
Contents lists available at ScienceDirect

Applied and Computational Harmonic Analysis

journal homepage: www.elsevier.com/locate/acha

Full Length Article

Permutation-invariant representations with applications to graph

deep learning

Radu Balan a, ,∗,1, Naveed Haghani b, Maneesh Singh c

a Department of Mathematics, University of Maryland, College Park, MD 20742, USA
b Applied Mathematics and Statistics and Scientific Computation Program, University of Maryland, College Park, MD 20742, USA
c Verisk Analytics, Jersey City, NJ 07310, USA

A R T I C L E I N F O A B S T R A C T

Communicated by David Donoho

MSC:

05C62

20C32

68R12

Keywords:

Permutation invariance

Bi-Lipschitz embedding

Frames

This paper presents primarily two Euclidean embeddings of the quotient space generated by
matrices that are identified modulo arbitrary row permutations. The original application is in
deep learning on graphs where the learning task is invariant to node relabeling. Two embedding
schemes are introduced, one based on sorting and the other based on algebras of multivariate
polynomials. While both embeddings exhibit a computational complexity exponential in problem
size, the sorting based embedding is globally bi-Lipschitz and admits a low dimensional target
space. Additionally, an almost everywhere injective scheme can be implemented with minimal
redundancy and low computational cost. In turn, this proves that almost any classifier can be
implemented with an arbitrary small loss of performance. Numerical experiments are carried out
on two datasets, a chemical compound dataset (QM9) and a proteins dataset (PROTEINS_FULL).

1. Introduction

This paper is motivated by a class of problems in graph deep learning, where the primary task is either graph classification or
graph regression. In either case, the result should be invariant to arbitrary permutations of graph nodes.

As we explain below, the mathematical problem analyzed in this paper is a special case of the permutation invariance issue
described above. To set the notations consider the vector space ℝ𝑛×𝑑 of 𝑛 × 𝑑 matrices endowed with the Frobenius norm ‖𝑋‖ =(
𝑡𝑟𝑎𝑐𝑒(𝑋𝑋𝑇)

)1∕2
and its associated Hilbert-Schmidt scalar product, ⟨𝑋,𝑌 ⟩ = 𝑡𝑟𝑎𝑐𝑒(𝑋𝑌 𝑇). Let 𝑛 denote the symmetric group of 𝑛×𝑛

permutation matrices. 𝑛 is a finite group of size |𝑛| = 𝑛!.
On ℝ𝑛×𝑑 we consider the equivalence relation ∼ induced by the symmetric group of permutation matrices 𝑛 as follows. Let

𝑋,𝑌 ∈ ℝ𝑛×𝑑 . Then we say 𝑋 ∼ 𝑌 if there is 𝑃 ∈ 𝑛 so that 𝑌 = 𝑃𝑋. In other words, two matrices are equivalent if one is a row
permutation of the other. The equivalence relation induces a natural distance on the quotient space ℝ̂𝑛×𝑑 ∶=ℝ𝑛×𝑑∕ ∼,

𝐝 ∶ ℝ̂𝑛×𝑑 × ℝ̂𝑛×𝑑 →ℝ , 𝐝(𝑋̂, 𝑌) = min
Π∈𝑛 ‖𝑋 −Π𝑌 ‖. (1.1)

* Corresponding author.

E-mail addresses: rvbalan@umd.edu (R. Balan), nhaghan1@umd.edu (N. Haghani), dr.maneesh.singh@ieee.org (M. Singh).
1 R.B. was supported in part by NSF under Grants DMS-1816608 and DMS-2108900 and by a Simons Foundation fellowship 818333. He is grateful to the anonymous

referee for a careful and detailed review that led to a much-improved manuscript.

https://doi.org/10.1016/j.acha.2025.101798

Received 3 June 2022; Accepted 17 July 2025

Applied and Computational Harmonic Analysis 79 (2025) 101798

Available online 6 August 2025
1063-5203/© 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/acha
http://orcid.org/0000-0002-6217-3236
mailto:rvbalan@umd.edu
mailto:nhaghan1@umd.edu
mailto:dr.maneesh.singh@ieee.org
https://doi.org/10.1016/j.acha.2025.101798
https://doi.org/10.1016/j.acha.2025.101798
http://crossmark.crossref.org/dialog/?doi=10.1016/j.acha.2025.101798&domain=pdf
http://creativecommons.org/licenses/by/4.0/

R. Balan, N. Haghani and M. Singh

This makes (ℝ̂𝑛×𝑑 ,𝐝) a complete metric space.

Our main problem can now be stated as follows:

Problem 1.1. Given 𝑛, 𝑑 ≥ 1 positive integers, find 𝑚 and a bi-Lipschitz map 𝛼̂ ∶ (ℝ̂𝑛×𝑑 ,𝐝)→ (ℝ𝑚,‖ ⋅ ‖2).
Explicitly the problem can be restated as follows. One is asked to construct a map 𝛼 ∶ ℝ𝑛×𝑑 → ℝ𝑚 that satisfies the following

conditions:

1. If 𝑋,𝑌 ∈ℝ𝑛×𝑑 so that 𝑋 ∼ 𝑌 then 𝛼(𝑋) = 𝛼(𝑌)
2. If 𝑋,𝑌 ∈ℝ𝑛×𝑑 so that 𝛼(𝑋) = 𝛼(𝑌) then 𝑋 ∼ 𝑌
3. There are constants 0 < 𝑎0 ≤ 𝑏0 so that for any 𝑋,𝑌 ∈ℝ𝑛×𝑑 ,

𝑎0 min
Π∈𝑛 ‖𝑋 −Π𝑌 ‖ ≤ ‖𝛼(𝑋) − 𝛼(𝑌)‖2 ≤ 𝑏0 min

Π∈𝑛 ‖𝑋 −Π𝑌 ‖. (1.2)

Condition (1) allows us to lift 𝛼 to the quotient space ℝ̂𝑛×𝑑 . Thus 𝛼̂(𝑋̂) = 𝛼(𝑋) is well-defined. Condition (2) says that 𝛼̂ is injective
(or, that 𝛼 is faithful with respect to the equivalence relation ∼). Condition (3) says that 𝛼̂ is bi-Lipschitz with constants 𝑎0, 𝑏0. By a
slight abuse of notation, when 𝛼 satisfies (1) we shall use the same letter to denote the map 𝛼 ∶ ℝ𝑛×𝑑 → ℝ𝑚 as well as the induced
map on the quotient space 𝛼 ∶ ℝ̂𝑛×𝑑 →ℝ𝑚.

For 𝑋,𝑌 ∈ℝ𝑛×𝑑 , 𝐝(𝑋,𝑌) denotes the same quantity in (1.1). In this case 𝐝 is only a semi-distance on ℝ𝑛×𝑑 , i.e., it is symmetric,
non-negative and satisfies the triangle inequality but fails the positivity condition.

One approach to embedding ℝ̂𝑛×𝑑 is to consider the convex set of probability measures on ℝ𝑑 , (ℝ𝑑), and the map

𝛼∞ ∶ℝ𝑛×𝑑 → (ℝ𝑑) , 𝛼∞(𝑋) = 1
𝑛

𝑛 ∑
𝑘=1
𝛿(⋅− 𝑥𝑘), (1.3)

where [𝑥1,… , 𝑥𝑛] =𝑋𝑇 , i.e., 𝑥𝑘 is the 𝑘𝑡ℎ row of 𝑋 reshaped as a vector, and 𝛿 denotes the Dirac measure. When (ℝ𝑑) is endowed
with the Wasserstein-1 distance (the Earth Moving Distance), known also as the Kantorovich-Rubinstein metric,

𝑑𝐾𝑅(𝑝, 𝑞) = inf
𝜋 ∈ (ℝ𝑑 ×ℝ𝑑):
𝜋(⋅,ℝ𝑑) = 𝑝
𝜋(ℝ𝑑 , ⋅) = 𝑞

∫
ℝ𝑑×ℝ𝑑

‖𝑥− 𝑦‖ 𝑑𝜋(𝑥, 𝑦) (1.4)

the distance between 𝑎∞(𝑋) and 𝑎∞(𝑌) becomes

𝑑𝐾𝑅(𝑎∞(𝑋), 𝑎∞(𝑌)) = min
Π∈𝑛

𝑛 ∑
𝑘=1

‖𝑥𝑘 − (Π𝑌)𝑘‖.
By the Kantorovich-Rubinstein theorem ([12]Theorem 1.14), 𝑑𝐾𝑅 extends to a norm on the linear space of bounded signed Borel
measures on ℝ𝑑 , 𝑏(ℝ𝑑). It is easy to verify that

𝐝(𝑋̂, 𝑌) ≤ 𝑑𝐾𝑅(𝑎∞(𝑋), 𝑎∞(𝑌)) ≤√
𝑛𝐝(𝑋̂, 𝑌),

which proves that 𝑎∞ provides an embedding into a normed linear space. Yet this embedding does not solve the problem since the
linear space 𝑏(ℝ𝑑) is infinite dimensional. As a related remark, we note that the Wasserstein-2 distance 𝑊2 defined by:

𝑊2(𝑝, 𝑞)2 = inf
𝜋 ∈ (ℝ𝑑 ×ℝ𝑑):
𝜋(⋅,ℝ𝑑) = 𝑝
𝜋(ℝ𝑑 , ⋅) = 𝑞

∫
ℝ𝑑×ℝ𝑑

‖𝑥− 𝑦‖22 𝑑𝜋(𝑥, 𝑦) (1.5)

produces an isometric embedding in the metric space ((ℝ𝑑), 𝑑𝑊 2). However, unlike the Kantorovich-Rubinstein metric, this distance
does not extend to a norm on the linear space 𝑏(ℝ𝑑), although it is Lipschitz equivalent to a negative-order homogeneous Sobolev
norm [34].

Instead of the previous infinite-dimensional embedding, we consider two different classes of embeddings. To illustrate these two
constructions, consider the simplest case 𝑑 = 1.

1. Algebraic Embedding. For 𝑥 ∈ ℝ𝑛, 𝑥 = (𝑥1,… , 𝑥𝑛)𝑇 , construct the polynomial 𝑃𝑥(𝑧) = (𝑧 − 𝑥1)⋯ (𝑧 − 𝑥𝑛) and then expand the
product: 𝑃𝑥(𝑧) = 𝑧𝑛 + 𝑐1(𝑥)𝑧𝑛−1 +⋯ + 𝑐𝑛(𝑥). Using Vieta’s formulas and Newton-Girard identities, an algebraically equivalent
description of 𝑃𝑥 is given by the symmetric polynomials:

𝛼 ∶ℝ𝑛 →ℝ𝑛 , 𝛼(𝑥) =

(
𝑛 ∑
𝑘=1
𝑥𝑘,

𝑛 ∑
𝑘=1
𝑥2𝑘,… ,

𝑛 ∑
𝑘=1

𝑥𝑛
𝑘

)
. (1.6)

Applied and Computational Harmonic Analysis 79 (2025) 101798

2

R. Balan, N. Haghani and M. Singh

It is not hard to see that this map satisfies Conditions (1) and (2) and therefore lifts to an injective continuous map 𝛼̂ on ℝ̂𝑛. Yet
it is not Lipschitz [23], let alone bi-Lipschitz. The approach in [23] can be used to modify 𝛼 to a Lipschitz continuous map, but,
for the same reason as described in that paper, it cannot be ``fixed'' to a bi-Lipschitz embedding. In Section 2 we show how to
construct an algebraic Lipschitz embedding in the case 𝑑 > 1.

2. Sorting Embedding. For 𝑥∈ℝ𝑛, consider the sorting map

↓∶ℝ𝑛 →ℝ𝑛 , ↓ (𝑥) = (𝑥𝜋(1), 𝑥𝜋(2),… , 𝑥𝜋(𝑛))𝑇 (1.7)

where the permutation 𝜋 is so that 𝑥𝜋(1) ≥ 𝑥𝜋(2) ≥⋯ ≥ 𝑥𝜋(𝑛). It is obvious that ↓ satisfies Conditions (1) and (2) and therefore
lifts to an injective map on ℝ̂𝑛×𝑑 . As we see in Section 3, the map ↓ is bi-Lipschitz. In fact it is isometric, and hence produces an
ideal embedding. Our work in Section 3 is to extend such construction to the more general case 𝑑 > 1.

The algebraic embedding is a special case of the more general kernel method that can be thought of as a projection of the measure
𝑎∞(𝑋) onto a finite dimensional space, e.g., the space of polynomials spanned by {𝑋,𝑋2,⋯ ,𝑋𝑛}. In applications such a kernel
method is known as a ``Readout Map'' [47], based on ``Sum Pooling''.

The sorting embedding has been used in applications under the name of ``Pooling Map'' [47], based on ``Max Pooling''. A naïve
extension of the unidimensional map (1.7) to the case 𝑑 > 1 might employ the lexicographic order: order monotone decreasing the
rows according to the first column, and break the tie by going to the next column. While this gives rise to an injective map,2 it is easy
to see it is not even continuous, let alone Lipschitz.

The main work in this paper is to extend the sorting embedding to the case 𝑑 > 1 using a three-step procedure: first, embed ℝ𝑛×𝑑
into a larger vector space ℝ𝑛×𝐷 ; then, apply ↓ in each column independently; and finally perform a dimension reduction by a linear
map into ℝ2𝑛𝑑 . Similar to the phase retrieval problem ([2,9,4]), the redundancy introduced in the first step counterbalances the loss
of information (here, relative order of one column with respect to another) in the second step.

A summary of the main results presented in this paper is contained in the following result.

Theorem 1.2. Consider the metric space (ℝ̂𝑛×𝑑,𝐝).

1. (Polynomial Embedding) There exists a Lipschitz injective map

𝛼̂ ∶ ℝ̂𝑛×𝑑 →ℝ𝑚

with 𝑚=
(
𝑑 + 𝑛
𝑑

)
. Two explicit constructions of this map are given in (2.8) and (2.9).

2. (Sorting-based Embedding) There exists a class of bi-Lipschitz maps

𝛽𝐴,𝐵 ∶ (ℝ̂𝑛×𝑑 ,𝐝)→ (ℝ𝑚,‖ ⋅ ‖) , 𝛽𝐴,𝐵(𝑋̂) =𝐵
(
𝛽𝐴(𝑋̂)

)
with 𝑚 = 2𝑛𝑑, where each map 𝛽𝐴,𝐵 is the composition of two bi-Lipschitz maps: a full-rank linear operator 𝐵 ∶ ℝ𝑛×𝐷 → ℝ𝑚, with
the nonlinear bi-Lipschitz map 𝛽𝐴 ∶ ℝ̂𝑛×𝑑 → ℝ𝑛×𝐷 parametrized by a matrix 𝐴 ∈ ℝ𝑑×𝐷 , so-called called ``key'' matrix. Explicitly,
𝛽𝐴(𝑋̂) =↓ (𝑋𝐴), where ↓ acts column-wise. These maps are characterized by the following properties:

(a) For 𝐷 = 1 + (𝑑 − 1)𝑛!, any 𝐴 ∈ ℝ𝑑×(1+(𝑑−1)𝑛!) whose columns form a full spark frame defines a bi-Lipschitz map 𝛽𝐴 on
ℝ̂𝑛×𝑑 . Furthermore, a lower Lipschitz constant is given by the smallest 𝑑𝑡ℎ singular value among all 𝑑 × 𝑑 sub-matrices of 𝐴,
min𝐽⊂[𝐷],|𝐽 |=𝑑 𝑠𝑑 (𝐴[𝐽]).

(b) For any matrix (``key'') 𝐴∈ℝ𝑑×𝐷 such that the map 𝛽𝐴 is injective, then 𝛽𝐴 ∶ (ℝ̂𝑛×𝑑 ,𝐝)→ (ℝ𝑛×𝐷,‖ ⋅ ‖) is bi-Lipschitz. Furthermore,
an upper Lipschitz constant is given by 𝑠1(𝐴), the largest singular value of 𝐴.

(c) Assume 𝐴 ∈ ℝ𝑑×𝐷 is such that the map 𝛽𝐴 is injective (we call such an 𝐴 ``universal key''). Then for almost any linear map
𝐵 ∶ℝ𝑛×𝐷 →ℝ2𝑛𝑑 the map 𝛽𝐴,𝐵 =𝐵 ◦ 𝛽𝐴 is bi-Lipschitz.

