
Notes in Lieu of Class Lecture  on Chapter I.7 on Tuesday, Feb 17, 2015 

Why do we employ numerical methods to study first order ODEs? First of all, as 
we have seen, often we may not be able to find a formula solution of an ODE. 
Second, the graphical method that we have developed – that is, vector fields, only 
gives us a general notion of how "all" the solution curves of the ODE behave. 
However, we may be seeking the behavior of a specific solution having a certain 
initial value. Numerical methods enable us to give very accurate information on a 
specific solution to an IVP – but as we shall see, with an important caveat. 

The simplest numerical method is the Euler Method. Given y'=f(t, y), y(t0)=y0, that 
is, an IVP, we may not have a formula for the solution y = φ(t) that goes through 
the given point. But we do know its slope at the point (t0, y0) – namely, φ'(t0) = 
f(t0, φ(t0)) = f(t0,y0). For a small value h > 0, we can estimate the value of φ(t) at     
t = t1 = t0 + h, using the point-slope formula for the tangent line to φ(t) at (t0,y0) – 
namely  

φ(t1) ≈ y1 = y0 + hf(t0,y0).  

Repeating this calculation as we step by h units to the right, we obtain a series of 
points that approximate the solution curve y=φ(t) at tn=t0+nh, that is 

yn+1=yn+hf(tn, yn), n ≥ 0. 

Euler's Method is described in both DEwM, Chapter 8 and the NODE notes, I.7. 
You might try problems 3 & 4 in the latter reference to solidfy your understanding 
of the Euler Method. 

Euler's Method is a coarse method that rarely results in estimates of accuracy 
greater than one or two decimal places. Over the years, numerical analysts have 
discovered many more sophisticated methods that yield much greater accuracy. 
These include the Improved Euler Method, Implicit Euler, the Runge-Kutta 
Method and others described in the above two references. Matlab's numerical 
solver, ode45, is one such highly sophisticated method. It is extraordinarily 
accurate. You can find a great deal of information about it in Chapter 8 of DEwM. 

Here are some of the highlights: 



• Since numerical methods yield only approximations to a solution, there is 
an inherent error, that is, the discrepancy between the actual value of the 
solution and the value computed by the numerical method. In fact, the 
error has two components – the so-called formula error intrinsic in the fact 
that the method's formula is only an approximation; and the round-off 
error caused by the fact that your computing device only maintains a 
certain number of decimal places. In practice, the latter is insignificant 
compared to the former. 

• The increment h is called the step and its value the step size. Clearly, the 
smaller the step size, the more computation is required, but also the 
approximation is more accurate. Generally, the formula error will be 
proportional to a power of h, said power being called the order of the 
method. Euler is a first order method; ode45 is a combination of fourth and 
fifth order methods. 

• The step size is constant in the Euler Method, and in each computation only 
the previous step is used. Many methods employ variable step size (where, 
amazingly enough, the machine chooses the size on its own) and multi-step 
methods (meaning that many of the previous steps are used in a single 
computation). Generally, these are more accurate than single, fixed step 
size methods, but they are also far more computationally intensive. ode45 
is of that ilk. 

• One can distinguish between local and global error—roughly the error you 
make in one step versus the error you make over the whole interval in 
which the solution is computed. You can read more about that in DEwM. 

• You can control the error to some extent with certain Matlab settings – 
once again, see DEwM. 

• We have seen that numerical methods, e.g., ode45, crank out a series of 
points that approximate points on the actual solution curve. ode45 also 
generates a graph through these points. The simplest way to do that is 
merely to connect the successive points by straight lines. Matlab does 
something more sophisticated using an "interpolation method." For more 
on that, look at Sections 8.2.1 & 9.6.1 in DEwM. Section 9.6 contains more 



useful information on ode45, as well as hints that might prove useful in 
working the Matlab problems. 

Now comes a very important point that is only glossed over in the NODE notes – 
namely stability and reliability. In Section 8.4 of DEwM, an example is presented 
that reveals a rather drastic inaccuracy for the numerical solution that is 
computed there. This eventuality is bound up with the notion of stability, which is 
discussed in Section 5.3 of DEwM. An IVP is called stable if the long-term behavior 
of the solution is fairly insensitive to small changes in the initial data as t 
increases. It is called unstable if it is highly sensitive, as t increases, to small 
changes in initial data. Examples of both behaviors are exhibited in Section 5.3. 
The point is that numerical solutions of unstable IVPs may be highly unreliable. It 
is important to keep this in mind when employing numerical methods. Applied to 
stable IVPs, numerical methods are phenomenally accurate. Applied to unstable 
IVPs, numerical methods may be wildly inaccurate. 

A result (Theorem 5.2, p. 60) is given in Section 5.3 of DEwM, which guarantees 
the stability of an IVP. Roughly speaking, it says that you need ∂f/∂y < 0 on the 
open region for which the existence and uniqueness theorem  applies to your IVP 
in order to guarantee stability.(Note that for the example in Section 8.4, this test 
fails, resulting in the unfortunate inaccuracy in the numerical solution.) 

Finally, you are encouraged to read Chapter 8 carefully. You should look at I.7 in 
the NODE notes as well, but it is imperative that you consult Chapter 8. In 
particular, the material in Section 8.1 should prove useful in working problems in 
PSC. 


