € C7'(Q) and introduce the set

m>/

of elements in7; that will no longer be bisected; note that#* # 0, thenV # V.
Given? <k, V, C Vg and (51) imply

(%, ) = (%  —109) SSk+ Sk (78)
where we expect that

Ski= kUi, IO — 1) lzn ()
AT

gets small because of decreasing mesh-size whereas
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Ski= ; kUi IO —1ed) l2n (1)
Tegy

gets small because of properties of the adaptive algorithm.
We first deal withS, . The Cauchy-Schwarz inequality in sofR# yields

. 1/2
Sk < U T\ 77 > 106 —1®)Eznm )
TeT\T

where the first factor

&k(Uk: T\ 7;") S lUk = Us|lv + [[Ueo — Ul

(79)
+lhxellL=(o) (I fllz@) + IVkllv) S 1

is uniformly bounded thanks to (75) and the second factasfaeg

(3 106 t0lmm) S5 100 -1 Ry,)

Teg\T; TeI\T;
S IIhexelle o) ID™ 2 (o)
because o’ > .7; and Proposition 2. Hence Lemma 9 implies

Sk — 0 asl — oo uniformly in k. (80)

[+] Next, we deal with§; . Here the Cauchy-Schwarz inequality yields

* 2 12
Sk < &Ue 7 (Y 106 = 19)Pnry)
TeT”
where the first factor satisfies

gk(uk» %*) < #% gk,max (81)

and the second factor

1/2
(3 10010 pmr)) S Il g)ID™ 9 o) S 1
TE,J[*

is uniformly bounded. Lemma 10 therefore implies

Sk — 0 ask — oo for any fixed/. (82)

Givene > 0, we exploit (80) and (82) by first choositigso thatS i < £/2 and
nextk > ¢ so thatS;, < £/2. Inserting this into (78) yields the desired convergence
(77) and finishes the proof.00
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Convergence of Estimator.Theorem 8 ensures convergence of the finite element
solutionsUg but says nothing about the behavior of the estimators

éok(Uk) = ( 27 éak(UkJ')z) 1/27
Te%

which enables one to monitor that convergence. The conueggef the estimators
is ensured by the following theorem. Notice that this is neiraple consequence
of Theorem 8 and Corollary 3 because of the presence of thiketisn osg (Uy) in
the global lower bound; see also Problem 36.

Corollary 4 (Estimator convergence).Assume again that the model probléa4)
satisfieg25) and (35). The estimator$&i (Uk) )y, of AFEM in§4.1 converge t@:

lim &(Uy) =0,

Proof. Theorem 8 impliesJ,, = u. Using this andh < h, for ¢ <k, along with
lUk — Us|lv < [lUr — Usl|v, after the first inequality of (79) yields

&(Uk, &\ 7,") — 0 asl — oo uniformly in k (83)
with the help of Lemmas 7 and 9. In view of
U = E U, T\ ) + 62U ),
we realize that (81), (83), and Lemma 10 complete the proof.

We conclude this section with a few remarks about variant§heforem 8 and
Corollary 4 for general estimators. Theorem 8 holds for astingator that provides
an upper bound of the form

(ZeV)IS Y U T)IIOV]| 2y Ty forallveV, (84)
TeIk

which is locally stable in the sense
kUi, T) S hrl fllizer) + [OUkllLz(ey) forall T e (85)

see Problem 37. While the first assumption (84) appears haameis in fact cru-
cial in view of the first example after Lemma 7, the second iaggion (85) may
appear artificial. However, Problem 38 reveals that is atgoial and, thus, the sug-
gested variant of Theorem 8 is ‘sharp’. Problem 39 propokescbnstruction of
an estimator verifying the two assumptions (84) and (85)Whihowever, does not
decrease to 0. On the other hand, Corollary 4 hinges on tla¢ lmger bound (75),
which is a sort of minimal requirement of efficiency if the fmielement solutions
Uk converge. Roughly speaking, convergenclpfelies on reliability and stability
of the estimator, while the convergence of the estimatoeddp on the efficiency of
the estimator. This shows that the assumptions on the dstiritet Theorem 8 and
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Corollary 4 are of different nature. In particular, we seattbonvergence dfi, can
be achieved even with estimators that are too poor to quyeathif error.

4.3 Notes

The convergence proof it4.2 is a simplified version of Siebert [49], which unifies
the work of Morin, Siebert, and Veeser [44] with the standargtiori convergence
theory based on (global) density. In order to further disdhe underlying assump-
tions of the approach in 4.2, we now compare these two worksore detail.

Solve.Both works [44] and [49] consider well-posed linear probseand invoke

a generalization of Lemma 7 that follows from a discretesap condition on the
discretization. The latter assumption appears naturaksinis necessary for con-
vergence in the particular case of uniform refinement; s@eRtoblem 3.9]. In the
case of a problem with potential or ‘energy’, the explicinstruction ofU,, can be
replaced by a convergent sequence of approximate energymeiBExamples are the
convergence analyses for tpeLaplacian by Veeser [55] and for the obstacle prob-
lem by Siebert and Veeser [51], which are the first steps iri¢hrain of nonlinear
and nonsmooth problems and are predecessors of [44] and [49]

Estimate and Mark. Paper [44] differs from [49] on the assumptions on estingtor
and marking strategy. More precisely, [44] assumes thae#tienator provides a
discrete local lower bound and that the marking strateggrassly ensures

N 1/2
&(UT) < ( S GUeT) ) forall T € F\ ., (86)
T'e sy

whereas [49] essentially assumes (84), (85), and (74).,Thesassumptions on the
estimator are weaker in [49], while those on the markingstyaare weaker in [44];
see also Problem 40. Since both works verify that their apsioms on the marking
strategy are necessary, this shows that (minimal) assangptin the estimator and
marking strategy are coupled.

Refine.Both [44, 49] consider the same framework REFINE. This does not only
include bisection for conforming meshes (§&€3), but also nonconforming meshes
(see§l.7) and other manners of subdividing elements. Moreovr, 49] assume
the minimal requirement of subdividing the marked elemesdsng4.1.

Further Variants and Generalizations. These approaches can be further devel-

oped in several directions:

e Morin, Siebert, and Veeser [43] give a proof of convergenfca wariant of the
AFEM in §4.1 when the estimator provides upper and local lower bofwrdthe
error in ‘weak’ norms, e.g. similar to tHe?-norm in Problem 18.

e Demlow [20] proves convergence of a variant of the AFEM4nl with estima-
tors for local energy norm errors.
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e Garau, Morin, and Zuppa [28] show convergence of a variathefAFEM in
§4.1 for symmetric eigenvalue problems.

e Holst, Tsogtgerel, and Zhu [31] extend [44] to nonlineatiphdifferential equa-
tions, the linearization of which are well-posed.

4.4 Problems

Problem 33 (Nesting of spaces).et .71 and.% be triangulations such thaf; <
T, that is 7 is a refinement by bisection af;. Show that the corresponding
Lagrange finite element spaces from (31) are nested,V(e7) C V(.%).

Problem 34 (Limiting mesh-size function).Prove that there exists a limiting mesh-
size functiorh,, € L*(Q) such that

Mk — Neo[| o2y — O @Sk — 0.
Can you construct an example wik # 0?

Problem 35 (Alternative proof of Lemma 9). For any iterationk, let xx be the
characteristic function of the unianrc 5, 4, T of elements to be bisected ahd
the mesh-size function afi. Show

l!mo [[hXkllLe (@) =0
by means of Problem 34 and the fact that bisection reducesdisé-size.

Problem 36 (Persistence of oscillation)Choosing appropriately the data of the
model problem (24), provide an example where the exactisolig (locally) piece-
wise affine and the (local) oscillation does not vanish.

Problem 37 (Convergence for general estimators)Check that Lemma 10 and
Theorem 8 hold for any estimatqei (U, T) }1c 4 that is reliable in the sense of
(84) and locally stable in the sense of (85).

Problem 38 (‘Necessity’ of local estimator stability).Construct an estimator that
satisfies (84) and its indicators are always largest arodixgd point, entailing that
(74) is compatible with refinement only around that fixed paimespective of the
exact solutioru.

Problem 39 (No estimator convergence)Assuming that the exact solutianof
the model problem (24) does not vanish, construct an estinsatisfying (84) and
(85) which does not decrease to 0.

Problem 40 (Assumptions for marking strategies)Check that (86) is weaker that
(74) by considering the bulk-chasing strategy (90).
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5 Contraction Property of AFEM

This section discusses the contraction property for a ap@¢tEM for the model
problem(23), which we rewrite for convenience:

—div(Ax)Ou)y=f inQ (87)
u=0 ondQ,

with piecewise smooth coefficient mati&kon 5. The matrixA is assumed to be
(uniformly) SPD so that the problem®ercive andsymmetricWe consider a loop
of the form

SOLVE — ESTIMATE — MARK — REFINE

that produces a sequenCg, Vi, Uy)y_, of conforming meshesi, spaces of con-
forming elements/y (typically C° piecewise lineara = 1), and Galerkin solutions
Uy € Vi.

The desired contraction property hinges emor monotonicity Since this is
closely related to a minimization principle, it is natural ¢onsider the coercive
problem (87). We cannot expect a similar theory for problgyogerned by an inf-
sup condition; this is an important open problem.

We next follow Casén, Kreuzer, Nochetto and Siebert [14]. We refer to [7, 9,
16, 17, 23, 24, 37, 40, 41, 42] for other approaches arnd i®for a discussion.

5.1 Modules of AFEM for the Model Problem

We present further properties of the four basic modules dEMFor (87). The main
additional restrictions with respect §& are symmetry and coercivity of the bilinear
form and the marking strategy.

Module SOLVE. If 7 € T is a conforming refinement ofp andV = V(.7) is the
finite element space @° piecewise polynomials of degreen, then

U = SOLVE(7)

determines the Galerkin soluti@xactly namely,

Uev: /ADU-DV:/ fv forallVev. 88)
Q Q

Module ESTIMATE. Given a conforming mesl¥” € T and the Galerkin solution
U € V(9), the output of

{67(U,T)}res = ESTIMATE(U, 7).
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are the element indicators defined in (46). For conveniemeegecall the definitions
(37) ofinterior andjump residuals

r(\V)lr = f+div(AQV) forall T e 7
i(V)|s=[AOV] -n|s forall Se . (internal sides of7),

andj(V)|s= 0 for boundary sideS e .7, as well as the element indicator
EZNV,T) =& [r(V)|[og) +r i)y, forall Te7. (89

We observe that we now write explicitly the argum¥nin bothr andj because this
dependence is relevant for the present discussion.

Module MARK. Given .7 € T, the Galerkin solutiotJ € V(.7), and element in-
dicators{&# (U, T)}tc~, the moduleMARK selects elements for refinement using
Dorfler Marking(or bulk chasing), i. e., using a fixed paramedef (0, 1] the output

M =MARK({&7 (U, T)}rez, 7)

satisfies
E7U, M) >087(U,7). (90)

This marking guarantees tha# contains a substantial part of the total (or bulk),
thus its name. This is a crucial property in our argument® Ghoice of.# does
not have to be minimal at this stage, that is, the marked eil&siiec .# do not
necessarily must be those with largest indicators. Howewerimality of .# will

be crucial to derive rates of convergencein

Module REFINE. Let b € N be the number of desired bisections per marked ele-
ment. Given7 € T and a subsei” of marked elements, the outpdi € T of

J, =REFINE(7, )

is the smallest refinemet, of .7 so that all elements o7 are at least bisectdn
times. Therefore, we have;, < hs and the strict reduction property

ha |t <27%%h|r forall T e .. (91)
We finally let% »_. 7. be the subset of refined elements®fand note that

M C %57_)9*.