An immediate consequence of this result is the following corollary, whose proof is included in subsection 3.5:

Corollary 1.3. Let 𝛽 ∶ℝ𝑛×𝑑 →ℝ𝑚 induce a bi-Lipschitz embedding 𝛽 ∶ ℝ̂𝑛×𝑑 →ℝ𝑚 of the metric space (ℝ̂𝑛×𝑑,𝐝) into (ℝ𝑚,‖ ⋅ ‖2).
1. For any continuous function 𝑓 ∶ ℝ𝑛×𝑑 → ℝ invariant to row-permutation (i.e., 𝑓 (𝑃𝑋) = 𝑓 (𝑋) for every 𝑋 ∈ ℝ𝑛×𝑑 and 𝑃 ∈ 𝑛)

there exists a continuous function 𝑔 ∶ℝ𝑚 →ℝ such that 𝑓 = 𝑔 ◦ 𝛽. Conversely, for any 𝑔 ∶ℝ𝑚 →ℝ continuous function, the function
𝑓 = 𝑔 ◦ 𝛽 ∶ℝ𝑛×𝑑 →ℝ is continuous and row-permutation invariant.

2 For 𝜀 > 0, the lexicographic sorting according to the first column maps 𝑋 =
[
1 + 𝜀 1
1 −1

]
to 𝑋𝑠𝑜𝑟𝑡 = 𝑋, and 𝑌 =

[
1 − 𝜀 1
1 −1

]
to 𝑌𝑠𝑜𝑟𝑡 =

[
1 −1

1 − 𝜀 1

]
. While

𝑑(𝑋,𝑌) = 2𝜀, ‖𝑋𝑠𝑜𝑟𝑡 − 𝑌𝑠𝑜𝑟𝑡‖ =√
2𝜀2 + 8.

Applied and Computational Harmonic Analysis 79 (2025) 101798

3

R. Balan, N. Haghani and M. Singh

2. For any Lipschitz continuous function 𝑓 ∶ ℝ𝑛×𝑑 → ℝ invariant to row-permutation (i.e., 𝑓 (𝑃𝑋) = 𝑓 (𝑋) for every 𝑋 ∈ ℝ𝑛×𝑑 and
𝑃 ∈ 𝑛) there exists a Lipschitz continuous function 𝑔 ∶ ℝ𝑚 → ℝ such that 𝑓 = 𝑔 ◦ 𝛽. Conversely, for any 𝑔 ∶ ℝ𝑚 → ℝ Lipschitz
continuous function, the function 𝑓 = 𝑔 ◦ 𝛽 ∶ℝ𝑛×𝑑 →ℝ is Lipschitz continuous and row-permutation invariant.

The structure of the paper is as follows. Section 2 contains the algebraic embedding method and encoders 𝛼 described at part (1)
of Theorem 1.2. Corollary 2.3 contains part (1) of the main result stated above. Section 3 introduces the sorting based embedding
procedure and describes the key-based encoder 𝛽. Necessary and sufficient conditions for key universality are presented in Proposi

tion 3.9; the injectivity of the encoder described at part (2.a) of Theorem 1.2 is proved in Theorem 3.10; the bi-Lipschitz property
of any universal key described at part (2.b) of Theorem 1.2 is shown in Theorem 3.12; the dimension reduction statement (2.c) of
Theorem 1.2 is included in Theorem 3.15. Proof of Corollary 1.3 is presented in subsection 3.5. Section 4 contains applications to
graph deep learning. These applications use Graph Convolution Networks and the numerical experiments are carried out on two
graph datasets: a chemical compound dataset (QM9) and a protein dataset (PROTEINS_FULL).

While the motivation of this analysis is provided by graph deep learning applications, this is primarily a mathematical paper.
Accordingly the formal theory is presented first, and then is followed by the machine learning application. Those interested in the
application (or motivation) can skip directly to Section 4.

Notations. For an integer 𝑑 ≥ 1, [𝑑] = {1,2,… , 𝑑}. For a matrix 𝑋 ∈ ℝ𝑛×𝑑 , 𝑥1,…𝑥𝑑 ∈ ℝ𝑛 denote its columns, 𝑋 = [𝑥1|⋯ |𝑥𝑑].
All norms are Euclidean; for a matrix 𝑋, ‖𝑋‖ =

√
𝑡𝑟𝑎𝑐𝑒(𝑋𝑇𝑋) =

√∑
𝑘,𝑗 |𝑋𝑘,𝑗 |2 denotes the Frobenius norm; for vectors 𝑥, ‖𝑥‖ =

‖𝑥‖2 =√∑
𝑗 |𝑥𝑗 |2.

1.1. Prior works

Several methods for representing orbits of vector spaces under the action of permutation (sub)groups have been studied in litera

ture. Here we describe some of these results, without claiming an exhaustive literature survey.

A rich body of literature emanated from the early works on symmetric polynomials and group invariant representations of Hilbert,
Noether, Klein and Frobenius. They are part of standard commutative algebra and finite group representation theory.

Prior works on permutation invariant mappings have predominantly employed some form of summing procedure [31,46], though
some have alternatively employed some form of sorting procedure [48].

The idea of summing over the output nodes of an equivariant network has been well studied ([36]). The algebraic invariant theory
goes back to Hilbert and Noether (for finite groups) and then continuing with the continuous invariant function theory of Weyl and
Wigner (for compact groups), who posited that a generator function 𝜓 ∶𝑋→ℝ gives rise to a function 𝐸 ∶𝑋→ℝ invariant to the
action of a finite group 𝐺 on 𝑋, (𝑔,𝑥)↦ 𝑔.𝑥, via the averaging formula 𝐸(𝑥) = 1 |𝐺| ∑𝑔∈𝐺 𝜓(𝑔.𝑥).

More recently, this approach provided the framework for universal approximation results of 𝐺-invariant functions. [31] showed
that invariant or equivariant networks must satisfy a fixed point condition. The equivariant condition is naturally realized by GNNs.
The invariance condition is realized by GNNs when followed by summation on the output layer, as was further shown in [24], [32]
and [36]. [46] proved universal approximation results over compact sets for continuous functions invariant to the action of finite or
continuous groups. In [19], the authors obtained bounds on the separation power of GNNs in terms of the Weisfeiler-Leman (WL)
tests by tensorizing the input-output mapping. [42] studied approximations of equivariant maps, while [13] showed that if a GNN
with sufficient expressivity is well trained, it can solve the graph isomorphism problem.

The authors of [43] designed an algorithm for processing sets with no natural orderings. The algorithm applies an attention
mechanism to achieve permutation invariance with the attention keys being generated by a Long-Short Term Memory (LSTM) network.
Attention mechanisms amount to a weighted summing and therefore can be considered to fall within the domain of summing based
procedures.

In [28], the authors designed a permutation invariant mapping for graph embeddings. The mapping employs two separate neural
networks, both applied over the feature set for each node. One neural network produces a set of new embeddings, the other serves
as an attention mechanism to produce a weighed sum of those new embeddings.

Sorting based procedures for producing permutation invariant mappings over single dimensional inputs have been addressed and
used by [47], notably in their max pooling procedure.

The authors of [37] developed a permutation invariant mapping 𝑝𝑜𝑖𝑛𝑡𝑛𝑒𝑡 for point sets that is based on a 𝑚𝑎𝑥 function. The
mapping takes in a set of vectors, processes each vector through a neural network followed by an scalar output function, and takes
the maximum of the resultant set of scalars.

The paper [48] introduced sort-pooling. Sort-pooling orders the latent embeddings of a graph according to the values in a specific,
predetermined column. All rows of the latent embeddings are sorted according to the values in that column. While this gives rise to
an injective map, it is easy to see it is not even continuous, let alone Lipschitz. The same issue arises with any lexicographic ordering,
including the well-known Weisfeiler-Leman embedding [44]. Our paper introduces a novel method that bypasses this issue.

As shown in [32], the sum pooling-based GNNs provides universal approximations for of any permutation invariant continuous
function but only on compacts. Our sorting based embedding removes the compactness restriction as well as it extends to all Lipschitz
maps.

Last but not least, two very recent preprints [16,11] we became aware of after finishing this draft, propose similar or related
constructions. The paper [16] considers a family of encoding schemes invariant to certain subgroups of the orthogonal group. In

Applied and Computational Harmonic Analysis 79 (2025) 101798

4

R. Balan, N. Haghani and M. Singh

particular, their construction in Remark 2.2 is similar to the 𝛽𝐴,𝐵 encoder. Remarkably, they show that the dimension 𝐷 in part 2.a
of Theorem 2.1 can be lowered to 2𝑛𝑑 + 1. The authors of [11] consider a certain embedding of the quotient space using maxima of
co-orbits. For the case of natural distance 𝑑, this maximum value can be found efficiently by solving Linear Assignment problems.

While this paper is primarily mathematical in nature, methods developed here are applied to two graph datasets, QM9 and
PROTEINS_FULL. Researchers have applied various graph deep learning techniques to both datasets. In particular, [20] studied
extensively the QM9 dataset, and compared their method with many other algorithms proposed by that time. In addition to machine
learning problems considered here, bi-Lipschitz embeddings of the metric space (ℝ̂𝑛×𝑑 ,𝐝) may be modified to produce embeddings
of certain spaces of probability measures such as those considered in [33].

2. Algebraic embeddings

The algebraic embedding presented in this section can be thought of a special kernel to project equation (1.3) onto.

2.1. Kernel methods

The kernel method employs a family of continuous kernels (test) functions, {𝐾(𝑥;𝑦) ; 𝑥 ∈ℝ𝑑 , 𝑦 ∈ 𝑌 } parametrized/indexed by
a set 𝑌 . The measure representation 𝜇 = 𝑎∞(𝑋) in (1.3) yields a nonlinear map

𝛼 ∶ℝ𝑛×𝑑 → 𝐶(𝑌), 𝑋↦ 𝐹 (𝑦) = ∫
𝑅𝑑

𝐾(𝑥;𝑦)𝑑𝜇

given by

𝛼(𝑋)(𝑦) = 1
𝑛

𝑛 ∑
𝑘=1
𝐾(𝑥𝑘;𝑦)

The embedding Problem 1.1) can be restated as follows. One is asked to find a finite family of kernels {𝐾(𝑥;𝑦) ; 𝑥 ∈ ℝ𝑑 , 𝑦 ∈ 𝑌 },
𝑚 = |𝑌 | so that

𝛼̂ ∶ (ℝ̂𝑛×𝑑 ,𝐝)→ 𝑙2(𝑌) ∼ (ℝ𝑚,‖ ⋅ ‖2), (𝛼̂(𝑋̂))𝑦 =
1
𝑛

𝑛 ∑
𝑘=1
𝐾(𝑥𝑘;𝑦) (2.1)

is injective, Lipschitz or bi-Lipschitz.

Two natural choices for the kernel 𝐾 are the Gaussian kernel and the complex exponential (i.e., the Fourier) kernel:

𝐾𝐺(𝑥, 𝑦) = 𝑒−‖𝑥−𝑦‖2∕𝜎2 ,𝐾𝐹 (𝑥, 𝑦) = 𝑒2𝜋𝑖⟨𝑥,𝑦⟩,
where in both cases 𝑌 ⊂ℝ𝑑 . The two kernels are naturally related via Bochner’s theorem, as shown in [38]. The Fourier kernel raises
deep questions about relationship between singular values of irregular Fourier frames and minimal frequency separation distance.
Partial results on this problem can be derived from [27].

In this paper we analyze a different kernel, namely the polynomial kernel 𝐾𝑃 (𝑥, 𝑦) = 𝑥
𝑦1
1 𝑥

𝑦2
2 ⋯𝑥

𝑦𝑑
𝑑

, 𝑌 ⊂ {0,1,2,… , 𝑛}𝑑 .

2.2. The polynomial embedding

Since the polynomial representation is intimately related to the Hilbert-Noether algebraic invariants theory [21] and the Hilbert

Weyl theorem, it is advantageous to start our construction from a different perspective.

The linear space ℝ𝑛×𝑑 is isomorphic to ℝ𝑛𝑑 by stacking the columns one on top of each other. In this case, the action of the
permutation group 𝑆𝑛 can be recast as the action of the subgroup 𝐼𝑑 ⊗𝑆𝑛 of the bigger group 𝑆𝑛𝑑 on ℝ𝑛𝑑 . Specifically, let us denote
by ∼𝐺 the equivalence relation

𝑥, 𝑦 ∈ℝ𝑛𝑑 , 𝑥 ∼𝐺 𝑦⟺ 𝑦 =Π𝑥 , for some Π ∈𝐺

induced by a subgroup 𝐺 of 𝑆𝑛𝑑 . In the case 𝐺 = 𝐼𝑑 ⊗𝑆𝑛 = {𝑑𝑖𝑎𝑔𝑑 (𝑃) , 𝑃 ∈ 𝑆𝑛} of block diagonal permutation, obtained by repeating
𝑑 times the same 𝑃 ∈ 𝑆𝑛 permutation along the main diagonal, two vectors 𝑥, 𝑦 ∈ℝ𝑛𝑑 are ∼𝐺 equivalent iff there is a permutation
matrix 𝑃 ∈ 𝑆𝑛 so that 𝑦(1+(𝑘−1)𝑛 ∶ 𝑘𝑛) = 𝑃𝑥(1+(𝑘−1)𝑛 ∶ 𝑘𝑛) for each 1 ≤ 𝑘 ≤ 𝑑. In other words, each of the 𝑑 disjoint 𝑛-subvectors
in 𝑦 and 𝑥 are related by the same permutation. In this framework, the Hilbert-Weyl theorem (Theorem 4.2, Chapter XII, in [29])
states that the ring of invariant polynomials is finitely generated. The Göbel’s algorithm (Section 3.10.2 in [21]) provides a recipe to
find a complete set of invariant polynomials. In the following we provide a direct approach to construct a complete set of polynomial
invariants.

Let ℝ[𝐱1,𝐱2, ...,𝐱𝑑] denote the algebra of polynomials in 𝑑-variables with real coefficients. Let us denote 𝑋 ∈ ℝ𝑛×𝑑 a generic
data matrix. Each row of this matrix defines a linear form over 𝐱1, ...𝐱𝑑 , 𝜆𝑘 =𝑋𝑘,1𝐱1 +⋯+𝑋𝑘,𝑑𝐱𝑑 . Let us denote by ℝ[𝐱1,… ,𝐱𝑑][𝐭]
the algebra of polynomials in variable 𝐭 with coefficients in the ring ℝ[𝐱1,… ,𝐱𝑑]. Notice ℝ[𝐱1,𝐱2,… ,𝐱𝑑][𝐭] =ℝ[𝐭,𝐱1,𝐱2,… ,𝐱𝑑] by
rearranging the terms according to degree in 𝐭. Thus 𝜆𝑘 ∈ℝ[𝐱1,… ,𝐱𝑑] ⊂ℝ[𝐱1,… ,𝐱𝑑][𝐭] can be encoded as zeros of a polynomial 𝑃𝑋
of degree 𝑛 in variable 𝐭 with coefficients in ℝ[𝐱1,… ,𝐱𝑑]:

Applied and Computational Harmonic Analysis 79 (2025) 101798

5

R. Balan, N. Haghani and M. Singh

𝑃𝑋 (𝐭,𝐱1,… ,𝐱𝑑) =
𝑛 ∏
𝑘=1

(𝐭 − 𝜆𝑘(𝐱1,… ,𝐱𝑑)) =
𝑛 ∏
𝑘=1

(𝐭 −𝑋𝑘,1𝐱1 −…−𝑋𝑘,𝑑𝐱𝑑) (2.2)

Due to identification ℝ[𝐱1,𝐱2,… ,𝐱𝑑][𝐭] =ℝ[𝐭,𝐱1,𝐱2,… ,𝐱𝑑], we obtain that 𝑃𝑋 ∈ℝ[𝐭,𝐱1,𝐱2,… ,𝐱𝑑] is a homogeneous polynomial of
degree 𝑛 in 𝑑 + 1 variables. Let ℝ𝑛[𝐭,𝐱1,… ,𝐱𝑑] denote the vector space of homogeneous polynomials in 𝑑 + 1 variables of degree 𝑛
with real coefficients. Notice the real dimension of this vector space is

dimℝ ℝ𝑛[𝐭,𝐱1,… ,𝐱𝑑] =
(
𝑛+ 𝑑
𝑑

)
=
(
𝑛+ 𝑑
𝑛

)
. (2.3)

By noting that 𝑃𝑋 is monic in 𝐭 (the coefficient of 𝐭𝑛 is always 1) we obtain an injective embedding of ℝ̂𝑛×𝑑 into ℝ𝑚 with 𝑚 =
dimℝ ℝ𝑛[𝐭,𝐱1,… ,𝐱𝑑] − 1 via the coefficients of 𝑃𝑋 similar to (1.6). This is summarized in the following theorem:

Theorem 2.1. The map 𝛼0 ∶ℝ𝑛×𝑑 →ℝ𝑚−1 with 𝑚 =
(
𝑛+ 𝑑
𝑑

)
given by the (non-trivial) coefficients of polynomial 𝑃𝑋 ∈ℝ𝑛[𝐭,𝐱1,… ,𝐱𝑑]

lifts to an analytic embedding 𝛼̂0 of (ℝ̂𝑛×𝑑 ,𝐝) into ℝ𝑚. Specifically, for 𝑋 ∈ℝ𝑛×𝑑 expand the polynomial

𝑃𝑋 (𝐭,𝐱1,… ,𝐱𝑑) =
𝑛 ∏
𝑘=1

(𝐭 −𝑋𝑘,1𝐱1 −…−𝑋𝑘,𝑑𝐱𝑑) = 𝐭𝑛 +
∑

𝑝0, 𝑝1, ..., 𝑝𝑑 ≥ 0
𝑝0 +⋯+ 𝑝𝑑 = 𝑛

𝑝0 < 𝑛

𝑐𝑝0 ,𝑝1 ,…,𝑝𝑑 𝐭
𝑝0𝐱𝑝11 ⋯𝐱𝑝𝑑

𝑑
(2.4)

Then

𝑋 ∈ℝ𝑛×𝑑 ↦ 𝛼0(𝑋) = (𝑐𝑝0 ,𝑝1 ,…,𝑝𝑑)(𝑝0 ,𝑝1 ,…,𝑝𝑑)∈𝐼𝑛,𝑑 (2.5)

where the index set is given by

𝐼𝑛,𝑑 = {(𝑝0, 𝑝1,… , 𝑝𝑑) , 0 ≤ 𝑝0, 𝑝1,… , 𝑝𝑑 , 𝑝0 < 𝑛 , 𝑝0 + 𝑝1 +⋯+ 𝑝𝑑 = 𝑛} (2.6)

and is of cardinality |𝐼𝑛,𝑑| =𝑚− 1. The map 𝛼̂0 ∶ ℝ̂𝑛×𝑑 →ℝ𝑚−1 is the lifting of 𝛼0 to the quotient space.

