
Notes in Lieu of Class Lecture on Chapter I.7 on Tuesday, Feb 17, 2015

Why do we employ numerical methods to study first order ODEs? First of all, as
we have seen, often we may not be able to find a formula solution of an ODE.
Second, the graphical method that we have developed – that is, vector fields, only
gives us a general notion of how "all" the solution curves of the ODE behave.
However, we may be seeking the behavior of a specific solution having a certain
initial value. Numerical methods enable us to give very accurate information on a
specific solution to an IVP – but as we shall see, with an important caveat.

The simplest numerical method is the Euler Method. Given y'=f(t, y), y(t0)=y0, that
is, an IVP, we may not have a formula for the solution y = φ(t) that goes through
the given point. But we do know its slope at the point (t0, y0) – namely, φ'(t0) =
f(t0, φ(t0)) = f(t0,y0). For a small value h > 0, we can estimate the value of φ(t) at
t = t1 = t0 + h, using the point-slope formula for the tangent line to φ(t) at (t0,y0) –
namely

φ(t1) ≈ y1 = y0 + hf(t0,y0).

Repeating this calculation as we step by h units to the right, we obtain a series of
points that approximate the solution curve y=φ(t) at tn=t0+nh, that is

yn+1=yn+hf(tn, yn), n ≥ 0.

Euler's Method is described in both DEwM, Chapter 8 and the NODE notes, I.7.
You might try problems 3 & 4 in the latter reference to solidfy your understanding
of the Euler Method.

Euler's Method is a coarse method that rarely results in estimates of accuracy
greater than one or two decimal places. Over the years, numerical analysts have
discovered many more sophisticated methods that yield much greater accuracy.
These include the Improved Euler Method, Implicit Euler, the Runge-Kutta
Method and others described in the above two references. Matlab's numerical
solver, ode45, is one such highly sophisticated method. It is extraordinarily
accurate. You can find a great deal of information about it in Chapter 8 of DEwM.

Here are some of the highlights:

• Since numerical methods yield only approximations to a solution, there is
an inherent error, that is, the discrepancy between the actual value of the
solution and the value computed by the numerical method. In fact, the
error has two components – the so-called formula error intrinsic in the fact
that the method's formula is only an approximation; and the round-off
error caused by the fact that your computing device only maintains a
certain number of decimal places. In practice, the latter is insignificant
compared to the former.

• The increment h is called the step and its value the step size. Clearly, the
smaller the step size, the more computation is required, but also the
approximation is more accurate. Generally, the formula error will be
proportional to a power of h, said power being called the order of the
method. Euler is a first order method; ode45 is a combination of fourth and
fifth order methods.

• The step size is constant in the Euler Method, and in each computation only
the previous step is used. Many methods employ variable step size (where,
amazingly enough, the machine chooses the size on its own) and multi-step
methods (meaning that many of the previous steps are used in a single
computation). Generally, these are more accurate than single, fixed step
size methods, but they are also far more computationally intensive. ode45
is of that ilk.

• One can distinguish between local and global error—roughly the error you
make in one step versus the error you make over the whole interval in
which the solution is computed. You can read more about that in DEwM.

• You can control the error to some extent with certain Matlab settings –
once again, see DEwM.

• We have seen that numerical methods, e.g., ode45, crank out a series of
points that approximate points on the actual solution curve. ode45 also
generates a graph through these points. The simplest way to do that is
merely to connect the successive points by straight lines. Matlab does
something more sophisticated using an "interpolation method." For more
on that, look at Sections 8.2.1 & 9.6.1 in DEwM. Section 9.6 contains more

useful information on ode45, as well as hints that might prove useful in
working the Matlab problems.

Now comes a very important point that is only glossed over in the NODE notes –
namely stability and reliability. In Section 8.4 of DEwM, an example is presented
that reveals a rather drastic inaccuracy for the numerical solution that is
computed there. This eventuality is bound up with the notion of stability, which is
discussed in Section 5.3 of DEwM. An IVP is called stable if the long-term behavior
of the solution is fairly insensitive to small changes in the initial data as t
increases. It is called unstable if it is highly sensitive, as t increases, to small
changes in initial data. Examples of both behaviors are exhibited in Section 5.3.
The point is that numerical solutions of unstable IVPs may be highly unreliable. It
is important to keep this in mind when employing numerical methods. Applied to
stable IVPs, numerical methods are phenomenally accurate. Applied to unstable
IVPs, numerical methods may be wildly inaccurate.

A result (Theorem 5.2, p. 60) is given in Section 5.3 of DEwM, which guarantees
the stability of an IVP. Roughly speaking, it says that you need ∂f/∂y < 0 on the
open region for which the existence and uniqueness theorem applies to your IVP
in order to guarantee stability.(Note that for the example in Section 8.4, this test
fails, resulting in the unfortunate inaccuracy in the numerical solution.)

Finally, you are encouraged to read Chapter 8 carefully. You should look at I.7 in
the NODE notes as well, but it is imperative that you consult Chapter 8. In
particular, the material in Section 8.1 should prove useful in working problems in
PSC.