AFEM. The following procedure is identical to that &4.1 except for the module
MARK, which uses Brfler marking with parameter@ 6 < 1: given an initial grid
o, setk = 0 and iterate
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. Ug = SOLVE(%);

- {6(Ui. T)} e = ESTIMATE Uy, Z);
. M =MARK ({&(Uk, T) }re g, %);

. Fies1 = REFINE( k. 4); K — K+ 1.

A WN P

5.2 Basic Properties of AFEM

We next summarize some basic properties of AFEM that emdnate the sym-
metry of the differential operator (i.e. &) and features of the modules. In doing
this, any explicit constant or hidden constantJrwill only depend on the uniform
shape-regularity off, the dimensiord, the polynomial degrea, and the (global)
eigenvalues oA, but not on a specific gridZ € T, except if explicitly stated. Fur-
thermore u will always be the weak solution of (24).

The following property relies on the fact that the bilineamh % is coercive and
symmetric, and so induces a scalar produdtf iequivalent to thdH&-scalar product.

Lemma 11 (Pythagoras).Let .7,.7. € T such that7 < ... The corresponding
Galerkin solutions Uc V(.77) and U, € V(.7;) satisfy the following orthogonality
property in the energy nori-|| o

2 2 2
llu=Ulig =llu=Ulg + Vs = Ullg - (92)
Proof. See Problem 41.0

Property (92) is valid for (87) for the energy norm exclugwe his restricts the
subsequent analysis to the energy norm, or equivalent ndratgloes not extend
to other, perhaps more practical, norms such as the maxinom.nThis is an
important open problem and a serious limitation of this tigeo

We now recall the concept of oscillation fro§3.1. In view of (65), we denote
by osc7 (V, T) theelement oscillatioffor anyV € V

0s¢7 (V,T) = [[h(r(V) = r(V))llzer) + 1725 (V) = IV)l2orr),  (93)

wherer (V) = Pon_or (V) andj(V) = Poy_1j(V) stand forL2-projections of the resid-
ualsr(V) andj(V) onto the polynomial®,,_»(T) andP2,-1(S) defined on the el-
ementT or sideSC JT, respectively. For variablé, oscs(V,T) depends on the
discrete functior € V, and its study is more involved than for piecewise constant
A. In the latter case, osg(V, T) is given by (58) and is calledata oscillation see
also Problem 19.

We now rewrite the a posteriori error estimates of Theoremsd? in the energy
norm.

Lemma 12 (A posteriori error estimates).There exist constan< C, < Cq, such
that for any.7 € T and the corresponding Galerkin solutiond&JV(.7) there holds



Primer of AFEM 59

lu-UJ|5 <C1é3(U) (94a)
C262(U) < [lu—UJ[5 +0s& (V). (94b)

The constant€; andC, depend on the smallest and largest global eigenvaluAs of
This dependence can be improved if the a posteriori analysiarried out directly
in the energy norm instead of ti&-norm; see Problem 20. The definitionsr¢¥)

andj(V), as well as the lower bound (94b), are immaterial for deg\arcontraction
property. However, they will be important for proving congence rates if7.

One serious difficulty in dealing with AFEM is that one hases=xto the energy
error [Ju—U||o only through the estimatafs (U). The latter, however, fails to be
monotone because it depends on the discrete solutierVV(.7) that changes with
the mesh. We first show that; (V) decreases strictly providéd does not change
(Lemma 13) and next we account for the effect of chanyirmut keeping the mesh
(Lemma 14). Combining these two lemmas we get Propositidn Sormulating
these results we rely on the following notation: givéhe T let.# C .7 denote a
set of elements that are bisected 1 times at least, le?, > .7 be a conforming
refinement of7 that contains the bisected elements#f and let

A=1-2701d
Lemma 13 (Reduction ofé» (V) wrt .77). For any V€ V(.7), we have
&%V, T) <EEZN, T)—AES\N, M ). (95)

Proof. We decomposéﬁ* (V,7,) over element§ € .7, and distinguish whether
ornotT € Z.1f T € ., thenT is bisected at leagttimes and sd@ can be written

as the union of elements € .7, We denote this set of elements (T) and observe
that, according with (9131 < 2-%/9hy for all T/ € Z,(T). Therefore

S RV 2o <2 2R R (V)|
TIET(T)

and

S bl iWIarng) <2770 V)12 5r00):
T'eZ.(T)

becaus& € V(.7) only jumps across the boundaryf This implies
EZ(V,T)<2P462(vT)  forall Te.x.

For the remaining elemenfs € .7 \ .# we only know that mesh-size does not
increased becausg < .7, whence

&5 (V,T)<EZ(V,T) forall Te 7\..

Combining the two estimates we see that
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EZ(V,T,) <27 PG\, M)+ EZN, T\ M)
=62V, 7)— (1-272¢2(v,.2),

which, in light of the definition ofA, is the desired estimate.d

Lemma 14 (Lipschitz property of &% (V,T) wrt V). Forall T € 7, let wr denote
the union of elements sharing a side withdiyA € L*(Q;RY) be the divergence
of A computed by rows, and

N7 (AT) = hr | divA[[LeT) + [|AlL=(cr)-
Then the following estimate is valid
|87 (V,T) =&z (W, T)| S nz(AT)OV —=W)|| 2(4) forallV,W e V(7).
Proof. Recalling the definition of the indicators, the triangledoality yields
(67 (V. T) = &7 (W,T)] < hrl[r(V) =1 (W) 2y 41711 (V) = W) L.
We setE :=V —W € V(.7), and observe that
r(V)—r(W) =div(ADE) = divA-OE +A: D’E,

whereD?E is the Hessian dE. SinceE is a polynomial of degree nin T, applying
the inverse estimat]ﬂDZEHLz(T) < h;1|\DE||,_2<T), we deduce

hr{lr(V) =rW)llizery S N7 (A T)OE| 2().-

On the other hand, for aryC dT applying the inverse estimate of Problem 43 gives

. . . —1/2
1iV) = iW) iz = 1Bz = ITATE] iz S 1 21 0E ] 2(a)
where the hidden constant is proportionahte (A, T). This finishes the proof. O

Proposition 3 (Estimator reduction). Given .7 € T and a subset# C .7 of
marked elements, le¥. = REFINE(.7,.#). Then there exists a constafit> 0,
such that for all Ve V(.7), V.. € V,.(.Z;) and anyd > 0 we have
65.(Ve, 7.) < (14 8) (65(V, 7) = A E5(V,. 1))
+(14+3 HANG A T) V.= V[g-

Proof. Apply Lemma 14 to/,V, € V(.Z;) in conjunction with Lemma 13 fov (see
Problem 44). O
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5.3 Contraction Property of AFEM

A key question to ask is what is (are) the quantity(ies) theEM may contract. In
light of (92), an obvious candidate is the energy effor- Uy|||,. We first show, in
the simplest scenario of piecewise constant dasad f, that this is in fact the case
provided an interior node property holds; see Lemma 15. hewéhe energy error
may not contract in general unleBEFINE enforces several levels of refinement;
see Example 1. We then present a more general approachithiiagés the interior
node property at the expense of a more complicated conteagtiantity, the quasi
error; see Theorem 9.

Piecewise Constant DataWe now assume that bofhandA are piecewise constant
in the initial mesh%y, so that osgUyx) = 0 for all k > 0. The following property
was introduced by Morin, Nochetto, and Siebert [40].

Definition 1 (Interior node property). The refinementZ., 1 > % satisfies an in-
terior node property with respect g if each elemenT € .# contains at least one
node of %, in the interiors ofT and of each side ofF.

This property is valid upon enforcing a fixed numbgr of bisections I, = 3,6
for d = 2,3). An immediate consequence of this property, proved in 449, is the
following discretelower a posteriori bound:

Ca62(Uy, ) < ||V — Ursa || + 0s@(Uy); (96)
see also Problem 23 for a related result.

Lemma 15 (Contraction property for piecewise constant datq Let A f be
piecewise constant in the initial mesh. If 7% ; satisfies an interior node property
with respect ta%, then fora := (1— 62%)1/2 < 1 there holds

lu=Uksallg < allu—Ukllq (o7

where0 < 0 < 1is the parameter ir§90) and G > C, are the constants i(94).

Proof. For convenience, we use the notation
&= [lu=Ukllg, Bk = [[Uk+1—Ukll o, ¢k = ék(Uk, %), k(M) = (U, k).
The key idea is to use the Pythagoras equality (11)
&1 =& E&,
and show thaEy is a significant portion oé. Since (96) with oggUy) = 0 implies
Cati? (M) < B, (98)

applying Dorfler marking (90) and the upper bound (94a), we deduce
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C
E2 > C,0262 > Ciezeﬁ.
1

This is the desired property & and leads to (97). O

Example 1 (Strict monotoniticitylet Q = (0,1)2, A=1, f = 1 (constant data), and
consider the following sequences of meshes depicted inr&itdu If ¢ denotes the
basis function associated with the only interior node ofittial mesh.%, then

1

Uo=U1=T2%, U # Uy

Fig. 14 Grids %, 71, and 2, of Example 1. The mesl¥; has nodes in the middle of sides of
o, but only % has nodes in the interior of elements.@. Hence,7; satisfies the interior node
property of Definition 1 with respect tg5.

The mesh?7; > % is produced by a standard 2-step bisecfiba- 2) in 2d. Since
Up = U; we conclude that the energy error may not change

llu=Uollg = lllu=U1llo

between two consecutive steps of AFEM fpe d = 2. This is no longer true pro-
vided an interior node in each marked element is created, Refinition 1, because
then Lemma 15 holds. This example appeared first in [40, 41d,v@as used to
justify the interior node property.

General Data. If osg((Uy) # 0, then the contraction property of AFEM becomes
trickier because the energy error and estimator are no toageavalent regardless
of the interior node property. The first question to ask is tupaantity replaces
the energy error in the analysis. We explore this next andwenthe interior node
property.

Heuristics. According to (92), the energy error is monotone

llu=Uksallg < fllu=Ukllq

but the previous example shows that strict inequality méy Heowever, ifUy, 1 =
Uy, estimate (95) reveals a strict estimator reductn; (Uy) < &k(Ux). We thus
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expect that, for a suitable scaling factor- 0, the so-calledjuasi error
Jlu—= Uil +y&2(U) (99)

may be contractive. This heuristics illustrates a distiaspect of AFEM theory,
the interplay between continuous quantities such the gremr ||ju—Uy||o, and
discrete ones such as the estimaigitJx): no one alone has the requisite properties
to yield a contraction between consecutive adaptive steps.

Theorem 9 (Contraction property). Let 6 € (0,1] be the rfler Marking param-
eter, and{ %, Vi, Ui}, be a sequence of conforming meshes, finite element spaces
and discrete solutions created by AFEM for the model prok{f&ri

Then there exist constangs> 0 and0 < a < 1, additionally depending on the
number b> 1 of bisections and, such that for all K> 0

llu=Uksallf + v &2 1(Uiia) < @? (llu=Udlp +v&2U0).  (200)

Proof. We split the proof into four steps and use the notation in Leni.
The error orthogonality (92) reads

1 =6 —Ef. (101)
Employing Proposition 3 withy” = %, 7. = .1,V = Uy andV, = Uy, 1 gives
Ge1 < (14 0) (& = A () + (1+ 5 ) NoEL, (102)

where/o = An7. (A, %) > An7 (A, %). After multiplying (102) byy > 0, to be
determined later, we add (101) and (102) to obtain

&1t VaG 1 S &+ (Y148 Ao~ 1) EZ+y(1+0) (68— A & ().
We now choose the parametérsy, the former so that

_Ae?