Proof. Since for any permutation 𝜋 with associated permutation matrix Π ∈ 𝑛,

𝑃Π𝑋 (𝐭,𝐱1,⋯ ,𝐱𝑑) =
𝑛 ∏
𝑘=1

(𝐭 −𝑋𝜋(𝑘),1𝐱1 −…−𝑋𝜋(𝑘),𝑑𝐱𝑑) = 𝑃𝑋 (𝐭,𝐱1,… ,𝐱𝑑),

it follows that 𝛼0 is invariant to the action of 𝑛, 𝛼0(𝑋) = 𝛼0(Π𝑋). Thus 𝛼0 lifts to a map 𝛼̂0 on ℝ̂𝑛×𝑑 .

The coefficients of polynomial 𝑃𝑋 depend analytically on its roots (Vieta’s formulas), hence on entries of matrix 𝑋.

The only remaining claim is that if 𝑋,𝑌 ∈ ℝ𝑛×𝑑 so that 𝛼0(𝑋) = 𝛼0(𝑌) then there is Π ∈ 𝑛 so that 𝑌 = Π𝑋. Assume 𝑃𝑋 =
𝑃𝑌 . For each choice (𝐱1,𝐱2,… ,𝐱𝑑) = (𝑓 (1),… , 𝑓 (𝑑)) in ℝ𝑑 , the 𝑛 real zeros of the two polynomials in 𝐭, 𝑃𝑋 (𝐭, 𝑓 (1),… , 𝑓 (𝑑)) and
𝑃𝑌 (𝐭, 𝑓 (1),… , 𝑓 (𝑑)), coincide. Therefore 𝑋𝑓 ∼ 𝑌 𝑓 for each 𝑓 ∈ℝ𝑑 . Let 𝐷 = 1 + (𝑑 − 1)𝑛! and choose 𝐹 ∈ℝ𝑑×𝐷 so that each subset
of 𝑑 columns are linearly independent, in other words, the set  = {𝑓1, 𝑓2,… , 𝑓𝐷} formed by the 𝐷 columns of 𝐹 is a full spark frame
in ℝ𝑑 , see [1]. As proved in [1], almost every such set is a full spark frame. Then for each 1 ≤ 𝑘 ≤𝐷 there is a permutation Π𝑘 ∈ 𝑛
so that 𝑋𝑓𝑘 =Π𝑘𝑌 𝑓𝑘. By the pigeonhole principle, since |𝑛| = 𝑛!, there are 1 ≤ 𝑘1 < 𝑘2 <⋯ < 𝑘𝑑 ≤𝐷 so that Π𝑘1 = Π𝑘2 =⋯ =Π𝑘𝑑 .
Then (𝑋 −Π𝑘1𝑌)𝑓𝑘𝑗 = 0 for every 1≤ 𝑗 ≤ 𝑑. Since {𝑓𝑘1 ,… , 𝑓𝑘𝑑 } is linearly independent, it follows that 𝑋 −Π𝑘1𝑌 = 0. Thus 𝑋 ∼ 𝑌 ,
which ends the proof of this result. □

Remark 2.2. The invariants produced by map 𝛼0 are proportional to those produced by the Göbel’s algorithm in [21], §3.10.2.
Indeed, the 𝑛𝑑 primary invariants are given by

{𝑐𝑝,𝑛−𝑝,0,…,0 , 0 ≤ 𝑝 ≤ 𝑛− 1} ∪⋯ ∪ {𝑐𝑝,0,…,0,𝑛−𝑝 , 0 ≤ 𝑝 ≤ 𝑛− 1}

corresponding to the elementary symmetric polynomials in entries of each column. The secondary invariants correspond to the
remaining coefficients that have at least 2 nonzero indices among 𝑝1,… , 𝑝𝑑 .

The embedding provided by 𝛼0 is analytic and injective but is not globally Lipschitz because of the polynomial growth rate. Next,
we show how a simple modification of this map will make it Lipschitz. First, let us denote by 𝐿0 the Lipschitz constant of 𝛼0 when
restricted to the closed unit ball 𝐵1(ℝ𝑛×𝑑) ∶ {𝑋 ∈ℝ𝑛×𝑑 , ‖𝑋‖ ≤ 1} of ℝ𝑛×𝑑 , i.e. ‖𝛼0(𝑋) − 𝛼0(𝑌)‖ ≤𝐿0‖𝑋 − 𝑌 ‖ for any 𝑋,𝑌 ∈ℝ𝑛×𝑑
with ‖𝑋‖,‖𝑌 ‖ ≤ 1. Second, let

𝜑0 ∶ℝ→ [0,1] , 𝜑0(𝑥) =𝑚𝑖𝑛(1,
1
𝑥
) =

{ 1 𝑖𝑓 𝑥 ≤ 1
1
𝑥

𝑖𝑓 𝑥 > 1 (2.7)

Applied and Computational Harmonic Analysis 79 (2025) 101798

6

R. Balan, N. Haghani and M. Singh

be a Lipschitz monotone decreasing function with Lipschitz constant 1.

Corollary 2.3. Consider the map:

𝛼1 ∶ℝ𝑛×𝑑 →ℝ𝑚 , 𝛼1(𝑋) =
⎛⎜⎜⎝ 𝛼0

(
𝜑0(‖𝑋‖)𝑋)‖𝑋‖

⎞⎟⎟⎠ , (2.8)

with 𝑚 =
(
𝑛+ 𝑑
𝑑

)
. The map 𝛼1 lifts to an injective and globally Lipschitz map 𝛼̂1 ∶ ℝ̂𝑛×𝑑 →ℝ𝑚 with Lipschitz constant 𝐿𝑖𝑝(𝛼̂1) ≤

√
1 +𝐿2

0.

Proof. Clearly 𝛼1(Π𝑋) = 𝛼1(𝑋) for any Π ∈ 𝑛 and 𝑋 ∈ ℝ𝑛×𝑑 . Assume now that 𝛼1(𝑋) = 𝛼1(𝑌). Then ‖𝑋‖ = ‖𝑌 ‖ and since 𝛼̂0 is
injective on ℝ̂𝑛×𝑑 it follows 𝜑(‖𝑋‖)𝑋 =Π𝜑(‖𝑌 ‖)𝑌 for some Π∈ 𝑛. Thus 𝑋 ∼ 𝑌 which proves 𝛼1 lifts to an injective map on ℝ̂𝑛×𝑑 .

Now we show 𝛼̂1 is Lipschitz on (ℝ̂𝑛×𝑑 ,𝐝) of appropriate Lipschitz constant. Let 𝑋,𝑌 ′ ∈ ℝ𝑛×𝑑 and Π0 ∈ 𝑛 so that 𝐝(𝑋̂, 𝑌 ′) =‖𝑋 −Π0𝑌
′‖. Let 𝑌 =Π0𝑌

′ so that 𝐝(𝑋̂, 𝑌) = ‖𝑋 − 𝑌 ‖.

Choose two matrices 𝑋,𝑌 ∈ℝ𝑛×𝑑 . We claim ‖𝛼1(𝑋) − 𝛼1(𝑌)‖ ≤√
1 +𝐿2

0 ⋅ ‖𝑋 − 𝑌 ‖. This follows from two observations:

(i) The map

𝑋↦ 𝜌(𝑋) ∶= 𝜑0(‖𝑋‖)𝑋
is the nearest-point map to (or, the metric projection map onto) the convex closed set 𝐵1(ℝ𝑛×𝑑). This means ‖𝜑0(‖𝑋‖)𝑋 −𝑍‖ ≤‖𝑋 −𝑍‖ for any 𝑍 ∈𝐵1(ℝ𝑛×𝑑).

(ii) The nearest-point map to a convex closed subset of a Hilbert space is Lipschitz with constant 1, i.e. it shrinks distances, see
[35].

These two observations yield:

‖𝛼1(𝑋) − 𝛼1(𝑌)‖2 = ‖𝛼0(𝜌(𝑌)) − 𝛼0(𝜌(𝑌))‖2 + |‖𝑋‖− ‖𝑌 ‖|2
≤𝐿2

0 ⋅ ‖𝜌(𝑋) − 𝜌(𝑌)‖2 + ‖𝑋 − 𝑌 ‖2 ≤ (1 +𝐿2
0)‖𝑋 − 𝑌 ‖2.

This concludes the proof of this result. □

A simple modification of 𝜙0 can produce a 𝐶∞ map by smoothing it out around 𝑥 = 1.

On the other hand the lower Lipschitz constant of 𝛼̂1 is 0 due to terms of the form 𝑋𝑘𝑖,𝑗 with 𝑘 ≥ 2. In [23], the authors built a
Lipschitz map by a retraction to the unit sphere instead of unit ball. Inspired by their construction, a modification of 𝛼0 in their spirit
reads:

𝛼2 ∶ℝ𝑛×𝑑 →ℝ𝑚, 𝛼2(𝑋) =
⎛⎜⎜⎝ ‖𝑋‖𝛼0

(
𝑋‖𝑋‖
)

‖𝑋‖
⎞⎟⎟⎠ , if 𝑋 ≠ 0, and 𝛼2(0) = 0. (2.9)

It is easy to see that 𝛼2 satisfies the non-parallel property in [23] and is Lipschitz with a slightly better constant than 𝛼1 (the constant
is determined by the tangential derivatives of 𝛼0). But, for the same reasons as in [23] this map is not bi-Lipschitz.

2.3. Dimension reduction in the case 𝑑 = 2 and consequences

In this subsection we analyze the case 𝑑 = 2. The embedding dimension for 𝛼0 is
(
𝑛

2

)
−1 = 𝑛(𝑛−1)

2 −1. On the other hand, consider

the following approach. Each row of 𝑋 defines a complex number 𝑧1 =𝑋1,1 + 𝑖 𝑋1,2, ..., 𝑧𝑛 =𝑋𝑛,1 + 𝑖 𝑋𝑛,2 that can be encoded by one
polynomial of degree 𝑛 with complex coefficients 𝑄 ∈ℂ𝑛[𝑡],

𝑄(𝐭) =
𝑛 ∏
𝑘=1

(𝐭 − 𝑧𝑘) = 𝐭𝑛 +
𝑛−1 ∑
𝑘=0

𝐭𝑘𝑞𝑘

The coefficients of 𝑄 provide a 2𝑛-dimensional real embedding 𝜁0,

𝜁0 ∶ℝ𝑛×2 →ℝ2𝑛 , 𝜁0(𝑋) = (𝑅𝑒(𝑞𝑛−1), 𝐼𝑚(𝑞𝑛−1),… ,𝑅𝑒(𝑞0), 𝐼𝑚(𝑞0))

with properties similar to those of 𝛼0. One can similarly modify this embedding to obtain a globally Lipschitz embedding 𝜁1 of ̂𝑅𝑛,2
into ℝ2𝑛+1.

It is instructive to recast this embedding in the framework of commutative algebras. Indeed, let ⟨𝐱1 − 1,𝐱22 + 1⟩ denote the ideal
generated by polynomials 𝐱1 − 1 and 𝐱22 + 1 in the algebra ℝ[𝐭,𝐱1,𝐱2]. Consider the quotient space ℝ[𝐭,𝐱1,𝐱2]∕⟨𝐱1 − 1,𝐱22 + 1⟩
and the quotient map 𝜎 ∶ ℝ[𝐭,𝐱1,𝐱2] ↦ ℝ[𝐭,𝐱1,𝐱2]∕⟨𝐱1 − 1,𝐱22 + 1⟩. In particular, let 𝑆 = 𝜎(ℝ𝑛[𝐭,𝐱1,𝐱2]) denote the vector space
projected through this quotient map. Then a basis for 𝑆 is given by {1, 𝐭,… , 𝐭𝑛,𝐱2,𝐱2𝐭,… ,𝐱2𝐭𝑛−1,𝐱2𝐭𝑛}. Thus dim𝑆 = 2𝑛 + 2. Let

Applied and Computational Harmonic Analysis 79 (2025) 101798

7

R. Balan, N. Haghani and M. Singh

𝔖 = {𝑃𝑋 , 𝑋 ∈ℝ𝑛×2} ⊂ℝ2[𝐭,𝐱1,𝐱2] denote the set of polynomials realizable as in (2.4). Then the fact that 𝜁0 ∶ℝ𝑛×2 →ℝ2𝑛 is injective
is equivalent to the fact that 𝜎|𝔖 ∶𝔖→ 𝑆 is injective. On the other hand, note

𝜎(𝔖) ⊂ 𝐭𝑛 + 𝑠𝑝𝑎𝑛ℝ{1, 𝐭,… , 𝐭𝑛−1,𝐱2,𝐱2𝐭,… ,𝐱2𝐭𝑛−1}

where the last linear subspace is of dimension 2𝑛.
In the case 𝑑 = 2 we obtain the identification ℝ[𝐭,𝐱1,𝐱2]∕⟨𝐱1 − 1,𝐱22 + 1⟩ =ℂ[𝐭] due to uniqueness of polynomial factorization.

This observation raises the following open problem:

For 𝑑 > 2, is there a non-trivial ideal 𝐼 = ⟨𝑄1,… ,𝑄𝑟⟩ ⊂ ℝ[𝐭,𝐱1,… ,𝐱𝑑] so that the restriction 𝜎|𝔖 of the quotient map
𝜎 ∶ℝ[𝐭,𝐱1,… ,𝐱𝑑]→ℝ[𝐭,𝐱1,… ,𝐱𝑑]∕𝐼 is injective? Here 𝔖 denote the set of polynomials in ℝ𝑛[𝐭,𝐱1,… ,𝐱𝑑] realizable via (2.4).

Remark 2.4. One may ask the question whether the quaternions can be utilized in the case 𝑑 = 4. While the quaternions form
an associative division algebra, unfortunately polynomials have in general an infinite number of factorizations; this prevents an
immediate extension of the previous construction to the case 𝑑 = 4.

Remark 2.5. Similar to the construction in [23], a linear dimension-reduction technique may be applicable here (which, in fact,
may answer the open problem above); this would reduce the embedding dimension to 𝑚 = 2𝑛𝑑 + 1 (twice the intrinsic dimension
plus one for the homogenization variable). We did not explore this approach since, even if possible, it would not produce a bi

Lipschitz embedding. Instead we analyze the linear dimension-reduction technique in the next section in the context of sorting based
embeddings. After finishing this draft, we noticed that the dimension reduction result is addressed in [16].

3. Sorting based embedding

In this section we present the extension of the sorting embedding (1.7) to the case 𝑑 > 1.

The embedding is performed by composing linear and nonlinear transformations in a way that we find reminiscent of constructions
associated with the phase retrieval problem. Consider a matrix 𝐴 ∈ℝ𝑑×𝐷 and the induced nonlinear transformation:

𝛽𝐴 ∶ℝ𝑛×𝑑 →ℝ𝑛×𝐷, 𝛽𝐴(𝑋) = ↓ (𝑋𝐴) (3.1)

where ↓ is the monotone decreasing sorting operator acting in each column independently. Specifically, let 𝑌 =𝑋𝐴 ∈ℝ𝑛×𝐷 and note
its column vectors 𝑌 = [𝑦1, 𝑦2,… , 𝑦𝐷]. Then

𝛽𝐴(𝑋) =
[
Π1𝑦1 Π2𝑦1 ⋯ Π𝐷𝑦𝐷

]
for some sorting permutations Π1,Π2,… ,Π𝐷 ∈ 𝑛 which place their corresponding columns into decreasing rearrangement:

(Π𝑘𝑦𝑘)1 ≥ (Π𝑘𝑦𝑘)2 ≥⋯ ≥ (Π𝑘𝑦𝑘)𝑛.

Note the obvious invariance 𝛽𝐴(Π𝑋) = 𝛽𝐴(𝑋) for any Π∈ 𝑛 and 𝑋 ∈ℝ𝑛×𝑑 . Hence 𝛽𝐴 lifts to a map 𝛽𝐴 on ℝ̂𝑛×𝑑 .

Remark 3.1. To explain the similarity we perceive with the phase retrieval problem: Recall, e.g., [4] where the data are obtained via
a linear transformation of the input signal followed by the nonlinear operation of taking the absolute value of the output coefficients.
Here the nonlinear operation is implemented by sorting the coefficients. In both cases, it represents the action of a particular subgroup
of the unitary group -- modulation by unimodular complex numbers in one case, and rearrangement by permutation in the other.

Remark 3.2. The very recent work [16] presents a similar encoding schemes for this problem. The authors of [11] replace the 𝑛
entries in each column by the maximum of ⟨𝑋,𝑃𝑊 ⟩ over all permutation matrices 𝑃 ∈ 𝑛 for a fixed weight matrix.

In this section we analyze necessary and sufficient conditions so that maps of type (3.1) are injective, or injective almost every

where. First a few definitions.

Definition 3.3. A matrix 𝐴 ∈ℝ𝑑×𝐷 is called a universal key (for ℝ𝑛×𝑑) if 𝛽𝐴 is injective on ℝ̂𝑛×𝑑 .

In general we refer to 𝐴 as a key for encoder 𝛽𝐴.

Definition 3.4. Fix a matrix 𝑋 ∈ ℝ𝑛×𝑑 . A matrix 𝐴 ∈ ℝ𝑑×𝐷 is said to be admissible (or to be an admissible key) for 𝑋 if for any
𝑌 ∈ℝ𝑛×𝑑 so that 𝛽𝐴(𝑋) = 𝛽𝐴(𝑌) then 𝑌 =Π𝑋 for some Π∈ 𝑛.

In other words, 𝛽𝐴
−1
(𝛽𝐴(𝑋̂)) = {𝑋̂}. We let 𝐷(𝑋), or simply (𝑋), denote the set of admissible keys for 𝑋.

Definition 3.5. Fix 𝐴∈ℝ𝑑×𝐷 . A matrix 𝑋 ∈ℝ𝑛×𝑑 is said to be separated by 𝐴 if 𝐴 ∈(𝑋).

Applied and Computational Harmonic Analysis 79 (2025) 101798

8

R. Balan, N. Haghani and M. Singh

For a key 𝐴, we let 𝔖𝑛(𝐴), or simply 𝔖(𝐴), denote the set of matrices separated by 𝐴. Thus a matrix 𝑋 ∈𝔖𝑛(𝐴) if and only if, for
any matrix 𝑌 ∈ℝ𝑛×𝑑 , if 𝛽𝐴(𝑋) = 𝛽𝐴(𝑌) then 𝑋 ∼ 𝑌 .

Thus a key 𝐴 is universal if and only if 𝔖𝑛(𝐴) =ℝ𝑛×𝑑 .

Our goal is to produce keys that are admissible for all matrices in ℝ𝑛×𝑑 , or at least for almost every data matrix. As we show in
Proposition 3.7 below this requires that 𝐷 ≥ 𝑑 and 𝐴 is full rank. In particular this means that the columns of 𝐴 form a frame for ℝ𝑑 .

3.1. Characterizations of (𝑋) and 𝔖(𝐴)

We start off with simple linear manipulations of sets of admissible keys and separated data matrices.

Proposition 3.6. Fix 𝐴∈ℝ𝑑×𝐷 and 𝑋 ∈ℝ𝑛×𝑑 .

1. For an invertible 𝑑 × 𝑑 matrix 𝑇 ∈ℝ𝑑×𝑑 ,

𝔖𝑛(𝑇𝐴) =𝔖𝑛(𝐴)𝑇 −1. (3.2)

In other words, if 𝑋 is separated by 𝐴 then 𝑋𝑇 −1 is separated by 𝑇𝐴.

2. For any permutation matrix 𝐿∈ 𝐷 and diagonal invertible matrix Λ∈ℝ𝐷×𝐷 ,

𝔖𝑛(𝐴𝐿Λ) =𝔖𝑛(𝐴Λ𝐿) =𝔖𝑛(𝐴). (3.3)

In other words, if 𝑋 is separated by 𝐴 then 𝑋 is separated also by 𝐴𝐿Λ as well as by 𝐴Λ𝐿.

3. Assume 𝑇 ∈ℝ𝑑×𝑑 is a 𝑑 × 𝑑 invertible matrix. Then

𝐷(𝑋𝑇) = 𝑇 −1𝐷(𝑋). (3.4)

In other words, if 𝐴 is an admissible key for 𝑋 then 𝑇 −1𝐴 is an admissible key for 𝑋𝑇 .

Proof. The proof is immediate, but we include it here for convenience of the reader.

(1) Denote 𝐵 = 𝑇𝐴. Let 𝑌 ∈ℝ𝑛×𝑑 . Then

𝛽𝐵(𝑌) = 𝛽𝐵(𝑋)⟺↓ (𝑋𝐵) =↓ (𝑌 𝐵)⟺↓ (𝑋𝑇𝐴) =↓ (𝑌 𝑇𝐴)⟺ 𝛽𝐴(𝑋𝑇) = 𝛽𝐴(𝑌 𝑇).

Thus, if 𝑋 ∈𝔖𝑛(𝐴) and 𝑌 ′ ∈ ℝ𝑛×𝑑 so that 𝛽𝐵(𝑌 ′) = 𝛽𝐵(𝑋′) with 𝑋′ =𝑋𝑇 −1, then 𝛽𝐴(𝑌 ′𝑇) = 𝛽𝐴(𝑋). Therefore there exists Π ∈ 𝑛
so that 𝑌 ′𝑇 =Π𝑋. Thus 𝑌 ′ ∼𝑋′. Hence 𝑋′ ∈𝔖𝑛(𝐵). This shows 𝔖𝑛(𝐴)𝑇 −1 ⊂𝔖𝑛(𝑇𝐴). The reverse inclusion follows by replacing 𝐴
with 𝑇𝐴 and 𝑇 with 𝑇 −1. Together they prove (3.2).

(2) Let 𝑌 ∈ℝ𝑛×𝑑 such that 𝛽𝐴𝐿Λ(𝑋) = 𝛽𝐴𝐿Λ(𝑌). For every 1≤ 𝑗 ≤𝐷 let 𝑘 ∈ [𝐷] be so that 𝐿𝑗𝑘 = 1.

If Λ𝑘𝑘 > 0 then ↓ ((𝑋𝐴)𝑗) =↓ ((𝑌 𝐴)𝑗).
If Λ𝑘𝑘 < 0 then ↓ (−(𝑋𝐴)𝑗) =↓ (−(𝑌 𝐴)𝑗). But this implies also ↓ ((𝑋𝐴)𝑗) =↓ ((𝑌 𝐴)𝑗) since ↓ (−𝑧) = 𝐿0 ↓ (𝑧) where 𝐿0 is the

permutation matrix that has 1 on its main antidiagonal.

Either way, ↓ ((𝑋𝐴)𝑗) =↓ ((𝑌 𝐴)𝑗). Hence ↓ (𝑋𝐴) =↓ (𝑌 𝐴). Therefore 𝑋 ∼ 𝑌 and thus 𝑋 ∈ 𝔖𝑛(𝐴𝐿Λ). This shows 𝔖𝑛(𝐴) ⊂
𝔖𝑛(𝐴𝐿Λ). The reverse inclusion follows by a similar argument. Finally, notice {𝐿Λ} forms a group since 𝐿−1Λ𝐿 is also a diago

nal matrix. This shows 𝔖𝑛(𝐴Λ𝐿) =𝔖(𝐴𝐿Λ′) for some diagonal matrix Λ′, and the conclusion (3.3) then follows.

(3) The relation (3.4) follows from noticing 𝛽𝑇−1𝐴(𝑌) = 𝛽𝐴(𝑌 𝑇). □

Relation (3.3) shows that, since 𝐴 is assumed full rank, without loss of generality we can assume the first 𝑑 columns are linearly
independent. Let 𝑉 denote the first 𝑑 columns of 𝐴 so that

𝐴 = 𝑉
[
𝐼 | 𝐴̃

]
(3.5)

where 𝐴̃ ∈ℝ𝑑×(𝐷−𝑑). The following result shows that, unsurprisingly, when 𝐷 = 𝑑 > 1, almost every matrix 𝑋 is not separated by 𝐴.
By Proposition 3.6 we can reduce the analysis to the case 𝐴 = 𝐼 by a change of coordinates.

Proposition 3.7. Assume 𝐷 = 𝑑 > 1, 𝑛 > 1. Then

1. The set of data matrices not separated by 𝐼𝑑 includes:

𝔹 ∶= {𝑋 ∈ℝ𝑛×𝑑 , ∃𝑖, 𝑗, 𝑘, 𝑙 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑛,1 ≤ 𝑘 < 𝑙 ≤ 𝑑 ⇒ 𝑋𝑖,𝑘 ≠𝑋𝑗,𝑘 & 𝑋𝑖,𝑙 ≠𝑋𝑗,𝑙} ⊂
⊂𝔖𝑛(𝐼𝑑)𝑐 .

(3.6)

2. The set 𝔹 is generic with respect to the Zariski topology, i.e., open and dense. Specifically, its complement is the zero set of the polynomial

𝑃 (𝑋) =
∑

1≤𝑖<𝑗≤𝑛
∑

1≤𝑘<𝑙≤𝑑
(𝑋𝑖,𝑘 −𝑋𝑗,𝑘)2(𝑋𝑖,𝑙 −𝑋𝑗,𝑙)2.

Applied and Computational Harmonic Analysis 79 (2025) 101798

9

R. Balan, N. Haghani and M. Singh

3. For an invertible matrix 𝐴∈ℝ𝑑×𝑑 ,

𝔹 ⋅𝐴−1 ⊂𝔖𝑛(𝐴)𝑐 .

Hence almost every matrix (w.r.t. Lebesgue measure) 𝑋 ∈ℝ𝑛×𝑑 is not separated by 𝐴.

Proof. (1) We need to show that any matrix 𝑋 that on some columns 𝑘 and 𝑙 has distinct elements on same row positions is not
separated by 𝐼𝑑 . Indeed if 𝑋 is such a matrix, let 𝑌 denote a copy of 𝑋 except on those 4 entries where we set

𝑌𝑖,𝑘 =𝑋𝑗,𝑘 , 𝑌𝑗,𝑘 =𝑋𝑖,𝑘 , 𝑌𝑖,𝑙 =𝑋𝑖,𝑙 , 𝑌𝑗,𝑙 =𝑋𝑗,𝑙.

Note 𝑋 ≁ 𝑌 yet ↓ (𝑋) =↓ (𝑌). Hence such matrices are not separated by 𝐼𝑑 .

(2) By negation, the complement of 𝔹 is given by

𝔹𝑐 = {𝑋 ∈ℝ𝑛×𝑑 , ∀𝑖, 𝑗, 𝑘, 𝑙 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑛,1 ≤ 𝑘 < 𝑙 ≤ 𝑑 & (𝑋𝑖,𝑘 =𝑋𝑗,𝑘 𝑜𝑟 𝑋𝑖,𝑙 =𝑋𝑗,𝑙)}

This shows 𝔹𝑐 is the zero set of polynomial 𝑃 as claimed. Thus 𝔹𝑐 is a closed Zariski set [10]. Its complement is generic with respect
to the Zariski topology since 𝔹𝑐 ≠ℝ𝑛×𝑑 .

(3) The inclusion is immediate. Density claim follows from this inclusion. □

On the other hand, extending the identity matrix by only one column produces an almost universal key:

Proposition 3.8. Assume 𝑑 ≥ 2 and 𝑛≥ 3.

Let 𝑎 ∈ ℝ𝑑 be a vector with non-zero entries, i.e.,
∏𝑑
𝑖=1 𝑎𝑖 ≠ 0. Let 𝐴 =

[
𝐼𝑑 | 𝑎

]
∈ ℝ𝑑×(𝑑+1) be a key. Then 𝔖𝑛(𝐴) is generic with

respect to the Zariski topology (i.e., open and dense), however 𝔖𝑛(𝐴) ≠ ℝ𝑛×𝑑 . In particular, its complement 𝔖𝑛(𝐴)𝑐 ∶= ℝ𝑛×𝑑 ⧵ 𝔖𝑛(𝐴) is
non-empty but has Lebesgue measure zero. Thus almost every matrix 𝑋 ∈ℝ𝑛×𝑑 is separated by 𝐴.

Proof. First, we show that 𝔖𝑛(𝐴) ≠ℝ𝑛×𝑑 . Consider the matrices 𝑋,𝑌 ∈ℝ𝑛×𝑑 full of zeros except for the 3× 2 top left corner, where:

𝑋1,1 = 𝑌1,1 =
1
𝑎1

, 𝑋2,1 = 𝑌2,1 = − 1
𝑎1

, 𝑋3,1 = 𝑌3,1 = 0,

𝑋1,2 = 𝑌3,2 = − 1
𝑎2

, 𝑋2,2 = 𝑌1,2 = 0 , 𝑋3,2 = 𝑌2,2 =
1
𝑎2
.

Clearly 𝛽𝐴(𝑋) = 𝛽𝐴(𝑌) (the two left columns and the last column contain 1, 0 repeated 𝑛− 2 times and −1) and yet 𝑋 ≁ 𝑌 .

Next, we show that 𝔖𝑛(𝐴)𝑐 is included in a finite union of linear spaces each of positive codimension. This proves the claim.

To simplify notation, we introduce the following two operators. Let Π,Π0,Π1,⋯ ,Π𝑑 ∈ 𝑛 denote permutation matrices of size n.
For 𝑋 ∈ℝ𝑛×𝑑 denote by 𝑥1,… , 𝑥𝑑 its columns. Thus 𝑋 =

[
𝑥1|𝑥2|⋯ |𝑥𝑑].