(1+06)(1-16%) =1 >

and the latter to verify
y(1+5 HA =1

Note that this choice of yields
&1+ VL S &+Y(1+0) (62— A EX(M)).
[s] We next employ Brfler Marking, namelyéi(.#x) > 04, to deduce
&1tV S &+ V(1+3)(1-20%)8¢

which, in conjunction with the choice @, gives
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A6 A 62 A6
e§+1+Vf§k2+1§Q%+V(l—2)gk2:eﬁ— y4 @@|<2+V<1—4><55k2-

Finally, the upper bound (94a), namefy< C; &2, implies that

A 62 262
atvilss (1- Y Jdev(1- 27 )@
4Cy 4

This in turn leads to

&1 +yEi . < a?(€+yE?2),
with

127
4C, 4

and proves the theorem because< 1. O

2 2
azzmax{l vA O A0 },

Remark 9 (Ingredients)lhe basic ingredients of this proof arediler marking;
coercivity and symmetry ofZ and nesting of spaces, which imply the Pythagoras
identity (Lemma 11); the a posteriori upper bound (Lemmag &Ry the estimator
reduction property (Proposition 3). It does not use the dwaind (94b) and does
not require marking by oscillation, as previous proofs dg,[37, 40, 41, 42].

Remark 10 (Separate markin@dJARK is driven by&i exclusively, as it happens in
all practical AFEM. Previous proofs in [17, 37, 40, 41, 4Xju@e separate marking
by estimator and oscillation. It is shown in [14] that sepanaarking may lead
to suboptimal convergence rates. On the other hand, we vallepin §7 that the
present AFEM yields quasi-optimal convergence rates.

5.4 Example: Discontinuous Coefficients

We invoke the formulas derived by Kellogg [34] to construtiexact solution of an
elliptic problem with piecewise constant coefficients aadighing right-hand side
f; data oscillation is thus immaterial. We now write theserfalas in the particular
caseQ = (—1, 1)2, A = gl in the first and third quadrants, arAl= ayl in the
second and fourth quadrants. An exact weak solutiofithe model problem (87)
for f = 0is given in polar coordinates hyr, 6) =rYu(0) (see Figure 15), where

coq(rm/2—0)y)-cog(0 —T1/2+p)Y) if0<06<m/2,
cogpy)-cog (6 —m+0)y) if ;/2<6<m,
coqay)-coq(6—m—p)y) if T<0<3m/2,
coq(rr/2—p)y)-coq (8 —3m/2—0)y) if3m/2<0<2m,

u(6) =

and the numberg, p, o satisfy the nonlinear relations
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Fig. 15 Discontinuous coefficients in checkerboard pattern: Grdgheodiscrete solution, which
is u~ %, and underlying strongly graded grid. Notice the singulaoity at the origin.

R:=aj/ap = —tan((1r/2— g)y) - cot(py),

1/R= —tan(py)-cot(ay),

R=—tan(ay)-cot((11/2—p)y), (103)
O<y<2,

max{0, ty — 11} < 2yp < min{ty, 1},

max{0, T— 1y} < —2yog < min{, 21— my}.

Since we want to test the algorithm AFEM in a worst case séenae choose
y = 0.1, which produces a very singular solutionthat is barely inH?; in fact
ue H3(Q) for s< 1.1 and piecewise iksz(Q) for p > 1. We then solve (103) for
R, p, ando using Newton’s method to obtain

R=a;/ay >~ 1614476387975881 p =rm/4, 0= —-1492256510455152

and finally choos@; = Randaz = 1. A smallery would lead to a larger rati®, but
in principley may be as close to 0 as desired.

We realize from Figure 16 that AFEM attains optimal decay ffar the energy
norm. This is consistent with adaptive approximation fondiions piecewise in
WpZ(Q) (see§l.6), but nonobvious for AFEM which does not have direct asde
u; this is the topic ofs7. We also notice from Figure 17 that a graded mesh with
mesh-size of order 13° at the origin is achieved with about210® elements. To
reach a similar resolution with a uniform mesh we would niied 10%° elements!
This example clearly reveals the advantages and poteafiatiaptivity for the FEM
even with modest computational resources.
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T
E—a tueeror |
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100:: T

true error

10" 10° 10°

Fig. 16 Quasi-optimality of AFEM for discontinuous coefficients: estimand true error. The
optimal decay for piecewise linear elements in 2d is indicagethb line with slope-1/2.

Fig. 17 Discontinuous coefficients in checkerboard pattern: Fimal ¢full grid with < 2000
nodes) (top left), zooms td—10-23,107%)2 (top right), (—107%,106)2 (bottom left), and
(—107°,1079)2 (bottom right). The grid is highly graded towards the origior a similar res-
olution, a uniform grid would requirdl ~ 10%° elements.

What is missing is an explanation of the recovery of optimabredecayN /2
through mesh grading. This is the subject§@f where we have to deal with the
interplay between continuous and discrete quantities rea@dy alluded to in the
heuristics.
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5.5 Extensions and Restrictions

It is important to take a critical look at the theory just deyeed and wonder about
its applicability. Below we list a few extensions of the theand acknowledge some
restrictions.

Nonconforming Meshes.Theorem 9 easily extends to non-conforming meshes
since conformity plays no role. This is reported in Bonita éfochetto [9].

Non-Residual Estimators.The contraction property (100) has been derived for
residual estimatorgi(Uy). This is because the estimator reduction property (95)
is not known to hold for other estimators, such as hieraaihiienkiewicz-Zhu,
and Braess-Schoerbel estimators, as well as those basdw @olution of local
problems. A common feature of these estimatpsgU) is the lack of reliability in

the preasymptotic regime, in which oscillation ggt) ) may dominate. In fact, we
recall the upper a posteriori bound from (72)

llu-Uli < Ci(n3 ) +0s&(U)) = £3(V),

which gives rise to Drfler marking for the total estimatefs (U ). Casdén and No-
chetto [15] have recently extended Theorem 9rfet 1 upon allowing an interior
node property after a fixed number of adaptive loops and coimippiemma 15 with
Theorem 9; this is easy to implement within ALBERTA [50]. Aletsame time, us-
ing the local equivalence of the above estimators with teltal one, Kreuzer and
Siebert have proved an error reduction property after sdastaptive loops [35].

Elliptic PDE on Manifolds. Meckhay, Morin and Nochetto extended this theory to
the Laplace-Beltrami operator [38]. In this case, an addél geometric error due
to piecewise polynomial approximation of the surface mesabcounted for.

Discontinuous Galerkin Methods (dG).The convergence results available in the
literature are for theénterior penaltymethod [9, 32, 33]. The simplest contraction
property (97) for a right-hand sidé in the finite element space and the Laplace
operator was first derived by Karakashian and Pascal [38],|ater improved by
Hoppe, Kanschat, and Warburton [32] fbe L2 and just one bisection per marked
element. In both cases, the theory is developeddfer 2. The most general re-
sult, valid ford > 2, operators with discontinuous variable coefficients, lzhdata,
has been developed by Bonito and Nochetto [9]. The theor9lid¢als with non-
conforming meshes made of quadrilaterals or trianglesheir tmultidimensional
generalizations, which are natural in the dG context. A keotetical issue is the
control of the jump term, which is not monotone with refinet@&3, 9].

Saddle Point Problems.The contraction properties (97) and (100) rely crucially
on the Pythagoras orthogonality property (92) and does xtend to saddle point
problems. However, a modified AFEM based on an inexact Uz#svation and
separate marking was shown to converge yn&h, Morin, and Nochetto for the
Stokes equation [6]. The situation is somewhat simpler foteoh FEM for scalar
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second order elliptic PDE, and has been tackled directlg for2 by Carstensen and
Hoppe for the lowest order Raviart-Thomas element [13], mn€hen, Holst, and
Xu for any order [18]. They exploit the underlying speciausture: the flux error
is L2-orthogonal to the discrete divergence free subspace saBé¢he nonvanishing
divergence component of the flux error can be bounded by datlation. This is
not valid for the Stokes system, which remains open.

Beyond the Energy Framework.The contraction properties (97) and (100) may
fail also for other norms of practical interest. An exam@ehe maximum norm,
for which there is no convergence result known yet of AFEMnil@v proved a
contraction property for local energy errors [20], and Dewland Stevenson [21]
showed a contraction property for thé norm provided that the mesh grading is
sufficiently mild.

5.6 Notes

The theory for conforming meshes in dimensidn- 1 started with Drfler [24],
who introduced the crucial marking (90), the so-cal®itfler marking and proved
strict energy error reduction for the Laplacian provideg ithitial mesh?; satisfies a
fineness assumption. This marking plays an essential raleipresent discussion,
which does not seem to extend to other marking strategiels asahose irg4.
Morin, Nochetto, and Siebert [40, 41] showed that suchtstnergy error reduction
does not hold in general even for the Laplacian. They intcedithe concept of data
oscillation and the interior node property, and proved esgence of the AFEM
without restrictions on%,. The latter result, however, is valid only féx in (23)
piecewise constant offp. Inspired by the work of Chen and Feng [17], Mekchay
and Nochetto [37] proved a contraction property for thial error, namely the sum
of the energy error plus oscillation fak piecewise smooth. The total error will
reappear in the study of convergence rate$7in

Diening and Kreuzer proved a similar contraction propedsythe p-Laplacian
replacing the energy norm by a so-called quasi-norm [23gyTlere able to avoid
marking for oscillation by using the fact that oscillatiosdominated by the es-
timator. Most results for nonlinear problems utilize theumglence of the energy
error and error in the associated (nonlinear) energy; coewyéh Problem 42. This
equivalence was first used by Veeser in a convergence asétyshe p-Laplacian
[55] and later on by Siebert and Veeser for the obstacle prolj51].

The result of Diening and Kreuzer inspired the work by GasdKreuzer, No-
chetto, and Siebert [14]. This approach hinges solely ormriet seduction of the
mesh-size within refined elements, the upper a posteriosr ®ound, an orthogo-
nality property natural for (87) in nested approximatiomegs, and Drfler mark-
ing. This appears to be the simplest approach currentlyadlai
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5.7 Problems
Problem 41 (Pythagoras)LetV; C V, C V= H&(Q) be nested, conforming and

closed subspaces. Let V be the weak solution to (87, € V; andU; € V; the
respective Ritz-Galerkin approximationsuoProve the orthogonality property

2 2 2
llu—=U1llig = fllu—Uzllg + V2= Uallg - (104)

Problem 42 (Error in energy). Let V1 C Vo C VandU1,U,,ube as in Problem 41.
Recall thatu,U;, U are the unique minimizers of the quadratic energy

IV := 38V, V] — (f, V)
in V,Vy, V> respectively. Show that (104) is equivalent to the identity
HUa] = 1{u] = (1[U2] — u]) + (HUa] = 1{U2]).
To this end prove
Uil =1[u = 3[lUi-ullg and  1Us]—1[Uz] = 3 [JUr— Uzl

Problem 43 (Inverse estimate)Let S€ . be an interior side of € .7, and let
A< L”(S). Make use of a scaling argument to the reference elemenbte sh

IATV s S hgV2|OV ¢ forallV e V(.7),

where the hidden constant depends on the shape coefficient tife dimensiord,
al’ld||A|||_w(S)

Problem 44 (Proposition 3). Complete the proof of Proposition 3 upon using
Young inequality

(a+b)?2 < (14d)a%+ (1+0 1)b? foralla,b € R.

Problem 45 (Quasi-local Lipschitz property). Let A € W2(T) for all T € 7.
Prove

|osc7 (V,T) —oscz (W, T)| S oscz (A T) [V —W|[y1(4) forall VW €V,

where 0sg- (A, T) = hr ||[divA—PY 1 (diVA)||Lo(1) + [|A—PY Al L= () - Proceed as
in the proof of Lemma 14 and use Problem 28.

Problem 46 (Perturbation). Let .7, 7, € T, with .7 < .. Use Problem 45 to
prove that, for alV € V(.7) andV, € V(.7,), there is a constant; > 0 such that

0s& (V, 7N T.) <208&, Vs, 7N ) +A10Scs, (A, To)? |V — Vi[5 -
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6 Complexity of Refinement

This section is devoted to proving Theorem 1 for conformireshes and Lemma 3
for nonconforming meshes. The results of Sections 6.1 ahd@ valid ford = 2
but the proofs of Theorem 1 in Section 6.3 and Lemma 3 in Seétid extend easily
tod > 2. We refer to the survey [45] for a full discussion fbe> 2.

6.1 Chains and Labeling fod = 2

In order to study nonlocal effects of bisection fbe 2 we introduce now the con-
cept of chain [7]; this concept is not adequatedas 2 [45, 53]. Recall thaE(T)
denotes the edge df assigned for refinement. To eaGhe .7 we associate the
elementF(T) € Z sharing the edg&(T) if E(T) is interior andF(T) = 0 if
E(T) isondQ. A chain ¢(T,.7), with starting element € .7, is a sequence
{T,F(T),...,F™T)} with no repetitions of elements and with

F™L(T) =FXT) forke {0,...,m—1} or F™1(T) = 0;

see Figure 18. We observe that if an elemErtelongs to two different grids, then
the corresponding chains may be different as well. Two adjaelementy, T’ =

T

Fig. 18 Typical chainé'(T,.7) = {T,-}ij:0 emanating fronT =Tp € .7 with T = F(Tj_1),j > 1.

F(T) are compatibly divisible(or equivalentlyT, T’ form a compatible bisection
patch if F(T') =T. Hence, ¢ (T,7) = {T,T'} and a bisection of eithef or T’
does not propagate outside the patch.

Example (Chains): Let# = {Ti}2; be the forest of Figure 3. The# (T, 7) =
{Te,T7},€ (T, .7) = {To}, and €' (T10,-7) = {T0, Ts, T2} are chains, but only
¢ (Ts,.7) is a compatible bisection patch.

To study the structure of chains we rely on the initial labgl{6) and the bisec-
tion rule of Section 1.3 (see Figure 5):

every triangle Te .7 with generation ¢T) = i receives the label
(i+1,i+1,i) with i corresponding to the refinement edgéTE,
its side i is bisected and both new sides as well as the bisacto
labeled i+ 2 whereas the remaining labels do not change

(105)
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We first show that once the initial labeling and bisectiorerate set, the resulting
master forest is uniquely determined: the label of an edge is independktiten
elements sharing this edge and no ambiguity arises in thesien process.

Lemma 16 (Labeling).Let the initial labeling(6) for .25 and above bisection rule
be enforced. i) < .71 < --- < F, are generated according t(105), then each
side in.% has a unique label independent of the two triangles shatigeddge.

Proof. We argue by induction ovefk. For k = 0 the assertion is valid due to the
initial labeling. Suppose the statement is true fgr An edgeSin .1 can be
obtained in two ways. The first is th&tis a bisector, and so a new edge, in which
case there is nothing to prove about its label being unighe.Second possibility
is thatSwas obtained by bisecting an ed§ec .%. Let T, T’ € J be the elements
sharingS, and let us assume thB{T’) = S. Let (i + 1,i + 1,i) be the label ofl”’,
which means thabis assigned the labélt 2. By induction assumption overy, the
label of S as an edge of is alsoi. There are two possible cases for the labeT of
e Label (i+1,i+ 1,i): this situation is symmetridz(T) = S, andS is bisected
with both halves getting labék- 2. This is depicted in the figure below.

i+1 i+1
i+1 i+1
i+1 i+1
i+1 i+1
S=E(T) =E(T)
e Label(i,i,i —1): a bisection of sid& (T) with labeli — 1 creates a childrem”

with label (i + 1,i + 1,i) that is compatibly divisible withT’. Joining the new
node of T with the midpoint ofS creates a conforming partition with leviel- 2
assigned t&. This is depicted in the figure below.

i+1
i+1

i+1



72 R.H. Nochetto and A. Veeser

Therefore, in both cases the label 2 assigned t&is the same from both sides, as
asserted. O

The two possible configurations displayed in the two figutesve lead readily
to the following statement about generations.

Corollary 5 (Generation of Consecutive Elements)Forany. 7 e Tand T, T/ =
F(T) € 7 we either have:

(@ 9o(T)=g(T')and T, T are compatibly divisible, or
(b) o(T’)=9g(T)—1and T is compatibly divisible with a child of T

Corollary 6 (Generations within a Chain). Forall Z € Tand T € .7, its chain
(T, 7) = {T}P, with T = FX(T) have the property

9(Ti) =9(T)—k 0<k<m-1

and T, = F™(T) has generation @m) = g(Tm-1) or it is @ boundary element with
lowest labeled edge ahQ. In the first case, ji-1 and T, are compatibly divisible.

Proof. Apply Corollary 5 repeatly to consecutive elementsdiT, 7). O

6.2 Recursive Bisection

Given an elemerni € . to be refined, the routineREFINE_RECURSIVE (.7, T)
recursively refines the chafd(T,.7) of T, from the end back td@, and creates a
minimal conforming partitionZ, > .7 such thafT is bisected once. This procedure
reads as follows:

REFINE_RECURSIVE (7,T)
if 9(F(T)) < g(T)
.7 := REFINE_RECURSIVE (.7 ,F(T));
else
bisect the compatible bisection patetiT, 7);
update.7;
end if
return (7)

We denote byz, (T,.7) C 7 the recursive refinement 6f(T,.7) (or completion
of €(T, 7)) caused by bisection df. SinceREFINE_RECURSIVE refines solely
compatible bisection patches, intermediate meshes asgysaleonforming.

We refer to Figure 19 for an example of recursive bisectir{Tio,.7) of
€ (To, 7)) = {T10, T, T2} in Figure 2.REFINE_RECURSIVE starts bisecting from
the end of#’(Tio, .7 ), namelyT,, which is a boundary element, and goes back the
chain bisecting elements twice until it getsT.

We now establish a fundamental property REFINE_RECURSIVE (7,T)
relating the generation of elements witln(T, 7).
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Fig. 19 Recursive refinement ofijp € .7 in Figure 2 byREFINE_RECURSIVE. This entails
refining the chairé’(Tio, 7)) = {T10, Ts, T2}, starting from the last elemefit € .7, which form
alone a compatible bisection patch because its refinement edgehie boundary, and continuing
with T3 € .7 and finallyTyp € 7. Note that the successive meshes are always conforming and that
REFINE_RECURSIVE bisects elements it (Tio, .7 ) twice before getting back t@yo.

Lemma 17 (Recursive Refinement).et .7 satisfy the labeling6), and let.7 € T
be a conforming refinement ¢k. A call toREFINE_RECURSIVE (.7, T) termi-
nates, for all Te .#, and outputs the smallest conforming refinem&nof.7 such
that T is bisected. In addition, all newly createdd . (T, .7) satisfy

o(T") <g(T)+1. (106)

Proof. We first observe thaf has maximal generation withie(T,.7). So recur-
sion is applied to elements with generatiog(T ), whence the recursion terminates.
We also note that this procedure creates children ahd either children or grand-
children of trianglesTy € €(T,.7) = {Ti}{", with k> 1. If T" is a child of T there

is nothing to prove. If not, we consider finst= 1, in which casd” is a child of Ty
becausély and T, are compatibly divisible and so have the same generatias; th
9(T") =9g(T1) +1=9g(To) + 1. Finally, if m> 1, theng(Tx) < g(T) and we apply
Corollary 6 to deduce

9(T") <9(T) +2<g(T) +1,
as asserted. O

The following crucial lemma links generation and distaneéneenT andT’ €
¢.(T,7), the latter being defined as

dis(T',T):= inf |X—x.

XeT! xeT

Lemma 18 (Distance and Generation).Let T € .#. Any newly created Te
¢.(T,7) by REFINE_RECURSIVE (7, T) satisfies

distT’,T) < D» \@2_ 29 (107)

where D > Ois the constant irf5).
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Proof. Supposd’ C T, € ¢ (T, .7) have been created by subdividifig(see Figure
18). If i < 1 then dis{T’,T) = 0 and there is nothing to prove. if> 1, then we
observe that di¢T’, T;_1) = 0, whence

dist(T’,T) < dist(T,_1, T) + diam(T,_y) < ig diam(Ty)
k=1

i-1
1
—9(Ti)/2 —9(Ti-1)/2
SDzkzlz <D2172_1/22 ,
because the generations decrease exactly by 1 along the€ki&) according to
Corollary 5(b). Sincd is a child or grandchild of;, we deduce

9(T") <g(T)+2=9(Ti-1) +1,

whence
21/2

_ 2 ogT2,
1-2°12

dist(T’,T) < D2
This is the desired estimated

The recursive procedur®EFINE_RECURSIVE is the core of the routine
REFINE of Section 1.3: given a conforming mesh € T and a subset# C .7
of marked element&EFINE creates a conforming refinemefit > .7 of .7 such
that all elements of# are bisected at least once:

REFINE (.7,.#)
forall Te.#ZNn.7 do
Z := REFINE_RECURSIVE (7, T);
end
return (7)

It may happen that an elemeht € ./ is scheduled prior td for refinement and
T € €(T',.7). Since the calREFINE_RECURSIVE (.7,T’) bisectsT, its two
children replacel in 7. This implies thatT ¢ .# N 7, which prevents further
refinement ofT .

In practice, one often likes to bisect selected elemensraktimes, for instance
each marked element is scheduledtior 1 bisections. This can be done by assign-
ing the numbeib(T) = b of bisections that have to be executed for each marked
elemenfT. If T is bisected then we assigyiT ) — 1 as the number of pending bisec-
tions to its children and the set of marked elementg/is= {T € .7 | b(T) > 0}.

6.3 Conforming Meshes: Proof of Theorem 1

Figure 19 reveals that the issue of propagation of mesh ragnéto keep confor-
mity is rather delicate. In particular, an estimate of therfo
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HI—# T 1 < N# M1

is not valid with a constam independent ok; in fact the constant can be propor-
tional tok according to Figure 19.

Binev, Dahmen, and DeVore [7] for= 2 and Stevenson [53] fal > 2 show that
control of the propagation of refinement by bisection is f@esvhen considering

the collective effect: )
-1

‘I —H#HT <N #.4.
JZD j

This can be heuristically motivated as follows. Consider fet.7 := U‘j(;é//lj
used to generate the sequenge< 71 < --- < J =: 7. Suppose that each element
T, € .# is assigned a fixed amou@t of money to spend on refined elementsin
i.e.,onT € 7\ Z. Assume further that (T, T,) is the portion of money spent by
T. onT. Then it must hold

A(T,T)<Ct forall T, € .#. (108a)
Te\%

In addition, we suppose that the investment of all element#iis fair in the sense
that eachl € .7\ % gets at least a fixed amoud, whence

AMT,T)>C, forall Te 7\ %. (108b)
Tel

Therefore, summing up (108b) and using the upper bound jM&8aeadily obtain

QHT—#T)< Y Y ATT)= Y F ATT)<C#d.
TeN BT en TEX/ TN %

which proves Theorem 1 fo7 and.#. In the remainder of this section we de-
sign such an allocation functioh: 7 x .# — R* in several steps and prove that
recurrent refinement by bisection yields (108) providggsatisfies (6).