𝐿Π0 ,Π1 ,…,Π𝑑 ∶ℝ
𝑛×𝑑 →ℝ𝑑 , 𝐿Π0 ,Π1 ,…,Π𝑑𝑋 =Π0𝑋𝑎− (𝑎1Π1𝑥1 +⋯𝑎𝑑Π𝑑𝑥𝑑)

and

𝑀Π,Π1 ,…,Π𝑑 ∶ℝ
𝑛×𝑑 →ℝ𝑛×𝑑 , 𝑀Π,Π1 ,…,Π𝑑𝑋 =Π𝑋 −

[
Π1𝑥1 | ⋯ | Π𝑑𝑥𝑑

]
A matrix 𝑋 ∈ ℝ𝑛×𝑑 , 𝑋 = [𝑥1|⋯ |𝑥𝑑] is not separated by 𝐴 = [𝐼𝑑 |𝑎] ∈ ℝ𝑑×(𝑑+1), i.e., 𝑋 ∈ 𝔖𝑛(𝐴)𝑐 if there are permutation matrices
Π1,… ,Π𝑑 ∈ 𝑛 such that the matrix 𝑌 = [Π1𝑥1|⋯ |Π𝑑𝑥𝑑] satisfies:

𝑌 ≁𝑋 𝑎𝑛𝑑 ↓ (𝑋 ⋅ 𝑎) = ↓ (𝑌 ⋅ 𝑎)

This is equivalent to say:

∃ Π0 ∈ 𝑛 , Π0𝑋𝑎− (𝑎1Π1𝑥1 +⋯+ 𝑎𝑑Π𝑑𝑥𝑑) = 0

∀Π ∈ 𝑛∃𝑘 ∈ [𝑑] , (Π −Π𝑘)𝑥𝑘 ≠ 0

Hence

𝔖𝑛(𝐴)𝑐 =
⋃

(Π0 ,Π1 ,…,Π𝑑)∈𝑑+1𝑛

(
ker 𝐿Π0 ,Π1 ,…,Π𝑑 ⧵

(⋃
Π∈𝑛

ker 𝑀Π,Π1 ,…,Π𝑑

))

Let Δ denote the diagonal in 𝑑+1𝑛 ,

Δ= {(Π0,Π1,Π2,… ,Π𝑑) ∈ 𝑑+1𝑛 , Π1 = Π2 =⋯ =Π𝑑}

parametrized by the first two permutation matrices. For any (Π0,Π1,… ,Π𝑑) ∈ Δ, we have ker 𝑀Π1 ,Π1 ,…,Π𝑑 =ℝ𝑛×𝑑 . Thus

Applied and Computational Harmonic Analysis 79 (2025) 101798

10

R. Balan, N. Haghani and M. Singh

ker 𝐿Π0 ,Π1 ,…,Π𝑑 ⧵

(⋃
Π∈𝑛

ker 𝑀Π,Π1 ,…,Π𝑑

)
= ∅

It follows:

𝔖𝑛(𝐴)𝑐 =
⋃

(Π0 ,Π1 ,…,Π𝑑)∈𝑑+1𝑛 ⧵Δ

(
ker 𝐿Π0 ,Π1 ,…,Π𝑑 ⧵

(⋃
Π∈𝑛

ker 𝑀Π,Π1 ,…,Π𝑑

))

Consider now (Π0,Π1,… ,Π𝑑) ∈ 𝑑+1𝑛 ⧵Δ. Then

ker 𝐿Π0 ,Π1 ,…,Π𝑑 = ker 𝐿𝐼,Π−1
0 Π1 ,…,Π−1

0 Π𝑑

Hence there is 𝑘 ∈ [𝑑] so that Π−1
0 Π𝑘 ≠ 𝐼 . Choose 𝑥𝑘 ∈ ℝ𝑛 so that (Π−1

0 Π𝑘)𝑥𝑘 ≠ 𝑥𝑘. Set 𝑥𝑗 = 0 for 𝑗 ∈ [𝑑], 𝑗 ≠ 𝑘 and consider the
matrix 𝑋 = [𝑥1|⋯ |𝑥𝑑]. Then 𝐿Π0 ,Π1 ,…,Π𝑑𝑋 = 𝑎𝑘(Π0 − Π𝑘)𝑥𝑘 ≠ 0. This shows that ker 𝐿Π0 ,Π1 ,…,Π𝑑 ≠ℝ𝑛×𝑑 and hence it is a subspace
of positive codimension. We obtain:

𝔖𝑛(𝐴)𝑐 ⊂
⋃

(Π0 ,Π1 ,…,Π𝑑)∈𝑑+1𝑛 ⧵Δ

ker 𝐿Π0 ,Π1 ,…,Π𝑑

This shows that 𝔖𝑛(𝐴)𝑐 is included in a finite union of proper subspaces of ℝ𝑛×𝑑 which in turn is a closed set with respect to the
Zariski topology of empty interior. This ends the proof of this result. □

The next result provides a characterization of the set 𝔖𝑛(𝐴). To do so we need to introduce additional notation that extends the op

erators 𝐿Π0 ,…,Π𝑑 and 𝑀Π,…,Π𝑑 defined in the proof of Proposition 3.8. For 𝐸1,𝐸2,… ,𝐸𝑑 ∈ℝ𝑛×𝑛 and 𝑏∈ℝ𝑑 , with 𝑏 =
(
𝑏1, 𝑏2,⋯ , 𝑏𝑑

)𝑇
define

𝐿𝐸1 ,𝐸2 ,…,𝐸𝑑 ;𝑏 ∶ℝ
𝑛×𝑑 →ℝ𝑛 , 𝑋 =

[
𝑥1|𝑥2|⋯ |𝑥𝑑]↦𝐿𝐸1 ,𝐸2 ,…,𝐸𝑑 ;𝑏(𝑋) = 𝑏1𝐸1𝑥1 +⋯+ 𝑏𝑑𝐸𝑑𝑥𝑑. (3.7)

Proposition 3.9. Fix 𝑎1,… , 𝑎𝐷−𝑑 ∈ℝ𝑑 and consider the key 𝐴=
[
𝐼𝑑 |𝑎1|⋯ |𝑎𝐷−𝑑] ∈ℝ𝑑×𝐷 . Let 𝑋 =

[
𝑥1|𝑥2|⋯ |𝑥𝑑].

1. 𝑋 ∈𝔖𝑛(𝐴)𝑐 ∶=ℝ𝑛×𝑑 ⧵𝔖𝑛(𝐴) if and only if there are Π1,Π2,… ,Π𝑑 ,Ξ1,… ,Ξ𝐷−𝑑 ∈ 𝑛 such that:

(a) ∀𝑗 ∈ [𝐷 − 𝑑],
[
(Ξ𝑗 −Π1)𝑥1,… , (Ξ𝑗 −Π𝑑)𝑥𝑑

]
𝑎𝑗 = 0

(b) ∀Π ∈ 𝑛 ∃𝑘 ∈ [𝑑] so that (Π𝑘 −Π)𝑥𝑘 ≠ 0.

2. The following hold true:

𝔖𝑛(𝐴) =
⋂

Π1,… ,Π𝑑 ∈ 𝑛
Ξ1,… ,Ξ𝐷−𝑑 ∈ 𝑛

[
𝐷−𝑑⋃
𝑗=1

(
ker 𝐿Ξ𝑗−Π1 ,…,Ξ𝑗−Π𝑑 ;𝑎𝑗

)𝑐⋃ ⋃
Π∈𝑛

𝑑⋂
𝑘=1

ker 𝐿Π1−Π,…,Π𝑑−Π;𝛿𝑘

]
(3.8)

and

𝔖𝑛(𝐴)𝑐 =
⋃

Π1,… ,Π𝑑 ∈ 𝑛
Ξ1,… ,Ξ𝐷−𝑑 ∈ 𝑛

(
𝐷−𝑑⋂
𝑗=1

ker 𝐿Ξ𝑗−Π1 ,…,Ξ𝑗−Π𝑑 ;𝑎𝑗

)⋂(⋃
Π∈𝑛

𝑑⋂
𝑘=1

ker 𝐿Π1−Π,…,Π𝑑−Π;𝛿𝑘

)𝑐
(3.9)

where 𝛿𝑘 = (0,… ,0,1,0,… ,0)𝑇 is the unit Kronecker sequence with 1 in the 𝑘− 𝑡ℎ position.

Proof. The proof is a consequence of linear algebra analysis applied to map 𝛽𝐴.

(1) Assume 𝑋 is not separated by 𝐴. Then there is 𝑌 ∈ℝ𝑛×𝑑 so that 𝛽𝐴(𝑋) = 𝛽𝐴(𝑌) yet 𝑋 ≁ 𝑌 .

Let 𝑌 = [𝑦1|⋯ |𝑦𝑑]. Then 𝛽𝐴(𝑋) = 𝛽𝐴(𝑌) implies that there are permutation matrices Π1,… ,Π𝑑 ,Ξ1,… ,Ξ𝐷−𝑑 ∈ 𝑛 so that:

𝑦1 = Π1𝑥1,… , 𝑦𝑑 =Π𝑑𝑥𝑑 , 𝑌 𝑎1 = Ξ1𝑋𝑎1,… , 𝑌 𝑎𝐷−𝑑 = Ξ𝐷−𝑑𝑋𝑎𝐷−𝑑
Substituting the expressions for 𝑦1,… , 𝑦𝑑 provided by the first 𝑑 equations into the latter 𝐷 − 𝑑 equations, we obtain part 1.(a).

For same 𝑌 , the condition 𝑋 ≁ 𝑌 implies that for every Π ∈ 𝑛, 𝑌 −Π𝑋 ≠ 0. Thus part 1(b) is proved.

(2 & 3) Equation (3.9) is a transcription of part (1). Equation (3.8) follows from (3.9) by taking the complement. □

3.2. Construction of universal keys

In this subsection we construct universal keys. Proposition 3.9 provides us with an algorithm to check whether a key 𝐴 is universal.
Unfortunately the algorithm has an exponential complexity in data size.

Applied and Computational Harmonic Analysis 79 (2025) 101798

11

R. Balan, N. Haghani and M. Singh

If the key 𝐴 ∈ ℝ𝑑×𝐷 is universal then 𝐴 must have full rank. Therefore there are permutation matrix 𝐿 ∈ 𝐷 and invertible
𝑇 ∈ 𝐺𝐿(𝑑,ℝ) so that 𝐴 = 𝑇

[
𝐼𝑑 𝐴̃

]
𝐿, with 𝐴̃ ∈ ℝ𝑑×(𝐷−𝑑). Proposition 3.6 shows that 𝐴 is a universal key if and only if

[
𝐼𝑑 𝐴̃

]
is a

universal key. This observation allows us to prove the main result of this subsection stated earlier as part b of Theorem 2.1. Recall a
set of vectors {𝑓1,… , 𝑓𝑚} in a linear space 𝑉 of finite dimension 𝑛 ≤𝑚 is called a full spark frame if any subset of 𝑛 vectors is linearly
independent. See [1,30] for more information and explicit constructions of full spark frames.

Theorem 3.10. Consider the metric space (ℝ̂𝑛×𝑑,𝐝). Set 𝐷 = 1 + (𝑑 − 1)𝑛! and let 𝐴 ∈ ℝ𝑑×𝐷 be a matrix whose columns form a full
spark frame, i.e., any subset of 𝑑 columns is linearly independent. Then the key 𝐴 is universal and the induced map 𝛽𝐴 ∶ ℝ̂𝑛×𝑑 → ℝ𝑛×𝐷 ,
𝑋↦ 𝛽𝐴(𝑋) =↓ (𝑋𝐴) is injective. Furthermore, 𝛽𝐴 is bi-Lipschitz, with estimates of the bi-Lipschitz constants 𝑎0 = min𝐽⊂[𝐷],|𝐽 |=𝑑 𝑠𝑑 (𝐴[𝐽])
and 𝑏0 = 𝑠1(𝐴), where 𝑠1(𝐴) denotes the largest singular value of 𝐴, 𝐴[𝐽] denotes the submatrix of 𝐴 formed by columns indexed by 𝐽 , and
𝑠𝑑 (𝐴[𝐽]) denotes the 𝑑𝑡ℎ singular value (in this case, the smallest) of 𝐴[𝐽]. Specifically, for any 𝑋,𝑌 ∈ℝ𝑛×𝑑 ,

𝑎0 ⋅ 𝐝(𝑋̂, 𝑌) ≤ ‖𝛽𝐴(𝑋) − 𝛽𝐴(𝑌)‖ ≤ 𝑏0 ⋅ 𝐝(𝑋̂, 𝑌) (3.10)

where all norms are Frobenius norms.

Proof. Let 𝑎1,… , 𝑎𝐷 denote the columns of 𝐴, so that 𝐴 = [𝑎1|⋯ |𝑎𝐷].
Fix 𝑋,𝑌 ∈ℝ𝑛×𝑑 two matrices. Then there are permutation matrices 𝑃0,Π1,… ,Π𝐷,Ξ1,… ,Ξ𝐷 ∈ 𝑛 so that 𝐝(𝑋̂, 𝑌) = ‖𝑃0𝑋 − 𝑌 ‖

and

𝛽𝐴(𝑋) =
[
Π1𝑋𝑎1 | ⋯ | Π𝐷𝑋𝑎𝐷

]
, 𝛽𝐴(𝑌) =

[
Ξ1𝑌 𝑎1 | ⋯ | Ξ𝐷𝑌 𝑎𝐷

]
.

Thus

‖𝛽𝐴(𝑋) − 𝛽𝐴(𝑌)‖2 = 𝐷∑
𝑘=1

‖(Π𝑘𝑋 −Ξ𝑘𝑌)𝑎𝑘‖22 = 𝐷∑
𝑘=1

‖(Ξ𝑇𝑘Π𝑘𝑋 − 𝑌)𝑎𝑘‖22 (3.11)

Permutations Π𝑘 and Ξ𝑘 satisfy the optimality condition: ‖Π𝑘𝑋𝑎𝑘 −Ξ𝑘𝑌 𝑎𝑘‖2 = min𝑃∈𝑛 ‖𝑃𝑋𝑎𝑘 − 𝑌 𝑎𝑘‖2. Hence ‖Π𝑘𝑋𝑎𝑘 −Ξ𝑘𝑌 𝑎𝑘‖2≤ ‖𝑃0𝑋𝑎𝑘 − 𝑌 𝑎𝑘‖2. Therefore:

‖𝛽𝐴(𝑋) − 𝛽𝐴(𝑌)‖2 ≤ 𝐷∑
𝑘=1

‖𝑃0𝑋𝑎𝑘 − 𝑌 𝑎𝑘‖22 = ‖(𝑃𝑋 − 𝑌)𝐴‖2 ≤ 𝑠1(𝐴)2‖𝑃0𝑋 − 𝑌 ‖2, (3.12)

leading to the upper bound in (3.10).

The lower bound in (3.10) follows from the pigeonhole principle similar to the one employed in the proof of Theorem 2.1. In
equation (3.11) there are 𝐷 = 1 + (𝑑 − 1)𝑛! terms. Since only 𝑛! permutations are distinct, there is a permutation 𝑄 that repeats at
least 𝑑 times. Say 𝐽 = {𝑗1, 𝑗2,… , 𝑗𝑑} ⊂ [𝐷] is a set of indices so that Ξ𝑇𝑗1Π𝑗1 =⋯ = Ξ𝑇𝑗𝑑Π𝑗𝑑 =𝑄. Then

‖𝛽𝐴(𝑋) − 𝛽𝐴(𝑌)‖2 ≥ 𝑑∑
𝑘=1

‖(Ξ𝑇𝑗𝑘Π𝑗𝑘𝑋 − 𝑌)𝑎𝑗𝑘‖22 = ‖(𝑄𝑋 − 𝑌)𝐴[𝐽]‖2
≥ 𝑠𝑑 (𝐴[𝐽])2‖𝑄𝑋 − 𝑌 ‖2 ≥ 𝑠𝑑 (𝐴[𝐽])2‖𝑃0𝑋 − 𝑌 ‖2 ≥ 𝑎20𝐝(𝑋̂, 𝑌)2.

The lower bound in (3.10) implies that 𝛽𝐴 ∶ ℝ̂𝑛×𝑑 → ℝ𝑛×𝐷 is injective and hence 𝐴 is a universal key. This ends the proof of Theo

rem 3.10. □

Remark 3.11. The size of encoder 𝛽𝐴 grows exponential in 𝑛 (specifically, grows linearly in 𝑛!). Theorem 3.10 provides only a
sufficient condition for key 𝐴 to be universal. In fact, the recent work in [16] shows that, generically, it is sufficient to take 𝐷 = 2𝑛𝑑+1.

3.3. Bi-Lipschitz properties of universal keys

In this subsection we prove that any universal key defines a bi-Lipschitz encoding map, regardless of 𝐷.

Theorem 3.12. Assume the key 𝐴 ∈ℝ𝑑×𝐷 is universal, i.e., the induced map 𝛽𝐴 ∶ ℝ̂𝑛×𝑑 →ℝ𝑛×𝐷 , 𝑋↦ 𝛽𝐴(𝑋) =↓ (𝑋𝐴) is injective. Then
𝛽𝐴 is bi-Lipschitz, that is, there are constants 𝑎0 > 0 and 𝑏0 > 0 so that for all 𝑋,𝑌 ∈ℝ𝑛×𝑑 ,

𝑎0 ⋅ 𝐝(𝑋̂, 𝑌) ≤ ‖𝛽𝐴(𝑋) − 𝛽𝐴(𝑌)‖ ≤ 𝑏0 ⋅ 𝐝(𝑋̂, 𝑌) (3.13)

where all are Frobenius norms. Furthermore, an estimate for 𝑏0 is provided by the largest singular value of 𝐴, 𝑏0 = 𝑠1(𝐴).

Proof. The upper bound in (3.13) follows as in the proof of Theorem 3.10, from equations (3.11) and (3.12). Notice that no property
is assumed in order to obtain the upper Lipschitz bound.

Applied and Computational Harmonic Analysis 79 (2025) 101798

12

R. Balan, N. Haghani and M. Singh

The lower bound in (3.13) is more difficult. It is shown by contradiction following the strategy utilized in the Complex Phase
Retrieval problem [6].

Assume inf𝑋≁𝑌
‖𝛽𝐴(𝑋)−𝛽𝐴(𝑌)‖22

𝐝(𝑋̂,𝑌)2
= 0.