Construction of the Allocation Function. The function (T, T.) is defined with the

help of two sequence@(¢)), ,, (b(¢)),_, C R* of positive numbers satisfying

a(l) =A<, 272p(t) =B <, infb(f)a(f)=c, >0,
51 go =1

andb(0) > 1. Valid instances ara(¢) = (£ +2)~2 andb(¢) = 2'/3,
With these settings we are prepared to define7 x .# — R by

a(g(T.) —g(T)), dis(T,T.) < D3B2 9T/dandg(T) <g(T.)+1

AT, T =
0, else
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whereDg := D, (1+2(v/2—1)71). Therefore, the investment of money Bye .#
is restricted to cellsT that are sufficiently close and are of generatg(T) <
9(T.) + 1. Only elements of such generation can be created duringeraént of
T. according to Lemma 17. We stress that except for the defindfd, this con-
struction is mutidimensional and we refer to [45, 53] foradkst

The following lemma shows that the total amount of money dgsnthe alloca-
tion functionA (T, T,) per marked elemer®, is bounded.

Lemma 19 (Upper Bound).There exists a constantC- 0 only depending o
such thatA satisfieq108a)i.e.,

A(T,T,) <Ci forall T, € .#.
TeI\ %

Proof. [1|GivenT, € .# we sefg, =g(T.) and we let 6< g < g. + 1 be a generation
of interest in the definition oA . We claim that for suclg the cardinality of the set

T (T.,q) = {T € 7 | dist(T, T,) < D3B27%? andg(T) = g}

is uniformly bounded, i. e.,# (T.,g) < C with C solely depending oB1, D2, D3, B.
From (5) we learn that diaff,) < D2 9/2 < 2D,2-(9-+1/2 < 2D,279/2 as
well as dianfT) < D,2-92 for any T € .7 (T,,g). Hence, all elements of the set
7 (T,,0) lie inside a ball centered at the barycenterTofwith radius (DsB +

3D,)2-9/2, Again relying on (5) we thus conclude

#7(T,g)D1279< 5 |T| <c(DsB+3Dp)%279,
TeZ(T..9)

whence # (T.,g) < cD;*(DsB+3D)? =: C.
Accounting only for non-zero contributions(T, T..) we deduce
O«+1 o
z AT, T,) = Z) z a(g.—g)<C z a(l) =CA=:C,
TeT\ T g=0Te7(T..,9) (=—1
which is the desired upper boundd

The definition ofA also implies that each refined element receives a fixed amount
of money. We show this next.

Lemma 20 (Lower Bound).There exists a constantbC- 0 only depending o
such thatA satisfieq108b) i.e.,

z AT, T) >C forall T € 7\ %.
Tee

Proof. | 1] Fix an arbitraryTo € .7 \ . Then there is an iteration countlky < k
such thatTyo € %, andTo ¢ ,—1. Therefore there exists ah € .#,_1 C A
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such thaflg is generated durinREFINE_RECURSIVE (%1, T1). lterating this
process we construct a sequer{jd‘q&}le C .# with corresponding iteration counts
{kj}]_, such thafT; is created byREFINE_ RECURSIVE (%; 1, Tj1). The se-
guence is finite since the iteration counts are strictly elasing and thuky = O for
somel > 0, or equivalentlyT; € %.

SinceT; is created during refinement @f;1 we infer from (106) that

9(Tj+1) 2 9(Tj) - 1.

Accordingly,g(Tj+1) can decrease the previous valueg6T;) at most by 1. Since
g(Ty) = 0 there exists a smallest valsesuch thaig(Ts) = g(To) — 1. Note that for
j=1,...,swe haveA (To, Tj) > 0 if dist(To, T;) < D3Bg9(To)/d,

We next estimate the distance diif Tj). For 1< j < sand/ > 0 we define the
set

T (To, 4, J) ={T €{To,...,Tj—1} | 9(T) = 9(To) + £}

and denote byn(¢, j) its cardinality. The triangle inequality combined with am i
duction argument yields

diSt(To,Tj) < diSt(To,Tl) + diam(Tl) + diST(Tl,Tj)
j -1
< S dist(Ti—g, Ti) + ) diam(T;).
2,8l g dam

We apply (107) for the terms of the first sum and (5) for the tofthe second sum
to obtain

dist(To, T;) <D

j—1
2-9M-1/2  p, § 2-9(T)/2
1 i;

:M_.

2

V2-1£

<1+ 2 )j_lzg(Ti)/Z
vV2-1 i;)

- DS/Z m(¢, j) 2~ (9(To)+0)/2
(=0

2
<Dy

- DQ)Z*Q(TO)/ZIZ)m(g7 j 22,

For establishing the lower bound we distinguish two caseguéing on the size of
m(¢,s). This is done next.
Case 1: nf¢,s) < b(¢) for all £ > 0. From this we conclude

0

dist(To, Ts) < D2 9(T0)/2 ; b(¢)2/2 = DyB29(T0)/2
/=0

and the definition ofA then readily implies
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> A(To,T.) = A(To, Ts) = a(g(Ts) — 9(To)) = a(—1) > 0.
Tie

Case 2:There exist? > 0 such tham(¢,s) > b(¢). For each of thesé's there
exists a smallest = j(¢) such tham(¢, j(¢)) > ( ). We let?* be the index that
gives rise to the smallegt/), and setj* = j(¢*). Consequently

m(¢,j* —1) <b(¢) forall¢>0 and  m(¢,j*) > b(£").
As in Case 1 we see didb, T;) < D3B2-9T0)/2 for all i < j* — 1, or equivalently
dist(To, T;) < D3B279M)/2  forall T € 7 (To, 4, j*).

We next show that the elements.di(To, £*, j*) spend enough money dg. We
first consider’* = 0 and note thalp € .7 (To,0, j*). Sincem(0, j*) > b(0) > 1 we
discoverj* > 2. Hence, there is a@h € .7 (T, 0, j*) N.#, which yields the estimate

> A(To,T) = A(To, Ti) = a(g(Ti) — 9(To)) = a(0) > 0.
T.e

For(* > 0 we see thalp & .7 (To, £*, j*), whenceZ (To, £*, j*) C . . In addition,
A(To,Ti) = a(¢*) forall T € 7 (To, €%, j*). From this we conclude

Z )\(To,T*) > Z A(TO,T*) :m(g*7j*)a(£*)
T.c.H T.€7 (To,l*,j*)
> b()a(l*) > [iygflb(ﬁ) a(l)=c,>0.

In summary we have proved the assertion since forlany 7 \ 2

z A(To, T.) > min{a(—1),a(0),c.} =:C, > 0. O
Ten

Remark 11 (Complexity with & 1 Bisections).To show the complexity estimate
whenREFINE performsb > 1 bisections, the se%/k is to be understood as a se-
quence ofinglebisections recorded in sefs#(j)}? |1, Which belong to interme-
diate triangulations betweefi and %, 1 with #.#,(j) < 21~Y%.#, j=1,...,b.
Then we also obtain Theorem 1 because

b
Zzl YWl = (2P — V).

WMU

In practice, it is customary to take= d [50].
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6.4 Nonconforming Meshes: Proof of Lemma 3

We now examine briefly the refinement process for quadrédgexith one hanging
node per edge, which gives rise to the so-calledeshesThe refinement of € .7
might affect four elements o’ for d = 2 (or 2 elements for any dimensiah> 2),
all contained in theefinement patch @,.7) of T in .7. The latter is defined as

R(T,7):={T' € 7| T' andT share an edge amT’) < g(T)},

and is callecompatibleprovidedg(T’) = g(T) forall T’ € R(T, .7 ). The generation
gap between elements sharing an edge, in particular thd¥d i), is always< 1
for 1-meshes, and is 0R(T,.7) is compatible. The element size satisfies

hr = ng(T)hTO VT € T
whereTy € 7 is the ancestor of in the initial mesh%,. Lemma 2 is thus valid
hr <hr <D2 9T vTeg. (109)

Given an element € . to be refined, the routinREFINE_RECURSIVE (.7, T)
refines recursivelfR(T,.7) in such a way that the intermediate meshes are always
1-meshes, and reads as follows:

REFINE_RECURSIVE (Z,T)
if g=min{g(T"): T" e R(T,7} <g(T)
letT' € R(T,.7) satisfyg(T') =g
7 := REFINE_RECURSIVE (.7,T');
else
subdivideT;
updateZ upon replacing by its children;
end if
return (7)

The conditional prevents the generation gap witRiT,.7) from getting larger
than 1. If it fails, then the refinement pat&iT,.7) is compatible and refinining
T increases the generation gap from 0 to 1 without violatirgtttmesh structure.
This implies Lemma 17: for all newly created elemehtse 7.

9(T) <g(T)+1. (110)

In addition, REFINE_RECURSIVE (.7,T) creates a minimal 1-mesH, > .7
refinement of.7 so thatT is subdivided onlyonce This yields Lemma 18: there
exist a geometric constabt > 0 such that for all newly created elemeiitsc .7,

dist(T, T') < D29(T". (111)



80 R.H. Nochetto and A. Veeser

The procedurdREFINE_RECURSIVE is the core ofREFINE, which is con-
ceptually identical to that in Section 6.2. Suppose thalh @aarked elemeri € .#
is to be subdividegp > 1 times. We assign a flag(T) to each element which
is initializedq(T) = p if T € .# andq(T) = 0 otherwise. The marked se¥ is
then the set of elemen® with q(T) > 0, and every timd is subdivided it is re-
moved from.7 and replaced by its children, which inherit the fla@ ) — 1. This
avoids the conflict of subdividing again an element that fesnitpreviously refined
by REFINE_RECURSIVE. The procedur®EFINE (.7, .#) reads

REFINE (7,.#)
forall T e .#nN.7 do
7 = REFINE_RECURSIVE (7,T);
end
return (7)

and its output is a minimal 1-mes#i, > 7, refinement of7, so that all marked
elements of# are refined at leagt times. SinceZ, has one hanging node per side
it is thus admissible in the sense (22). However, the refim:mmay spread outside
. and the issue of complexity ®®EFINE again becomes non-trivial.

With the above ingredients in place, the proof of Lemma 3fed along the lines
of Section 6.3; see Problem 50.

6.5 Notes

The complexity theory for bisection hinges on the initidddéing (6) ford = 2. That
such a labeling exists is due to Mitchell [39, Theorem 2.9} Bmev, Dahmen, and
DeVore [7, Lemma 2.1], but the proofs are not constructiveodple of global bi-
sections of%, as depicted in Figure 6, guarantee (6) over the ensuing .nfresh
d > 2 the corresponding initial labeling is due to Stevenson §&tion 4 - Condi-
tion (b)], who in turn improves upon Maubach [36] and Trax®4] and shows how
to impose it upon further refining each elementigt We refer to the survey [45] for
a discussion of this condition: a key consequence is thay eudform refinement
of % gives a conforming bisection mesh.

The fundamental properties of chains, especially Lemmamnti718, along with
the clever ideas of Section 6.3 are due to Binev, Dahmen, awbi@ [7] ford = 2,
and Stevenson fat > 2; see [45]. Bonito and Nochetto [9] observed, in the context
of dG methods, that such properties extend to admissibleardarming meshes.

6.6 Problems

Problem 47 (Largest number of bisections)Show thatREFINE_RECURSIVE
(7,T) ford =2 bisectsT exactly once and all the elements in the chéifT,.7) at
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most twice. This property extendsda> 2 provided the initial labeling of Stevenson
[53, Section 4 - Condition (b)] is enforced.

Problem 48 (Properties of generation for quad-refinement).Prove (110) and
(111).

Problem 49 (Largest number of subdivisions for quads)Show that the proce-
dure REFINE_RECURSIVE (.7, T) subdividesT exactly once and never subdi-
vides any other quadrilateral of more than once.

Problem 50 (Lemma 3).Combine (110) and (111) to prove Lemma 3 for any 1.
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7 Convergence Rates

We have already realized 1.6 that we can a priori accommodate the degrees of
freedom in such a way that the finite element approximatitaime optimal energy
error decay for a class of singular functions. This presukmesviedge of the exact
solutionu. At the same time, we have seen numerical evidencgsia that the
standard AFEM 0§5.1, achieves such a performance without direct acces®to th
exact solutionu. Practical experience strongly suggests that this is exen for
a much larger class of problems and adaptive methods. THeeighea ahead is to
reconcile these two distinct aspects of AFEM.

A crucial insight in such a connection for the simplest scenahe Laplacian
and piecewise constant forcirfgis due to Stevenson [52]:

any marking strategy that reduces the energy error relativehe cur-
rent value must contain a substantial portion&$(U), and so it can (112)
be related to Brfler Marking

This allows one to compare meshes produced by AFEM with gdtones and to
conclude a quasi-optimal error decay. We discuss this isstie3. However, this is
not enough to handle the model problem (87) with variagfbnd f.

The objective of this section is to study (87) for generabdfatind f. This study
hinges on the total error and its relation with the quasiremdnich is contracted
by AFEM. This approach allows us to improve upon and exteravestson [52]
to variable data. In doing so, we follow closely Casg¢ Kreuzer, Nochetto, and
Siebert [14]. The present theory, however, does not extendncoercive problems
and marking strategies other thadifler's. These remain important open questions.

As in §5, u will always be the weak solution of (87) and, except whenestat
otherwise, any explicit constant or hidden constargt imay depend on the uniform
shape-regularity df, the dimensiom, the polynomial degrem, the (global) eigen-
values ofA, and the oscillation osg(A) of A on the initial mesh7, but not on a
specific grid7 € T.

7.1 The Total Error

We first introduce the concept @tal error for the Galerkin functiotd € V(.7)

lu=U|I% +0s& ), (113)

(see Mekchay and Nochetto [37]), and next assert its eaaricalto the quasi error
(99). In fact, in view of the upper and lower a posteriori etvounds (94), and

0s& (U) < 62 (U),

we have
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C262(U) < [lu—UJ|5 +0s& (V)
<[lu-UJI5+&5U) < (1+C1) E5(U),
whence
&2(U) =~ [lu-UJ|5 +0s& (V). (114)

Since AFEM selects elements for refinement based on infeemaktracted exclu-
sively from the error indicator$&’s (U, T) }1< o, we realize that the decay rate of
AFEM must be characterized by the total error. Moreover, mking the upper
bound (94a) again, we also see that the total error is equit&b the quasi error

lu=UJ|% +o0s& (U) ~ lu—UJ|5 + &3 (V).

The latter is the quantity being strictly reduced by AFEM €dhem 9). Finally, the
total error satisfies the following Cea’s type-lemma, orieajently AFEM is quasi-
optimal regarding the total error. In fact, if the osciltativanishes, then this is Cea’s
Lemma stated in Theorem 4; see also Problem 12.

Lemma 21 (Quasi-optimality of total error). There exists an explicit constafi,
which depends oA A%, n and d, such that for any” € T and the corresponding
Galerkin solution Ue V(.7) there holds

—~UJ% L(U) <Ay i ~V||2 . .
llu—UlIf +05&(U) < Az ot ([lu=VIIE +05&(v))
Proof. Fore > 0 choosé/; € V(.7), with
llu=Velf +05& (ve) < (1-+), inf _ (llu-VIl+05E (V).
Applying Problem 46 with7, = .7,V = U, andV, =V yields

05 (U) < 208E(Ve) +Ca [|U — Vel

with
Cs 1= A10scz (A)%
SinceU € V(.7) is the Galerkin solutiorl) —V; € V(.7) is orthogonal tar—U in
the energy norm, whendgu — U |3, + JU — Ve[|4 = [Ju— Ve[| and
lu=UJI5 +0s& (U) < (1+Cs) [[lu—Ve[|5 +2 05& (V)
<(1+€)Ay inf —U||4 +0s& (V
<@+e)e it (Jlu-UlIG +0sg(v)),

with A, = max{2,1+Cs}. The assertion follows upon takirgg— 0. O
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7.2 Approximation Classes

In view of (114) and Lemma 21, the definition of approximataassAs hinges on
the concept of best total error:

inf (llu=Viig +os& V).

Vev(7)

We first letTy C T be the set of all possible conforming refinements’fwith at
mostN elements more thafp, i. e.,

Tn={T €T |#7 —#% <N}.

The quality of the best approximation Ty with respect to the total error is char-
acterized by

N:u f.A):= inf inf — V|2 (V)2
a(N;u, f,A) ;QTNVEI{;@(IIIU G +0s& (V) ™7,

and the approximation clags; for s> 0 is defined by

Asi={(wT,A) | [T, Alsi= Sup(No(N;v f,A)) <o }.
N>0

Therefore, if(v, f,A) € Ag, thena(N;v, f,A) < N~3decays with raté&l—S. We point
out the upper bound< n/d for polynomial degre@ > 1; this can be seen with full
regularity and uniform refinement (see (14)). Note thgwjff, A) € Ag then for all
€ > O there exist7; > % conforming and/; € V(%) such that (see Problem 51)

Iv—Vel|% +0s&,(Ve) <€?  and  #% —#% < |v, f,A e Y. (115)
In addition, thanks to Lemma 21, the solutiowith data( f,A) satisfies
o(N;u.f,A)~ inf {7(U,7)|U =SOLVE(V(7))}. (116)
TeTy

This establishes a direct connection betwégand AFEM.

Mesh Overlay. For the subsequent discussion it will be convenient to mesge
conforming meshes’, % € T. Given the corresponding forest8;,. %, € F we
consider the set7; U.%, € IF, which satisfies?y C .71 U.%». Then.%1U.%> is a
forest and its leaves are called thneerlayof .%; and.%5:

ND T =T (F1UF2).

We next bound the cardinality of1 & % in terms of that of7; and.7>; see [14, 52].
Lemma 22 (Overlay).The overlay.7 = .71 & 7 is conforming and

#T <HH+#To—#T). (117)
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Proof. See Problem 52. 0

Discussion ofAs. We now would like to show a few examples of membershifdn
and highlight some important open questions. We first ingast the clasg\g for
piecewise polynomial coefficient matr& of degree< n over %. In this simplified
scenario, the oscillation ogqU ) reduces talata oscillation(see (58) and (93)):

0s¢7(U) = 0scy (f) := [|n(f —Pon-2 )l 2(q)-
We then have the following characterizationfofin terms of the standard approxi-

mation classes [7, 8, 52]:

ds:=3veV]| |V, :=sup(NS inf inf |[lv—V <
1= {Ve V| Moy i=sup(N inf | inf[lv-Vlg) <=},

7 . 2 R s )
s = {g eL(Q)| lolz= :gg(N ylg{m 0s¢7(g)) < °°}-

Lemma 23 (Equivalence of classesl.et A be piecewise polynomial of degreen
over Zp. Then(u, f,A) € Agif and only if (u, f) € % x o and

|u7va|S% |U‘¢z¢5+|”<z¢§ (118)

Proof. Itis obvious tha{u, f,A) € Agimplies(u, f) € .o% x <% as well as the bound
Ul +1Floz S U, £ Als, B

In order to prove the reverse inequality, let f) € <% x o%. Then there exist
T, T, € Ty so that|[|[u—U4 ||, < |ul,, N~ whereU s € V(.7) is the best ap-
proximation and osg, (f, 72) < || N>

The overlay.7 = 71 & % € T,y according to (117), and

llu=Usllg + 0867 () < [[Ju—Usg +05e7(f) < 25(Iul +F1.5) (2N)™

This yields(u, f,A) € As together with the bounfl, f, Als < |ul . +[fl ;. O

Corollary 7 (Membership in A/, with piecewise linearA). Let d= 2, n= 1,
and ue H3(Q) be the solution of the model problem with piecewise linkamgl
f € L2(Q). If u e W2(Q; %) is piecewise \§ over the initial grid % and p> 1,
then(u, f,A) € A;/» and

lu, f,Al12 S ID?UllLe(0; ) + Il Flliz o) (119)
Proof. Sincef € L2(Q), we realize that for all uniform refinementg € T we have
oscz () = In(f —PRof)l2(a) < hmad ) fllL20) S #T) 2] Fll2(q)s

This implies f ¢ Q/I/Z with |f\ﬂz/2 S |IfflL2(q)- Moreover, foru € Wg(Q;%)
we learn from Corollary 2 and Remark 6 1.6 thatu € <, and |u\M,1/2 <
||D2u|||_z(Q;%). The assertion then follows from Lemma 233
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Corollary 8 (Membership in A, with variable A). Letd=2,n=1,p>1, f ¢
L?(Q). LetAc W (Q, %) be piecewise Lipschitz andaiWz(Q; %) NH3(Q) be
piecewise V&’ over the initial mesh%. Then(u, f,A) € A1, and

lu, £, Aly2 S 1D%Ulleie;7) + I Fllzo) + 1Az @:7)- (120)
Proof. Combine Problem 55 with Corollary 2.0

Corollary 9 (Membership in Aswith s< 1/d).Letd>2,n=1,1<t<2,p>1,
and fe L?(Q). Let Ac Wi(Q, %) be piecewise Lipschitz andalW,(Q; o) N
Hg(Q) be piecewise \Mover the initial meshZp with t— 4 > 1—$. Then(u, f,A) €
A(tfl)/d and

U, f,Al—1)/a S ID'UllLe(a;z) + 1 fllza) + AIwa o:.7)- (121)
Proof. Combine Problem 9 with Problem 550

Example 2 (Pre-asymptoticsLorollary 7 shows that oscillation decays with rate
1/2 for f € L?(Q). Since the decay rate of the total errords< 1/2, oscilla-
tion can be ignored asymptotically; this is verified in Peshk 56, 57, and 58.
However, oscillation may dominate the total error, or egléwntly the classAg
may fail to describe the behavior dfu—Uy||o, in the early stages of adaptiv-
ity. In fact, we recall from Problem 32 that the discrete solu Uy = 0, and
[lu—Uyllo = 27K is constant for as many stefis< K as desired. In contrast,
&k(Uk) = 0s&(Uk) = [In(f — )| 2q) = [[hf[| 2o reduces strictly fok < K but
overestimate§iju— Uy || . The fact that the preasymptotic regitkec K for the en-
ergy error could be made arbitrarily long would be probleimdtwe were to focus
exclusively onfju—Uy|| -

Error
Estimator

10° 10" 10 10° 10° 10° 10" 10
Degrees of Freedom (DOFs) Degrees of Freedom (DOFs)

Fig. 20 Decay of the energy error (left) and the estimator (right) fog smooth solutionis of
(122) with frequencieg = 5,10, and 15. The energy error exhibits a frequency-deperpglatgau
in the preasymptotic regime and later an optimal decay. Thisviehia allowed byAs.