Step 1: Reduction to local analysis. Since 𝐝(̂𝑡𝑋, ̂𝑡𝑌) = 𝑡 𝐝(𝑋̂, 𝑌) for all 𝑡 > 0, the quotient ‖𝛽𝐴(𝑋)−𝛽𝐴(𝑌)‖2
𝐝(𝑋̂,𝑌) is scale invariant. Therefore,

there are sequences (𝑋𝑡)𝑡, (𝑌 𝑡)𝑡 with ‖𝑌 𝑡‖ ≤ ‖𝑋𝑡‖ = 1 and 𝐝(𝑋̂𝑡, 𝑌 𝑡) > 0 so that lim𝑡→∞
‖𝛽𝐴(𝑋𝑡)−𝛽𝐴(𝑌 𝑡)‖2

𝐝(𝑋̂𝑡,𝑌 𝑡) = 0. By compactness of
the closed unit ball, one can extract convergence subsequences. To ease notation, assume (𝑋𝑡)𝑡, (𝑌 𝑡)𝑡 are these subsequences. Let
𝑋∞ = lim𝑡 𝑋𝑡 and 𝑌∞ = lim𝑡 𝑌 𝑡 denote their limits. Notice lim𝑡 ‖𝛽𝐴(𝑋𝑡) − 𝛽𝐴(𝑌 𝑡)‖2 = 0. This implies ‖𝛽𝐴(𝑋∞) − 𝛽𝐴(𝑌∞)‖ = 0 and
thus 𝛽𝐴(𝑋∞) = 𝛽𝐴(𝑌∞). Since 𝛽𝐴 is assumed injective, it follows that 𝑋∞ = 𝑌∞.

This means that, if the lower Lipschitz bound vanishes, then this is achieved by vanishing of a local lower Lipschitz bound. To
follow the terminology in [6], the type I local lower Lipschitz bound vanishes at some 𝑍0 ∈ℝ𝑛×𝑑 , with ‖𝑍0‖ = 1:

𝐴(𝑍0) ∶= lim
𝑟→0

inf
𝑋̂ ≠ 𝑌

𝐝(𝑋̂, 𝑍̂0) < 𝑟
𝐝(𝑌 , 𝑍̂0) < 𝑟

‖𝛽𝐴(𝑋) − 𝛽𝐴(𝑌)‖22
𝐝(𝑋̂, 𝑌)2

= 0. (3.14)

Note that, in general, the infimum of the type I local lower Lipschitz bound over the unit sphere may be strictly larger than the global
lower Lipschitz bound (see Theorems 2.1 and Theorem 2.2 in [6] and Theorem 4.3 in [5]). The compactness argument forces the
local lower Lipschitz bound to vanish when the global lower bound vanishes.

Step 2. Local Linearization. The following stability subgroups of 𝑛 play an important role:

𝐺 = {𝑃 ∈ 𝑛 ∶ 𝑃𝑍0 =𝑍0} , 𝐻𝑗 = {𝑃 ∈ 𝑛 ∶ 𝑃𝑍0𝑎𝑗 =𝑍0𝑎𝑗} , 1 ≤ 𝑗 ≤𝐷.
Obviously 𝐼𝑛 ∈ 𝐺 ⊂ 𝐻𝑗 ⊂ 𝑛, for every 𝑗 ∈ [𝐷]. The group 𝐺 is the stabilizer of 𝑍0, whereas 𝐻𝑗 is the stabilizer of 𝑍0𝑎𝑗 . Let
𝛿0 = min𝑃∈𝑛⧵𝐺 ‖(𝐼𝑛 − 𝑃)𝑍0‖ denote the smallest variation of 𝑍0 under row permutations. Note 𝛿0 > 0 by the definition of 𝐺.

Consider 𝑋 = 𝑍0 + 𝑈 and 𝑌 = 𝑍0 + 𝑉 where 𝑈,𝑉 ∈ ℝ𝑛×𝑑 are ``aligned'' in the sense that 𝑑(𝑋̂, 𝑌) = ‖𝑈 − 𝑉 ‖. This property
requires that ‖𝑈 − 𝑉 ‖ ≤ ‖𝑃𝑋 − 𝑌 ‖, for every 𝑃 ∈ 𝑛. The next result replaces equivalently this condition by requirements involving
(𝑈,𝑉) and the group 𝐺 only.

Lemma 3.13. Assume ‖𝑈‖,‖𝑉 ‖ < 1
4 𝛿0, where 𝛿0 = min𝑃∈𝑛⧵𝐺 ‖(𝐼𝑛 − 𝑃)𝑍0‖. Let 𝑋 =𝑍0 +𝑈 , 𝑌 =𝑍0 + 𝑉 . Then:

1. 𝐝(𝑋̂,𝑍0) = ‖𝑈‖ and 𝐝(𝑌 ,𝑍0) = ‖𝑉 ‖.

2. 𝐝(𝑋̂, 𝑌) = min𝑃∈𝐺 ‖𝑈 − 𝑃𝑉 ‖ =min𝑃∈𝐺 ‖𝑃𝑈 − 𝑉 ‖
3. The following are equivalent:

(a) 𝐝(𝑋̂, 𝑌) = ‖𝑈 − 𝑉 ‖.

(b) For every 𝑃 ∈𝐺, ‖𝑈 − 𝑉 ‖ ≤ ‖𝑃𝑈 − 𝑉 ‖.

(c) For every 𝑃 ∈𝐺, ⟨𝑈,𝑉 ⟩ ≥ ⟨𝑃𝑈,𝑉 ⟩.
Proof of Lemma 3.13. (1) Note that is 𝑈 = 0 then the claim follows. Assume 𝑈 ≠ 0. Then

𝐝(𝑋̂,𝑍0) = min
𝑃∈𝑛 ‖𝑋 − 𝑃𝑍0‖ = min

𝑃∈𝑛 ‖(𝐼𝑛 − 𝑃)𝑍0 +𝑈‖ ≤ ‖𝑈‖
On the other hand, assume the minimum is achieved for a permutation 𝑃0 ∈ 𝑛. If 𝑃0 ∈𝐺 then 𝐝(𝑋̂,𝑍0) = ‖(𝐼𝑛 − 𝑃0)𝑍0 +𝑈‖ = ‖𝑈‖.
If 𝑃0 ∉𝐺 then

𝐝(𝑋̂,𝑍0) ≥ ‖(𝐼𝑛 − 𝑃0)𝑍0‖− ‖𝑈‖ > 3𝛿0
4
> ‖𝑈‖ ≥ 𝐝(𝑋̂,𝑍0)

which yields a contradiction. Hence 𝐝(𝑋̂,𝑍0) = ‖𝑈‖. Similarly, one shows 𝐝(𝑋̂,𝑍0) = ‖𝑉 ‖.

(2) Clearly

𝐝(𝑋̂, 𝑌) = min
𝑃∈𝑛 ‖𝑃𝑋 − 𝑌 ‖ ≤ min

𝑃∈𝐺
‖𝑃𝑋 − 𝑌 ‖ = min

𝑃∈𝐺
‖𝑃𝑈 − 𝑉 ‖

On the other hand, for 𝑃 ∈ 𝑛 ⧵𝐺 and 𝑄∈𝐺,

‖𝑃𝑋 − 𝑌 ‖ = ‖(𝑃 − 𝐼𝑛)𝑍0 + 𝑃𝑈 − 𝑉 ‖ ≥ ‖(𝐼𝑛 − 𝑃)𝑍0‖− ‖𝑈‖− ‖𝑉 ‖ ≥
≥ 𝛿0 − 2‖𝑈‖− 2‖𝑉 ‖+ ‖𝑄𝑈 − 𝑉 ‖ ≥ min

𝑄∈𝐺
‖𝑄𝑈 − 𝑉 ‖ ≥ 𝐝(𝑋̂, 𝑌).

(3)

(a)⇒(b).

Applied and Computational Harmonic Analysis 79 (2025) 101798

13

R. Balan, N. Haghani and M. Singh

If 𝐝(𝑋̂, 𝑌) = ‖𝑈 − 𝑉 ‖ then

‖𝑈 − 𝑉 ‖ ≤ ‖𝑃𝑋 − 𝑌 ‖ = ‖(𝑃 − 𝐼𝑛)𝑍0 + 𝑃𝑈 − 𝑉 ‖ , ∀𝑃 ∈ 𝑛.
In particular, for 𝑃 ∈𝐺, (𝑃 − 𝐼𝑛)𝑍0 = 0 and the above inequality reduces to (b).

(b)⇒(a).

Assume (b). For 𝑃 ∈𝐺,

‖𝑈 − 𝑉 ‖ = ‖𝑋 − 𝑌 ‖ ≤ ‖𝑃𝑈 − 𝑉 ‖ = ‖𝑃𝑋 − 𝑌 ‖.
For 𝑃 ∈ 𝑛 ⧵𝐺,

‖𝑃𝑋 − 𝑌 ‖ = ‖(𝑃 − 𝐼𝑛)𝑍0 + 𝑃𝑈 − 𝑉 ‖ ≥ ‖(𝐼𝑛 − 𝑃)𝑍0‖− ‖𝑈‖− ‖𝑉 ‖ ≥
≥ 𝛿0 − 2‖𝑈‖− 2‖𝑉 ‖+ ‖𝑈 − 𝑉 ‖ ≥ ‖𝑈 − 𝑉 ‖ = ‖𝑋 − 𝑌 ‖.

This shows 𝐝(𝑋̂, 𝑌) = ‖𝑋 − 𝑌 ‖ = ‖𝑈 − 𝑉 ‖.

(b)⟺(c). This is immediate after squaring (b) and simplifying the terms. □

Consider now sequences (𝑋̂𝑡)𝑡, (𝑌 𝑡)𝑡 that converge to 𝑍̂0 and achieve lower bound 0 as in (3.14). Choose representatives 𝑋𝑡 and
𝑌𝑡 in their equivalence classes that satisfy the hypothesis of Lemma 3.13 so that 𝑋𝑡 = 𝑍0 + 𝑈𝑡, 𝑌𝑡 = 𝑍0 + 𝑉𝑡, ‖𝑈𝑡‖,‖𝑉𝑦‖ < 1

4 𝛿0,
𝐝(𝑋̂𝑡, 𝑍̂0) = ‖𝑈𝑡‖, 𝐝(𝑌𝑡, 𝑍̂0) = ‖𝑉𝑡‖ and 𝐝(𝑋̂𝑡, 𝑌𝑡) = ‖𝑈𝑡 − 𝑉𝑡‖ > 0. With 𝐴 = [𝑎1|⋯ |𝑎𝐷] we obtain:

‖𝛽𝐴(𝑋𝑡) − 𝛽𝐴(𝑌𝑡)‖22 = 𝐷∑
𝑗=1

‖ ↓ (𝑋𝑡𝑎𝑗)− ↓ (𝑌𝑡𝑎𝑗)‖22 = 𝐷∑
𝑗=1

‖(𝑍0 +𝑈𝑡)𝑎𝑗 −Π𝑗,𝑡(𝑍0 + 𝑉𝑡)𝑎𝑗‖22,
for some Π𝑗,𝑡 ∈ 𝑛. In fact Π𝑗,𝑡 ∈ 𝑎𝑟𝑔𝑚𝑖𝑛Π∈𝐻𝑗 ‖𝑈𝑡 −Π𝑉𝑡)𝑎𝑗‖2. Pass to sub-sequences (that will be indexed by 𝑡 to ease notation) so
that Π𝑗,𝑡 =Π𝑗 for some Π𝑗 ∈ 𝑛. Thus

‖𝛽𝐴(𝑋𝑡) − 𝛽𝐴(𝑌𝑡)‖22 = 𝐷∑
𝑗=1

‖(𝐼𝑛 −Π𝑗)𝑍0𝑎𝑗 + (𝑈𝑡 −Π𝑗𝑉𝑡)𝑎𝑗‖22.
Since the above sequence must converge to 0 as 𝑡→ ∞, while 𝑈𝑡,𝑉𝑡 → 0, it follows that necessarily Π𝑗 ∈𝐻𝑗 and the expressions
simplify to

‖𝛽𝐴(𝑋𝑡) − 𝛽𝐴(𝑌𝑡)‖22 = 𝐷∑
𝑗=1

‖(𝑈𝑡 −Π𝑗𝑉𝑡)𝑎𝑗‖22.
Thus equation (3.14) implies that for every 𝑗 ∈ [𝐷],

lim
𝑡→∞

‖(𝑈𝑡 −Π𝑗𝑉𝑡)𝑎𝑗‖22‖𝑈𝑡 − 𝑉𝑡‖2 = 0, (3.15)

where Π𝑗 ∈𝐻𝑗 , ‖𝑈𝑡‖,‖𝑉𝑡‖→ 0, and 𝑈𝑡,𝑉𝑡 are aligned so that ⟨𝑈𝑡,𝑉𝑡⟩ ≥ ⟨𝑃𝑈𝑡,𝑉𝑡⟩ for every 𝑃 ∈𝐺. Equivalently, relation (3.14) can
be restated as:

0 = inf
𝑈,𝑉 ∈ℝ𝑛×𝑑

𝑠.𝑡.

𝑈 ≠ 𝑉⟨𝑈,𝑉 ⟩ ≥ ⟨𝑃𝑈,𝑉 ⟩,∀𝑃 ∈𝐺

∑𝐷
𝑗=1 ‖(𝑈 −Π𝑗𝑉)𝑎𝑗‖22‖𝑈 − 𝑉 ‖2 , (3.16)

for some permutations Π𝑗 ∈ 𝐻𝑗 , 𝑗 ∈ [𝐷]. By Lemma 3.13 the constraint in the optimization problem above implies ‖𝑈 − 𝑉 ‖ =
min𝑃∈𝐺 ‖𝑈 − 𝑃𝑉 ‖. Hence (3.16) implies:

0 = inf
𝑈,𝑉 ∈ℝ𝑛×𝑑

𝑠.𝑡.

𝑈 ≠ 𝑃𝑉 ,∀𝑃 ∈𝐺

max
𝑃∈𝐺

∑𝐷
𝑗=1 ‖(𝑈 −Π𝑗𝑉)𝑎𝑗‖22‖𝑈 − 𝑃𝑉 ‖2 , (3.17)

for some permutation matrices Π𝑗 ’s. While the above optimization problem seems a relaxation of (3.16), in fact (3.17) implies (3.16)
with a possibly change of permutation matrices Π𝑗 , but remaining still in 𝐻𝑗 .

Step 3. Existence of a Minimizer.

The optimization problem (3.16) is a Quadratically Constrained Ratio of Quadratics (QCRQ) optimization problem. A significant
number of papers have been published on this topic [7,8]. In particular, [3] presents a formal setup for analysis of QCRQ problems.

Applied and Computational Harmonic Analysis 79 (2025) 101798

14

R. Balan, N. Haghani and M. Singh

Our interest is to utilize some of these techniques in order to establish the existence of a minimizer for (3.16) or (3.17). Specifically
we show:

Lemma 3.14. Assume the key 𝐴 has linearly independent rows (equivalently, the columns of 𝐴 form a frame for ℝ𝑑) and the lower Lipschitz
bound of 𝛽𝐴 is 0. Then there are 𝑈̃ , 𝑉 ∈ℝ𝑛×𝑑 so that:

1. 𝑈̃ ≠ 𝑃𝑉 , for every 𝑃 ∈𝐺;

2. For every 𝑗 ∈ [𝐷], (𝑈̃ −Π𝑗𝑉)𝑎𝑗 = 0.

Proof of Lemma 3.14. We start with the formulation (3.17). Therefore there are sequences (𝑈𝑡,𝑉𝑡)𝑡≥1 so that 𝑈𝑡 ≠ 𝑃𝑉𝑡 for any
𝑃 ∈𝐺, 𝑡 ≥ 1, and yet for any 𝑃 ∈𝐺,

lim
𝑡→∞

∑𝐷
𝑗=1 ‖(𝑈𝑡 −Π𝑗𝑉𝑡)𝑎𝑗‖22‖𝑈𝑡 − 𝑃𝑉𝑡‖2 = 0.

Let 𝐸 = {(𝑈,𝑉) ∈ℝ𝑛×𝑑 ×ℝ𝑛×𝑑 , (𝑈 −Π𝑗)𝑉)𝑎𝑗 = 0 , ∀𝑗 ∈ [𝐷]} denote the null space of the linear operator

𝑇 ∶ℝ𝑛×𝑑 ×ℝ𝑛×𝑑 →ℝ𝐷 , (𝑈,𝑉)↦
[
(𝑈 −Π1𝑉)𝑎1 | ⋯ | (𝑈 −Π𝐷𝑉)𝑎𝐷

]
,

associated to the numerator of the above quotient. Let 𝐹𝑃 = {(𝑈,𝑉) ∈ ℝ𝑛×𝑑 × ℝ𝑛×𝑑 , 𝑈 − 𝑃𝑉 = 0} be the null space of the linear
operator

𝑅𝑃 ∶ℝ𝑛×𝑑 ×ℝ𝑛×𝑑 →ℝ𝑛×𝑑 , (𝑈,𝑉)↦𝑈 − 𝑃𝑉 .

A consequence of (3.17) is that for every 𝑃 ∈𝐺, 𝐸 ⧵ 𝐹𝑃 ≠ ∅. In particular, 𝐹𝑝 ∩𝐸 is a subspace of 𝐸 of positive codimension. Using
the Baire category theorem (or more elementary linear algebra arguments), we conclude that

𝐸 ⧵
(
∪𝑃∈𝐺𝐹𝑃

) ≠ ∅.

Let (𝑈̃ , 𝑉) ∈𝐸 ⧵
(
∪𝑃∈𝐺𝐹𝑃

)
. This pair satisfies the conclusions of Lemma 3.14. □

Step 4. Contradiction with the universality property of the key.

So far we obtained that if the lower Lipschitz bound of 𝛽𝐴 vanishes than there are 𝑍0, 𝑈̃ , 𝑉 ∈ℝ𝑛×𝑑 with 𝑍0 ≠ 0 and 𝑈̃ ≠ 𝑃𝑉 , for
all 𝑃 ∈𝐺 that satisfy the conclusions of Lemma 3.14. Notice ⟨𝑍0,𝑍0⟩ = ⟨𝑃𝑍0,𝑍0⟩ for all 𝑃 ∈𝐺 and (𝑍0 −Π𝑗𝑍0)𝑎𝑗 = 0 for all 𝑗 ∈ [𝐷].
Choose 𝑠 > 0 but small enough so that 𝑠‖𝑈̃‖, 𝑠‖𝑉 ‖ < 1

4𝛿0 with 𝛿0 = min𝑃∈𝑛⧵𝐺 ‖(𝐼𝑛 − 𝑃)𝑍0‖. Let 𝑋 = 𝑍0 + 𝑠𝑈̃ and 𝑌 = 𝑍0 + 𝑠𝑉 .
Then Lemma 3.13 implies 𝐝(𝑋̂, 𝑌) = min𝑃∈𝐺 ‖𝑈̃ − 𝑃𝑉 ‖ > 0. Hence 𝑋̂ ≠ 𝑌 . On the other hand, for every 𝑗 ∈ [𝐷], 𝑋𝑎𝑗 =Π𝑗𝑌 𝑎𝑗 . Thus
𝛽𝐴(𝑋̂) = 𝛽𝐴(𝑌), contradicting the assumption that 𝛽𝐴 is injective. □

3.4. Dimension reduction

Theorem 3.10 provides an Euclidean bi-Lipschitz embedding of very high dimension, 𝐷 = 1 + (𝑑 − 1)𝑛!. On the other hand,
Theorem 3.12 shows that any universal key 𝐴 ∈ℝ𝑑×𝐷 for ℝ̂𝑛×𝑑 , and hence any injective map 𝛽𝐴 is bi-Lipschitz. In this subsection we
show that any bi-Lipschitz Euclidean embedding 𝛽𝐴 ∶ ℝ̂𝑛×𝑑 →ℝ𝑛×𝐷 with 𝐷 > 2𝑑 can be further compressed to a smaller dimension
space ℝ𝑚 with 𝑚 = 2𝑛𝑑 thus yielding bi-Lipschitz Euclidean embeddings of redundancy 2. This is shown in the next result.

Theorem 3.15. Assume 𝐴 ∈ℝ𝑑×𝐷 is a universal key for ℝ̂𝑛×𝑑 with 𝐷 ≥ 2𝑑. Then, for 𝑚 ≥ 2𝑛𝑑, a generic linear operator 𝐵 ∶ℝ𝑛×𝐷 →ℝ𝑚
with respect to Zariski topology on ℝ𝑛×𝐷×𝑚, the map

𝛽𝐴,𝐵 ∶ ℝ̂𝑛×𝑑 →ℝ2𝑛𝑑 , 𝛽𝐴,𝐵(𝑋̂) =𝐵
(
𝛽𝐴(𝑋̂)

)
(3.18)

is bi-Lipschitz. In particular, almost every full-rank linear operator 𝐵 ∶ℝ𝑛×𝐷 →ℝ2𝑛𝑑 produces such a bi-Lipschitz map.

Remark 3.16. The proof shows that, in fact, the complement set of linear operators 𝐵 that produce bi-Lipschitz embeddings is
included in the zero-set of a polynomial.

Remark 3.17. Putting together Theorems 3.10, 3.12, 3.15 we obtain that the metric space ℝ̂𝑛×𝑑 admits a global bi-Lipschitz em

bedding in the Euclidean space ℝ2𝑛𝑑 . This result seems analogous to a conclusion from a Whitney embedding theorem (see §1.3 in
[22]) with the important caveat that the Whitney embedding result applies to smooth manifolds, whereas here ℝ̂𝑛×𝑑 is merely a
non-smooth algebraic variety.

Remark 3.18. These three theorems are summarized in part two of Theorem 2.1 presented in the first section.

Applied and Computational Harmonic Analysis 79 (2025) 101798

15

R. Balan, N. Haghani and M. Singh

Remark 3.19. While the embedding dimension grows linearly in 𝑛𝑑, in fact 𝑚 = 2𝑛𝑑, the computational complexity of constructing
𝛽𝐴,𝐵 is NP due to the 1 + (𝑑 − 1)𝑛! intermediary dimension. The target dimension of 𝛽𝐴,𝐵 is 𝑚 = 2𝑛𝑑. However, to construct 𝛽𝐴,𝐵(𝑋)
we need to construct 𝛽𝐴(𝑋) which is of dimension 𝑛 ×𝐷. This intermediary dimension may be very large, if the smallest universal
key has 𝐷 = 1 + (𝑑 − 1)𝑛! columns.

Remark 3.20. As the proofs show, for 𝐷 ≥ 1 + (𝑑 − 1)𝑛!, a generic (𝐴,𝐵) with respect to Zariski topology, 𝐴 ∈ℝ𝑑×𝐷 and linear map
𝐵 ∶ℝ𝑛×𝐷 →ℝ2𝑛𝑑 , our result produces a bi-Lipschitz embedding (𝛽𝐴,𝐵,𝐝) of ℝ̂𝑛×𝑑 into (ℝ2𝑛𝑑 ,‖ ⋅ ‖2).
Proof of Theorem 3.15. The proof follows a similar argument as the one used in Theorem 3 of [23]. See also [15].

Without loss of generality, assume 𝑚 < 𝑛𝐷.

Notice 𝛽𝐴 ∶ℝ𝑛×𝑑 →ℝ𝑛×𝐷 is already homogeneous of degree 1 (with respect to positive scalars). Let Δ ∶ℝ𝑛×𝑑 ×ℝ𝑛×𝑑 →ℝ𝑛×𝐷 be
defined by Δ(𝑋,𝑌) = 𝛽𝐴(𝑋) − 𝛽𝐴(𝑌). Denote 𝐸 =𝑅𝑎𝑛(Δ) = {𝛽𝐴(𝑋) − 𝛽𝐴(𝑌) , 𝑋,𝑌 ∈ℝ𝑛×𝑑}.

Recall that the key 𝐴 has columns (𝑎𝑘)𝑘∈[𝐷], so that 𝐴 = [𝑎1|⋯ |𝑎𝐷]. Notice that

Δ(𝑋,𝑌) =
[
𝑃1𝑋𝑎1 −𝑄1𝑌 𝑎1|⋯ |𝑃𝐷𝑋𝑎𝐷 −𝑄𝐷𝑌 𝑎𝐷

]
for some 𝑃1,… , 𝑃𝐷,𝑄1,… ,𝑄𝐷 ∈ 𝑛, so that for each 𝑘 ∈ [𝐷], 𝑃𝑘,𝑄𝑘 are permutations producing the decreasing rearrangements of
vectors 𝑋𝑎𝑘 and 𝑌 𝑎𝑘, respectively. In particular,

𝐸 ⊂ 𝐹 ∶=
⋃

𝛾∈(𝑛)2𝐷
𝐹𝛾 , 𝐹𝛾 ∶=𝑅𝑎𝑛(𝐿𝛾),

where the (𝑛!)2𝐷 linear operators 𝐿𝛾 ∶ℝ𝑛×𝑑 ×ℝ𝑛×𝑑 →ℝ𝑛×𝐷 , are defined by

𝐿𝛾 (𝑋,𝑌) =
[
𝑃1𝑋𝑎1 −𝑄1𝑌 𝑎1|⋯ |𝑃𝐷𝑋𝑎𝐷 −𝑄𝐷𝑌 𝑎𝐷

]
when 𝛾 = (𝑃1,… , 𝑃𝐷,𝑄1,… ,𝑄𝐷) ∈ (𝑛)2𝐷 .

Claim: We claim that, for 𝑚 ≥ 2𝑛𝑑 and a generic linear operator 𝐵 ∶ℝ𝑛×𝐷 →ℝ𝑚, we have ker(𝐵) ∩𝐹 = {0}. Such a generic linear
operator has kernel of dimension dim(ker(𝐵)) = 𝑛𝐷 − 𝑚 ≤ 𝑛(𝐷 − 2𝑑). It is therefore sufficient to show that, for a generic subspace
𝑉 ⊂ℝ𝑛×𝐷 of dimension 𝑟 ≤ 𝑛(𝐷−2𝑑), for every 𝛾 ∈ (𝑛)2𝐷 , 𝑉 ∩𝐹𝛾 = {0}. This last claim follows from the observation dim(𝐹𝛾) ≤ 2𝑛𝑑.

We now show how this claim proves the Theorem. Let 𝐵 be such a linear map, and let 𝛽𝐴,𝐵 ∶ℝ𝑛×𝑑 →ℝ𝑚 be the map 𝛽𝐴,𝐵(𝑋) =
𝐵(↓ (𝑋𝐴)). Then 𝛽𝐴,𝐵(𝑋) = 𝛽𝐴,𝐵(𝑌) implies Δ(𝑋,𝑌) = 𝛽𝐴(𝑋) − 𝛽𝐴(𝑌) ∈ ker(𝐵). Thus Δ(𝑋,𝑌) = 0 which implies 𝛽𝐴(𝑋) = 𝛽𝐴(𝑌).
Since 𝛽𝐴 is injective on ℝ̂𝑛×𝑑 it follows 𝑋̂ = 𝑌 . Thus 𝛽𝐴,𝐵 is injective. On the other hand, for each 𝛾 = (𝑃1,… , 𝑃𝐷,𝑄1,… ,𝑄𝐷) ∈ 2𝐷

𝑛 ,
the restriction of 𝐵 to the linear space 𝑅𝑎𝑛(𝐿𝛾) is injective, and thus bounded below as a linear map: there is 𝑎𝛾 > 0 so that for every
𝑋,𝑌 ∈ℝ𝑛×𝑑 , ‖𝐵(𝐿𝛾 (𝑋,𝑌))‖ ≥ 𝑎𝛾‖𝐿𝛾 (𝑋,𝑌)‖. Let 𝑎∞ =min𝛾 𝑎𝛾 > 0. Thus

‖𝛽𝐴,𝐵(𝑋) − 𝛽𝐴,𝐵(𝑌)‖ = ‖𝐵(𝐿𝛾0 (𝑋,𝑌))‖ ≥ 𝑎∞‖𝐿𝛾0 (𝑋,𝑌)‖ = 𝑎∞‖𝛽𝐴(𝑋) − 𝛽𝐴(𝑌)‖,
where 𝛾0 ∈ (𝑆𝑛)2𝐷 is a particular 2𝐷-tuple of permutations. This shows that 𝐵|𝛽𝐴(ℝ𝑛×𝑑) ∶ 𝛽𝐴(ℝ𝑛×𝑑)→ ℝ𝑚 is bi-Lipschitz. By Theo

rem 3.12, the map 𝛽𝐴 is bi-Lipschitz. Therefore we get 𝛽𝐴,𝐵 is bi-Lipschitz as well. □

3.5. Proof of Corollary 1.3

(1) It is clear that any continuous 𝑓 induces a continuous 𝜑 ∶ 𝛽(ℝ𝑛×𝑑)→ ℝ via 𝜑(𝛽(𝑋)) = 𝑓 (𝑋). Furthermore, 𝐹 ∶= 𝛽(ℝ𝑛×𝑑) =
𝛽(ℝ̂𝑛×𝑑) is a closed subset of ℝ𝑚 since 𝛽 is bi-Lipschitz. Then a consequence of the Tietze extension theorem (see problem 8 in §12.1
of [40]) implies that 𝜑 admits a continuous extension 𝑔 ∶ℝ𝑚 →ℝ. Thus 𝑔(𝛽(𝑋)) = 𝑓 (𝑋) for all 𝑋 ∈ℝ𝑛×𝑑 . The converse is trivial.

(2) As in part (1), the Lipschitz continuous function 𝑓 induces a Lipschitz continuous function 𝜑 ∶ 𝐹 → ℝ. Since 𝐹 ⊂ ℝ𝑚 is a
subset of a Hilbert space, by Kirszbraun extension theorem (see [45]), 𝜑 admits a Lipschitz continuous extension (even with the same
Lipschitz constant!) 𝑔 ∶ℝ𝑚 →ℝ so that 𝑔(𝛽(𝑋)) = 𝑓 (𝑋) for every 𝑋 ∈ℝ𝑛×𝑑 . The converse is trivial. □

4. Applications to graph deep learning

In this section we take an empirical look at the permutation invariant mappings presented in this paper. We focus on the problems
of graph classification, for which we employ the PROTEINS_FULL dataset [14], and of graph regression, for which we employ the
quantum chemistry QM9 dataset [39]. In both problems we want to estimate a function 𝐹 ∶ (𝐴,𝑍)→ 𝑝, where (𝐴,𝑍) characterizes a
vertex-decorated graph, with 𝐴 ∈ℝ𝑛×𝑛 an adjacency matrix and 𝑍 ∈ℝ𝑛×𝑟 an associated feature matrix, the 𝑖𝑡ℎ row encodes an array
of 𝑟 features annotating the 𝑖𝑡ℎ node. 𝑝 is a scalar output where we have 𝑝 ∈ {0,1} for binary classification and 𝑝 ∈ℝ for regression.

We estimate 𝐹 using a deep network that is trained in a supervised manner. The network is comprised of three successive compo

nents applied in series: Γ, 𝜙, and 𝜂. Γ represents a graph deep network [26], which produces a set of embeddings 𝑋 ∈ℝ𝑁×𝑑 across
the nodes in the graph. Here 𝑁 ≥ 𝑛 is chosen to accommodate the graph with the largest number of nodes. In this case, the last
𝑁 −𝑛 rows of 𝑌 are filled with 0’s. 𝜙 ∶ℝ𝑁×𝑑 →ℝ𝑚 represents a permutation invariant mapping such as those proposed in this paper.
𝜂 ∶ℝ𝑚 →ℝ is a fully connected neural network. The entire end-to-end network is shown in Fig. 1.

Applied and Computational Harmonic Analysis 79 (2025) 101798

16

R. Balan, N. Haghani and M. Singh

Fig. 1. The processing pipeline of the graph deep learning tasks.

In this paper, we model Γ using a Graph Convolutional Network (GCN) outlined in [26]. Let 𝐃 ∈ℝ𝑛×𝑛 be the associated degree
matrix for our graph . Also let 𝐴̃ be the associated adjacency matrix of  with added self connection: 𝐴̃ = 𝐼 + 𝐴, where 𝐼 is the
𝑛 × 𝑛 identity matrix, and 𝐃̃ =𝐃+ 𝐼 . Finally, we define the modified adjacency matrix 𝐴̂ = 𝐃̃−1∕2𝐴̃𝐃̃−1∕2. A GCN layer is defined as
𝐻 (𝑙+1) = 𝜎(𝐴̂𝐻 (𝑙−1)𝑊 (𝑙)). Here 𝐻 (𝑙−1) represents the GCN state coming into the 𝑙𝑡ℎ layer, 𝜎 represents a chosen nonlinear element

by-element operation such as ReLU, and 𝑊 (𝑙) represents a matrix of trainable weights assigned to the 𝑙𝑡ℎ layer whose number of rows
matches the number of columns in 𝐻𝑙 and number of columns is set to the size of the embeddings at the (l+1)’th layer. The initial
state 𝐻 (0) of the network is set to the feature set of the nodes of the graph 𝐻 (0) =𝑍 .

For 𝜙 we employ seven (7) different methods that are described next.