In practice, this effect is typically less dramatic becatige not orthogonal to
V(). Figure 20 displays the behavior of the AFEM for the smootltion ug

us(x,y) = 102a 1 +y?) sirf(kx) sir(kmty),  1<i<4, (122)



Primer of AFEM 87

of the model problem (87) with discontinuous coefficiefds}* ; in checkerboard
pattern as ir5.4 and frequencies = 5,10, and 15. We can see that the error ex-
hibits a frequency-dependent plateau in the preasymptegicne and later an op-
timal decay. In contrast, the estimator decays always wighaptimal rate. Since
all decisions of the AFEM are based on the estimator, thigteh has to be ex-
pected and is consistent with our notion of approximatiasshs, which can be
characterized just by the estimator according to (116).

7.3 Quasi-Optimal Cardinality: Vanishing Oscillation

In this section we follow the ideas of Stevenson [52] for tlepdest scenario with
vanishing oscillation osg(U) = 0, and thereby explore the insight (112). We recall
that in this case the a posteriori error estimates (94) becom

C26%(U) < [lu—UJl5 <CLé5(U). (123)

It is then evident that the rati6,/C; < 1, between theeliability constaniC; and
the efficiencyconstantCy, is a quality measure of the estimati§y (U ): the closer
to 1 the better! This ratio is usually closer to 1 for non-desil estimators, such as
those discussed ib.5, but their theory is a bit more cumbersome.

Assumptions for Optimal Decay Rate.The following are further restrictions on
AFEM to achieve optimal error decay, as predicted by the @gpration class.

Assumption 1 (Marking parameter: vanishing oscillation). The paramete® of
Dorfler marking satisfie® € (0, 6,) with

@
o=\ (124)

Assumption 2 (Cardinality of .#). MARK selects a set# with minimal cardi-
nality.

Assumption 3 (Initial labeling). The labeling of the initial mesky satisfie(6) for
d = 2 or its multimensional counterpart for & 2 [52, 45].

A few comments about these assumptions are now in order.

Remark 12 (Threshol@, < 1). It is reasonable to be cautious in making marking
decisions if the constan€;, andC; are very disparate, and thus the rafigyC; is
far from 1. This justifies the upper bourgd < 1 in Assumption 1.

Remark 13 (Minimal#). According to the equidistribution principle (16) and the
local lower bound (68) without oscillation, it is naturalimark elements with largest
error indicators. This leads to a minimal s#f, as stated in Assumption 2, and turns
out to be crucial to link AFEM with optimal meshes and appnoation classes.
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Remark 14 (Initial triangulation)Assumption 3 guarantees the complexity estimate
of moduleREFINE stated in Theorem 1 and provedg6.3:

k—1
BT —#T < Mo %#///j.
J:

Assumption 3 is rather restrictive for dimensidn- 2. Any other refinement giving
the same complexity estimate can repl&Ee-INE together with Assumption 3.

Even though we cannot expect local upper bounds betweerotiimmaous and
discrete solution, the following crucial result shows ttias is not the case between
discrete solutions on nested mesligs> .7: what matters is the set of elements of
7 which are no longer ir?..

Lemma 24 (Localized upper bound).Let 7,7, € T satisfy 7, > .7 and let
X =Xz 7 betherefined set. If & V, U, € V, are the corresponding Galerkin
solutions, then

lU. —UI5 < G165, 2). (125)

Proof. See Problem 53.0
We are now ready to explore Stevenson'’s insight (112) fosthmplest scenario.

Lemma 25 (Dorfler marking: vanishing oscillation). Let 8 satisfy Assumption 1
and setu := 1—62/62 > 0. Let.7, > .7 and the corresponding Galerkin solution
U, € V(7,) satisfy

lu=U.ll5 < ullu-Ulia. (126)

Then the refined se¥ = #Z »_. 5, satisfies the Drfler property

Proof. Sinceu < 1 we use the lower bound in (123), in conjunction with (126) an
Pythagoras equality (92), to derive

(1-)CE5(U, 7) < (1-p) [lu=Ull;
< lu=UJIE = lu=U. g =1V - U.]I5
In view of Lemma 24, we thus deduce
(1-)C265(U, 7) <C165 (U, 2),
which is the assertion in disguiseO

To examine the cardinality o# in terms of||u— Uy|| o we must relate AFEM
with the approximation classs. Even though this might appear like an undoable
task, the key to unravel this connection is given by Lemma/#5 show this now.
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Lemma 26 (Cardinality of .#). Let Assumptions 1 and 2 hold. Ifawaez then

#tl S U lu= Uil k>0, (128)
Proof. We invoke thatu € <%, together with Problem 51 with? = p ||ju— Uk|||f?,
to find a meshZ; € T and the Galerkin solutiods € V(%) so that

2 2 1
lu—Uellg <€, #Z—#FR S|use s.

Since . 7; may be totally unrelated to%, we introduce the overlay, = 7% & %.
We exploit the propertyZ, > 7 to conclude that the Galerkin solutith € V(%)
satisfies (127):

llu=Uall < llu=Uellg < = pllu-U]i-

Therefore, Lemma 25 implies that the refined g&t= Z5_, 5 satisfies a Drfler
marking with paramete® < 6,. But MARK delivers a minimal set# with this
property, according to Assumption 2, whence

1

1
HMl <HRE <HT, —#T <#T —#T S |u§e s,
where we use Lemma 22 to account for the overlay. The proainigptete. O

Proposition 4 (Quasi-optimality: vanishing oscillation) Let Assumptions 1, 2,
and 3 hold. If ue 2%, then AFEM gives rise to a sequenC&, Vi,Uy)_o such
that

llu=Ukllg < |uls (#FA—#5)° Vk=> 1.

Proof. We make use of Assumption 3, along with Theorem 1, to infetr tha
k—1 1 k-1 1
#R#T< N0y wy S Ik 3 [Ju-Uilo
= =
We now use the contraction property (97) of Lemma 15
llu=Ukllg < a*[lu—Uj]ll,
to replace the sum above by

1
as

k—1 1
7 lu—Uklllo®
] — S

k-1 1 1 o
ZOH!ufUJHIQS < [flu—Ukllo° an <y
= =

becauser < 1 and the series is summable. This completes the praof.
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7.4 Quasi-Optimal Cardinality: General Data

In this section we remove the restriction g§tJ ) = 0, and thereby make use of the
basic ingredients developedii.1 ands7.2. Therefore, we replace the energy error
by the total error and the linear approximation clagsfor u by the nonlinear class
Ag for the triple (u, f,A). To account for the presence of genefandA, we need

to make an even more stringent assumption on the threghold

Assumption 4 (Marking parameter: general data).Let G = A3 osc?% (A) be the
constant in Problem 46 and Lemma 21. The marking param@teatisfiesd €

(0, 6,) with
0. = V 1+C1(1+GCg)° (129)

We now proceed along the same lines as thosg &.

Lemma 27 (Dorfler marking: general data). Let Assumption 4 hold and sgt.=

%(1— Z—Z) > 0. If . > 7 and the corresponding Galerkin solution. &g V(%)

satisfy
lu=U.lI5 +0s&, (U,) < pu(flu-UJ15 +o0s&(U)), (130)

then the refined se¥ = #Z 5 _, 5, satisfies the Drfler property
E7(U,.%) > 067U, 7). (131)

Proof. We split the proof into four steps.
In view of the global lower bound (94b)

Co65(U) < [lu-UJ[5 +osé (U)
and (130), we can write
(1—201)C26%(U) < (1—2p)([lu—U|5 +0s& (U))

< (llu=UlIg —2[lu=U.JI5) + (05 (U) — 205&; (U.)).
Combining the Pythagoras orthogonality relation (92)

lu=UlI = lu=U.[1% = [lu - V.3
with the localized upper bound Lemma 24 yields

lu—UJE = 2[lu- U5 < IV -U.]Ig < C165U.2).

To deal with oscillation we decompose the elementgahto two disjoint sets:
Z# and 7 \ Z. In the former case, we have

08¢ (U, %) —208&; (U,, %) < 05& (U, %) < 5(U, %),
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because osg(U,T) < &7 (U,T) for all T € 7. On the other hand, we use that
T\Z% =7 N7, and apply Problem 46 in conjunction with Lemma 24 to arrive at

05 (U, 7\ %) —20s&, (U,, 7\ #) < Cs||U —U,[|5 < CiCs62(U, %).
Adding these two estimates gives

0s&(U) —20s&, (U,) < (1+C1C3)65 (U, Z).

Returning td : | we realize that
(1-21)C265 (U, 7) < (14 Cy(1+Cs)) 65(U. 2),
which is the asserted estimate (131) in disguise.

Lemma 28 (Cardinality of .#y: general data).Let Assumptions 2 and 4 hold. If
(u, f,A) € Ag, then

ot < |u, A (Jlu— Uyl +0sa&(Uy) ° k> 0. (132)

Proof. We split the proof into three steps.

We sete? := pAy L ([lu—Ul5 + os@(U)) with = 3(1— 272) >0 as in
Lemma 27 and\, given Lemma 21. Sincéu, f,A) € Ag, in view of Problem 51
there exists7; € T andU, € V(%) such that

lu—Ugell3 +0s@(Ug) <2 and  #% —#5% < |u, f,AT %S

Since.7; may be totally unrelated t&% we introduce the overlay, = % & 7.
We claim that the total error ove?; reduces by a factou relative to that one
over . In fact, sinceZ, > .7 and soV(.7;) D V(.7), we use Lemma 21 to obtain

llu=UJI + 05, (U.) < Az ( llu=Uellf, +0s@(Us))
< Ao =t (llu= Uil + 0s@(Uk).

Upon applying Lemma 27 we conclude that the®et % 4 _, 7, of refined elements
satisfies a Drfler marking (131) with parametér < 6..

According to Assumption 2MARK selects a minimal se# satisfying this
property. Therefore, we deduce

Bl <HR <HT, —#T <#Tp —#P S |u, A e V3,

where we have employed Lemma 22 to account for the cardinaflithe overlay.
Finally, recalling the definition of we end up with the asserted estimate (132).

Remark 15 (Blow-up of constanfjhe constant hidden in (132) blows up&s$ 6.
becauseu | O; see Problem 54.
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We are ready to prove the main result of this section, whiaghliaes Theorem
9 and Lemma 28.

Theorem 10 (Quasi-optimality: general data).Let Assumptions 2, 3 and 4 hold.
If (u, f,A) € As, then AFEM gives rise to a sequencs, Vi,Ux),_o such that

lu—Ukllg +0s&(Ux) < |u, f,Als (#F—#%) "> Vk> 1.

Proof. [ 1| Since no confusion arises, we use the notation esosg (Uj) and&} =
&;(U;). In light of Assumption 3, which yields Theorem 1, and (132) have

k1 15" 2 ~1/(2s)
R —#To S Eb#///,-5|u,f,A|S/Szb(|Hu—uj|||Q+osc1?) :
1= 1=
Let y > O be the scaling factor in the (contraction) Theorem 9. Thesldbound
(94b) along with osc< &j implies
Ilu=Us[5 +yosg < [lu-ujg +ve? < (1+ é)(H!u—UjH!é +0sG).

[2] Theorem 9 yields for & j < k
llu— Ui +y&2 < a6 D (|lu=u |3 +ye?),

whence

k-1 )
#T—#% S |u, £ AR ([lu— Ukl +v&2) 3 atie
]=

Sincgz‘j(;é akVs=3K  al/®< 57 al/* <o becauser < 1, the assertion fol-
lows immediately. O

We conclude this section with several applications of Theof0.
Corollary 10 (Estimator decay). Let Assumptions 2,, 3 and 4 be satisfied. If
(u, f,A) € Ag then the estimata#i(Uy) satisfies
EU) < |u, fAYS(#I —#%)S VK> 1.

Proof. Use (114) and Theorem 100

Corollary 11 (Wg-regularity with piecewise linear A). Let d = 2, the polyno-
mial degree n=1, f € L?(Q), and let A be piecewise linear ovef. If u €
WZ(Q; %) for p > 1, then AFEM gives rise to a sequenféy, Vi, U}, sat-
isfyingosa(Uk) = [[hk(f —Po f)| 2o) and for all k> 1

llu=Ukll o +0s&(Uk) S (IID?Ulluoa;z) + 1 Pz ) (47— #70) Y2
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Proof. Combine Corollary 7 with Theorem 10.00

Corollary 12 (Wg-regularity with variable A). Assume the setting of Corollary 11,
but let A be piecewise Lipschitz over the initial grigh. Then AFEM gives rise to a
sequence Ji, Vi, Uk} g satisfying for all k> 1

~ ( '70) L (Q) Woo(-Qrf?O>

Proof. Combine Corollary 8 with Theorem 10.0

Corollary 13 (Wg-regularity with s<1/d). Letd>2,n=1,1<t<2, p>1,

f € L%(Q), andAc Wi (Q, %) be piecewise Lipschitz. If@Ws(Q;.%) NH(Q)
is piecewise Wover the initial mesh with t — % >1— %, then AFEM gives rise
to a sequencé.%, Vi, Uk} satisfying for all k> 1

[lu—Ukllo +0sG(Uk)
S (HDtu”LP(Q;%) + 1 fllz) + HA”WO%(Q;%)) (#F—#Tp) /.

Proof. Combine Corollary 9 with Theorem 10.0

7.5 Extensions and Restrictions

We conclude with a brief discussion of extensions of the themd some of its
restrictions.

Optimal Complexity: Inexact Solvers, Quadrature, and Storage.We point out
that we have never mentioned the notiorcomplexityso far. This is because com-
plexity estimates entail crucial issues that we have igihoreexact solvers to ap-
proximate the Galerkin solution; quadrature; and optintalagye. We comment on
them now.

Multilevel solversare known to deliver an approximate solution with cost pro-
portional to the number of degrees of freedom. Even thoughhbory is well de-
veloped for uniform refinement, it is much less understoadaftaptive refinement.
This is due to the fact that the adaptive bisection meshegtsatisfy the so-called
nested refinement assumption. Recently, Xu, Chen, and kodb8] have bridged
the gap between graded and quasi-uniform grids exploitisggeometric structure
of bisection grids and a resulting new space decomposiiibay designed and an-
alyzed optimal additive and multiplicative multilevel rhetls for any dimension
d > 2 and poynomial degree > 1, thereby improving upon Wu and Chen [59].
The theories o5 and§7 can be suitably modified to account for optimal iterative
solvers; we refer to Stevenson [52].
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Quadratureis a very delicate issue in a purely a posteriori context,ighaithout
a priori knowledge of the functions involved. Even if we wépeeplace both data
andA by piecewise polynomials so that quadrature would be simyevould need
to account for the discrepancy in adequate norms betweert ard approximate
data, again a rather delicate matter. This issue is to a &adgad open.

Optimal storageis an essential, but often disregarded, aspect of a contylexi
analysis. For instance, ALBERTA is an excellent library fdfEM but does not
have optimal storage capabilities [50].

Non-Residual Estimators.The cardinality analysis of this section extends to esti-
mators other than the residual; we refer to @esand Nochetto [15] and Kreuzer
and Siebert [35]. They include the hierarchical, Zienkiexw¥hu [2, 27, 55, 58], and
Braess-Schoerbel estimators, as well as those based onltti®rs of local prob-
lems [12, 42]. Even though the contraction property of Tlkkeo® is no longer valid
between consecutive iterates, it is true after a fixed nurobéerations, which is
enough for the arguments in Proposition 4 and Theorem 10pty.aphe resulting
error estimates possess constants proportional to this gap

Nonconforming Meshes SinceREFINE exhibits optimal complexity for admissi-
ble nonconforming meshes, according;64, and this is the only ingredient where
nonconformity might play a role, the theory of this sectiottemds. We refer to
Bonito and Nochetto [9].

Discontinuous Galerkin Methods (dG).The study of cardinality for adaptive dG
methods is rather technical. This is in part due to the faat key Lemmas 26 and
28 hinge on mesh overlay, which in turn does not provide abrdf the level of
refinement. This makes it difficult to compare broken energyns

V1% = IAY20VIZ2 . ) + 12 V] 125,

which contain jump terms with negative powers of the megh-sver the scheleton
2 of 7. Consequently, the monotonicity of energy norms used inrhes26 and
28 is no longer true!

To circumvent this difficulty, Bonito and Nochetto [9] resed to continuous fi-
nite elementsv®(.7) over the (admissible nonconforming) mesh, which have
the same degree as their discontinuous counte¥fat). This leads to a cardinal-
ity theory very much in the spirit of this section. Howevdrraises the question
whether discontinuous elements deliver a better asyneptate over admissible
nonconforming meshes. Since this result is of intrinsieriest, we report it now.

Lemma 29 (Equivalence of classesl).et Ag be the approximation class using dis-
continuous elements of degreen andA? be the continuous counterpart. Then, for
0 < s<n/d, total errors are equivalent on the same mesh, wheénce Ag.

Proof. We use the notation of Problem 11. Sin¢&(.7) c V(.7), the inclusion
A2 € Agis obvious. To prove the converse, we (atf,A) € As and, forN > #.%,
let 7, € Tn be an admissible nonconforming grid ddde V(.7 ) be so that
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u—U,l| » +0scz (U,) = inf inf u—V||,+oscr(V)) SN7°.
lu=U.ll +0se (L) = nf inf ([lu=VI|; +0se (V) £

Letl 7 : V(.7) — VO(.7) be the interpolation operator of Problem 11. SihgJ, €
VO(.7,), if we were able to prove

llu=17U.ll 5, +0scz (17U.) SNT5,
then(u, f,A) € A%. Using the triangle inequality, we get
lu=17U.]l 5, < |AY20(U—=U.) 200, 7) + IA2OU = 12U")ll2(0,7)-
becausdu— 14 U.] vanish onz. Problem 11 implies the estimate
IAY20(U, ~170%) l20;7) S I3 U] Dz, < llu=Uil 5,

whence
lu=17Ul 5 S llu=Udf o -

Sincel|AY?0(U, —17U.) | 2(0. ) < IU- —17,U.| ., the oscillation term can be
treated similarly. In fact, Problem 46 adapted to discamirs functions yields

0s¢z, (I7U.) S 0s¢z (Us) + [Ju= U]l 7 .
Coupling the two estimates above, we end up with
lu=17U.]l 7 +0scz (172U.) S [lu=Uslll 5 +0scz (U.) SN2

Therefore(u, f,A) € AQ as desired. O

7.6 Notes

The theory presented in this section is rather recent. fitestavith the breakthrough
(112) by Stevenson [52] for vanishing oscillationfIfs variable andA is piecewise
constant, then Stevenson extended this idea upon addingnan lbop to handle
data oscillation to the usual AFEM. This idea does not exteride model problem
(87) with variableA, because the oscillation then depends on the Galerkinigolut

The next crucial step was made by CascKreuzer, Nochetto, and Siebert [14],
who dealt with the notion of total error @f7.1, as previously done by Mekchay and
Nochetto [37], and introduced the nonlinear approximatitassAs of §7.2. They
derived the convergence ratess@t4.

The analysis for nonconforming meshes is due to Bonito anchistibo [9], who
developed this theory in the context of dG methods for whinglytalso derived con-
vergence rates. The study of non-residual estimators isaieeuzer and Siebert
[35] and Casen and Nochetto [15].
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The theory is almost exclusively devoted to the energy nemoept for thel2-
analysis of Demlow and Stevenson [21], who proved an opttoalergence rate
for mildly varying graded meshes. Convergence rates haee pmved for Raviart-
Thomas mixed FEM by Chen, Holst, and Xu [18].

7.7 Problems

Problem 51 (Alternative definition of Ag). Show that(v, f,A) € Ag if and only
there exists a constant > 0 such that for ale > 0 there exist7; > % conforming
andV; € V(.7) such that

IV=Ve[[5 +0s&, (Vo) < €2 and  #7, —#Tp < AYSe 15,

in this casgv, f,Als < A. Hint: Let 7 be minimal for|[[v— V¢ |7, +0s&, (Ve) < £2.

This means that for all7 € T such that # = #7; — 1 we have||v—Vg||% +
0s&, (Ve) > €.

Problem 52 (Lemma 22) Prove that the overlay = .7, @ .7 is conforming and
#T <HN+#To—#D.

Hint: for eachT € %, consider two case$1(T)N.%(T) A0 and 71 (T)N%(T) =
0, where.Z (T) is the portion of the mesl; contained inT .

Problem 53 (Lemma 24) Prove that if7, 7, € T satisty %, > 9, % =% 7,
is the refined set to go fron¥ to .7, andU € V, U, € V, are the corresponding
Galerkin solutions, then

U, —U||3 <C1£2(U,%).

To this end, write the equation fulfilled dy, —U € V, and use as a test function
the local quasi-interpolant; (U, —U) of U, —U introduced in Proposition 2.

Problem 54 (Explicit dependence orf and s). Trace the dependence érands,
asf — 6, ands— 0, in the hidden constants in Lemma 28 and Theorem 10.

Problem 55 (Asymptotic decay of oscillation)Let A € W2(Q; %) be piecewise
Lipschitz over the initial grid7% and f € L?(Q). Show that

; -1/d
Jnf 0567 (U) 5 (11 lzia) + [ Allug 7 )N

is attained with uniform meshes.

Problem 56 (Faster decay of data oscillation)Let d =2 andn = 1. Let f be
piecewisaN}! over the initial meshZp, namelyf € W(Q; %). Show that
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; -1
}Q’EN Ih (f =R Hllz0) < 1 llwg @) N

using the thresholding algorithm 1.6. Therefore, data oscillation decays twice as
fast as the energy error asymptotically on suitably gradedhas.

Problem 57 (Faster decay of coefficient oscillation)Consider the coefficient os-
cillation weighted locally by the energy of the discretewgimnU:

nZ(AU) = ¥ 0s&(AT)[0U]%,),
TeT
where osg (A, T) is defined in Problem 45. Led =2 n=1,p > 2, andA €
WZ(Q; %) be piecewise iW? over the initial grid.7%. Use the thresholding al-
gorithm of§1.6 to show that) - (A,U ) decays with a rate twice as fast as the energy
error:
Anf 17 (AU) S 1Alwg ;) IEU [

Problem 58 (Faster decay of oscillation)Combine Problems 29, 56 and 57 for

d=2,n=1andp> 2to prove that iff € W}(Q; %) andA € W2(Q; %), then the
oscillation os¢r (U, .7) decays with a rate twice as fast as the energy error:

i -1
Jnf 0567 (U) S (I lhwgan )+ A g )N
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