1. ordering: For the ordering method, we set 𝐷 = 𝑑+1, 𝜙𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔(𝑋) = 𝛽𝐴(𝑋) =↓ (𝑋𝐴) with 𝐴 = [𝐼 1] the identity matrix bordered
by a column of ones. The ordering and identity-based mappings have the notable disadvantage of not producing the same output
embedding size for different sized graphs. To accommodate this and have consistently sized inputs for 𝜂, we choose to zero-pad
𝜙(𝑋) for these methods to produce a vector in ℝ𝑚, where 𝑚 =𝑁𝐷 =𝑁(𝑑 + 1) and 𝑁 is the size of the largest graph in the
dataset.

2. kernels: For the kernels method,

(𝜙𝑘𝑒𝑟𝑛𝑒𝑙(𝑋))𝑗 =
𝑛 ∑
𝑘=1
𝐾𝐺(𝑥𝑘, 𝑎𝑗) =

𝑛 ∑
𝑘=1
𝑒𝑥𝑝(−‖𝑥𝑘 − 𝑎𝑗‖2), 𝑗 ∈ [𝑚],

for 𝑋 = [𝑥1|⋯ |𝑥𝑛]𝑇 , where kernel vectors 𝑎1,… , 𝑎𝑚 ∈ℝ𝑑 are generated randomly, each element of each vector is drawn from a
standard normal distribution. Each resultant vector is then normalized to produce a kernel vector of unit 𝑙2-norm. When inputting
the embedding 𝑋 to the kernels mapping, we first normalized the embedding for each respective node.

3. identity: In this case 𝜙𝑖𝑑(𝑋) =𝑋, which is obviously not a permutation invariant map.

4. data augmentation: In this case 𝜙𝑑𝑎𝑡𝑎 𝑎𝑢𝑔𝑚𝑒𝑛𝑡(𝑋) =𝑋 but data augmentation is used. Our data augmentation scheme works as
follows. We take the training set and create multiple permutations of the adjacency and associated feature matrix for each graph
in the training set. We add each permuted graph to the training set to be included with the original graphs. In our experiments
we use four added permutations for each graph when employing data augmentation.

5. sum-pooling: The sum-pooling method sums the feature values across the set of nodes: 𝜙𝑠𝑢𝑚 𝑝𝑜𝑜𝑙𝑖𝑛𝑔(𝑋) = 𝟏𝑇
𝑛×1𝑋.

6. sort-pooling: The sort-pooling method flips entire rows of 𝑋 so that the last column is ordered descendingly, 𝜙𝑠𝑜𝑟𝑡 𝑝𝑜𝑜𝑙(𝑋) =
Π𝑋 where Π∈ 𝑛 so that Π 𝑋(∶, 𝑑) =↓ (𝑋(∶, 𝑑)).

7. set-2-set: This method employs a recurrent neural network that achieves permutation invariance through attention-based
weighted summations. It has been introduced in [43].

In all cases, the output dimension of the 𝜙-layer is 𝑚 =𝑁𝐷 =𝑁(𝑑 + 1), where 𝑁 is the size of the largest graph in dataset, and
zero-pad 𝜙(𝑋) where appropriate.

For our deep neural network 𝜂 we use a simple multilayer perceptron of size described in the next subsection.

Size parameters related to Γ and 𝜂 components are largely held constant across the different implementations. However the
network parameters are trained independently for each method.

4.1. Graph classification

4.1.1. Methodology

For our experiments in graph classification we consider the PROTEINS_FULL dataset obtained from [25] and originally introduced
in [14]. The dataset consists of 1113 proteins falling into one of two classes: those that function as enzymes and those that do not.
Across the dataset there are 450 enzymes in total. The graph for each protein is constructed such that the nodes represent amino
acids and the edges represent the bonds between them. The number of amino acids (nodes) vary from around 20 to a maximum of
620 per protein with an average of 39.06. Each protein comes with a set of features annotating each node. The features represent
characteristics of the associated amino acid associated to the node. The number of features is 𝑟 = 29. We run the end-to-end model
with three GCN layers in Γ, each with 50 hidden units. 𝜂 consists of three dense multi-layer perceptron layers, each with 150 hidden
units. In our studies, we considered four possible 𝑑: 1, 10, 50 and 100.

For each method and embedding size we train for 300 epochs. For most methods this gives each method the same exposure to
training data; however, the data augmentation method will have effectively five times the exposure by construction. We use a
batch size of 128 graphs. The loss function minimized during training is the binary cross entropy loss (BCE) defined as

𝐵𝐶𝐸 = − 1
𝐵

𝐵∑
𝑡=1
𝑝𝑡 log(𝜎(𝜂(𝜙(𝑋(𝑡))))) + (1 − 𝑝𝑡) log(1 − 𝜎(𝜂(𝜙(𝑋(𝑡))))), (4.1)

Applied and Computational Harmonic Analysis 79 (2025) 101798

17

R. Balan, N. Haghani and M. Singh

where 𝐵 = 128 is the batch size, 𝑝𝑡 = 1 when the 𝑡𝑡ℎ graph (protein) is an enzyme and 𝑝𝑡 = 0 otherwise, 𝜎(𝑥) = 1
1+𝑒−𝑥 is the sigmoid

function that maps the output 𝜂(𝜙(𝑋(𝑡)) of the 3-layer fully connected network 𝜂 to [0,1]. Three performance metrics were computed:
accuracy (ACC), area under the receiver operating characteristic curve (AUC), and average precision (AP) as area under the precision

recall curve from precision scores. These measures are defined as follows (see sklearn.metrics module documentation in pytorch,
or [18]).

For a threshold 𝜏 ∈ [0,1], the classification decision 𝑝̂𝑡(𝜏) is given by:

𝑝̂𝑡(𝜏) =
{

1 if 𝜎(𝜂(𝜙(𝑋(𝑡))) ≥ 𝜏
0 if otherwise

. (4.2)

By default 𝜏 = 1
2 . For a given threshold, one computes four scores: true positive (TP), false positive (FP), true negative (TN) and false

negative (FN), defined via:

TP(𝜏) = 1
𝐵1

𝐵∑
𝑡=1

1𝑝̂𝑡(𝜏)=11𝑝𝑡=1, TN(𝜏) = 1
𝐵0

1𝑝̂𝑡(𝜏)=01𝑝𝑡=0 (4.3)

FP(𝜏) = 1
𝐵0

𝐵∑
𝑡=1

1𝑝̂𝑡(𝜏)=11𝑝𝑡=0 = 1 − 𝑇𝑁(𝜏), FN(𝜏) = 1
𝐵1

𝐵∑
𝑡=1

1𝑝̂𝑡(𝜏)=01𝑝𝑡=1 = 1 − 𝑇𝑃 (𝜏), (4.4)

where 𝐵0 =
∑𝐵
𝑡=1 1𝑝𝑡=0 and 𝐵1 =

∑𝐵
𝑡=1 1𝑝𝑡=1 = 𝐵 −𝐵0.

These four statistics predict Precision 𝑃 (𝜏). Recall 𝑅(𝜏) (also known as sensitivity or true positive rate), and Specificity 𝑆(𝜏) (also
known as true negative rate)

𝑃 (𝜏) = 𝑇𝑃 (𝜏)
𝑇𝑃 (𝜏) + 𝐹𝑃 (𝜏)

, 𝑅(𝜏) = 𝑇𝑃 (𝜏)
𝑇𝑃 (𝜏) + 𝐹𝑁(𝜏)

, 𝑆(𝜏) = 𝑇𝑁(𝜏)
𝑇𝑁(𝜏) + 𝐹𝑃 (𝜏)

(4.5)

Accuracy (ACC) is defined as the fraction of correct classifications for default threshold 𝜏 = 1
2 over the set of batch samples:

𝐴𝐶𝐶 = 1
𝐵

𝐵∑
𝑡=1

1
𝑝𝑡=𝑝̂𝑡(

1
2)
=
𝐵0
𝐵

TN(1
2
) +

𝐵1
𝐵

TP(1
2
). (4.6)

Area under the receiver operating characteristic curve (AUC) is computed from prediction scores as the area under true positive rate
(TPR) vs. false positive rate (FPR) curve, i.e. the recall vs. 1-specificity curve

𝐴𝑈𝐶 = 1
2

𝐾∑
𝑘=1

(𝑆(𝜏𝑘−1) − 𝑆(𝜏𝑘))(𝑅(𝜏𝑘−1) +𝑅(𝜏𝑘)), (4.7)

where 𝐾 is the number of thresholds in that study. Average precision (AP) summarizes a precision-recall curve as the weighted mean
of precision achieved at each threshold, with the increase in recall from the previous thresholds used as the weight:

𝐴𝑃 =
𝐾∑
𝑘=1

(𝑅(𝜏𝑘) −𝑅(𝜏𝑘−1))𝑃 (𝜏𝑘). (4.8)

We track the binary cross entropy (BCE) through training and we compute it on the holdout set and a random node permutation
of the holdout set. The lower the value of BCE, the better.

We look at the three performance metrics on the training set, the holdout set, and a random node permutation of the holdout set.
For all three performance metrics, the higher the score the better.

The Supplementary Material presents traces of these metrics: see Figures A.2 and A.3 for binary cross entropy (BCE); Figures A.4,
and A.5 for accuracy (ACC); Figures A.6, and A.7 for area under the receiver operating characteristic curve (AUC); and Figures A.8,
and A.9 for average precision (AP).

4.1.2. Discussion

Tables 1-3 list values of the three performance metrics (ACC, AUC, AP) at the end of training (after 300 epochs). Performances
over the course of training are plotted in Figures A.2 through A.9 available in the Supplementary Material section.

The authors of [14] utilized a Support Vector Machine (1-layer perceptron) for classification and obtained an accuracy (ACC)
of 77% on the entire dataset using 52 features, and an accuracy of 80% on a smaller set of 36 features. By comparison, our data
augmentation method for 𝑑 = 100 achieved an accuracy of 97.5% on training dataset, but dropped dramatically to 73% on holdout
data, and 72% on holdout dataset with randomly permuted nodes. On the other hand, both the kernels method and the sum-pooling
method with 𝑑 = 50 achieved an accuracy of around 79% on training dataset, while dropping accuracy performance by only 2% to
around 77% on holdout data (as well as holdout data with nodes permuted).

For 𝑑 = 1, data augmentation performed the best on the training set with an area under the receiver operating characteristic
(AUC) of 0.896, followed closely by the identity method with an AUC of 0.886. On the permuted holdout set however, sort-pooling
performed the best with an AUC of 0.803.

Applied and Computational Harmonic Analysis 79 (2025) 101798

18

R. Balan, N. Haghani and M. Singh

Table 1
Accuracy ACC(%) for enzyme/non-enzyme classification of the seven algorithms on PROTEINS_FULL dataset after 300 epochs for embed

ding dimensions 𝑑 = 1 (top), 𝑑 = 10 (second), 𝑑 = 50 (third), and 𝑑 = 100 (bottom).

d = 1 ordering kernels identity data augment sum-pooling sort-pooling set-2-set
Training 76 72 80 81.6 76.2 78 72.4
Holdout 74 74 72.5 76.5 70.5 74.5 72
Holdout Perm 74 74 67.5 75 70.5 74.5 72

d = 10 ordering kernels identity data augment sum-pooling sort-pooling set-2-set
Training 84.5 78.2 87 90.6 77.8 85.2 72.5
Holdout 74 75.5 73 76 75 71 74.5
Holdout Perm 74 75.5 62.5 73.5 75 71 74.5

d = 50 ordering kernels identity data augment sum-pooling sort-pooling set-2-set
Training 83.1 78.8 91 96 79.2 83.7 76.7
Holdout 71.5 76.5 72.5 71 77 71 76
Holdout Perm 71.5 76.5 69.5 72 77 71 76

d = 100 ordering kernels identity data augment sum-pooling sort-pooling set-2-set
Training 88 77 97.5 97.5 78.1 87.3 76.6
Holdout 71 74.5 72.5 73 75.5 69.5 74.5
Holdout Perm 71 74.5 68.5 72 75.5 69.5 74.5

Table 2
Area under the receiver operating characteristic curve (AUC) for enzyme/non-enzyme classification of the seven algorithms on PRO
TEINS_FULL dataset after 300 epochs for embedding dimensions 𝑑 = 1 (top), 𝑑 = 10 (second), 𝑑 = 50 (third), and 𝑑 = 100 (bottom).

d = 1 ordering kernels identity data augment sum-pooling sort-pooling set-2-set
Training 0.846 0.758 0.886 0.896 0.818 0.858 0.778
Holdout 0.794 0.775 0.766 0.796 0.777 0.803 0.788
Holdout Perm 0.794 0.775 0.747 0.785 0.777 0.803 0.788

d = 10 ordering kernels identity data augment sum-pooling sort-pooling set-2-set
Training 0.913 0.849 0.941 0.970 0.842 0.930 0.787
Holdout 0.820 0.817 0.782 0.796 0.821 0.798 0.779
Holdout Perm 0.820 0.817 0.668 0.784 0.821 0.798 0.779

d = 50 ordering kernels identity data augment sum-pooling sort-pooling set-2-set
Training 0.922 0.847 0.965 0.994 0.856 0.920 0.820
Holdout 0.791 0.818 0.775 0.768 0.821 0.791 0.777
Holdout Perm 0.791 0.818 0.716 0.768 0.821 0.791 0.777

d = 100 ordering kernels identity data augment sum-pooling sort-pooling set-2-set
Training 0.949 0.832 0.997 0.997 0.849 0.948 0.842
Holdout 0.754 0.801 0.766 0.775 0.817 0.784 0.776
Holdout Perm 0.754 0.801 0.708 0.775 0.817 0.784 0.776

For 𝑑 = 10, sum-pooling, ordering, and kernels performed well on the permuted holdout set with AUC’s of 0.821, 0.820, and 0.818
respectively. The high performance of the identity method, data augmentation, and sort-pooling on the training set did not translate
to the permuted holdout set at 𝑑 = 10. By 𝑑 = 100, sum-pooling still performed the best on the permuted holdout set with an AUC of
0.817. This was followed by the kernels method which achieved an AUC of 0.801 on the permuted holdout set.

For experiments where 𝑑 > 1, the identity method and data augmentation show a notable drop in performance from the training
set to the holdout set. This trend is also, to a lesser extent, visible in the sort pooling and ordering methods. In the holdout permuted
set we see significant oscillations in the performance of both the identity and data augmentation methods.

4.2. Graph regression

4.2.1. Methodology

For our experiments in graph regression we consider the QM9 dataset [39]. This dataset consists of 134 K molecules represented
as graphs, where the nodes represent atoms and edges represent the bonds between them.

Each graph has between 3 and 29 nodes, 3 ≤ 𝑛 ≤ 29. Each node has 11 features, 𝑟 = 11. We hold out 20 thousand of these molecules
for evaluation purposes. The dataset includes 19 quantitative features for each molecule.

In our study, following [17], we attempt to predict the electron energy gap (units 𝑒𝑉) (Δ𝜀 in [17]), whose chemical accuracy is
0.043𝑒𝑉 and whose prediction performance of any machine learning technique is worse than for any other feature, cf [20].

Applied and Computational Harmonic Analysis 79 (2025) 101798

19

R. Balan, N. Haghani and M. Singh

Table 3
Average precision (AP) for enzyme/non-enzyme classification of the seven algorithms on PROTEINS_FULL dataset after 300 epochs for
embedding dimensions 𝑑 = 1 (top), 𝑑 = 10 (second), 𝑑 = 50 (third), and 𝑑 = 100 (bottom).

d = 1 ordering kernels identity data augment sum-pooling sort-pooling set-2-set
Training 0.788 0.709 0.844 0.857 0.754 0.811 0.707
Holdout 0.720 0.698 0.692 0.725 0.636 0.680 0.708
Holdout Perm 0.720 0.698 0.622 0.710 0.636 0.680 0.708

d = 10 ordering kernels identity data augment sum-pooling sort-pooling set-2-set
Training 0.890 0.804 0.922 0.961 0.797 0.904 0.722
Holdout 0.738 0.749 0.631 0.646 0.753 0.693 0.693
Holdout Perm 0.738 0.749 0.497 0.664 0.753 0.693 0.693

d = 50 ordering kernels identity data augment sum-pooling sort-pooling set-2-set
Training 0.899 0.797 0.950 0.991 0.814 0.891 0.757
Holdout 0.700 0.738 0.627 0.589 0.750 0.676 0.666
Holdout Perm 0.700 0.738 0.520 0.600 0.750 0.676 0.666

d = 100 ordering kernels identity data augment sum-pooling sort-pooling set-2-set
Training 0.933 0.777 0.995 0.995 0.806 0.927 0.782
Holdout 0.627 0.729 0.601 0.622 0.747 0.637 0.704
Holdout Perm 0.627 0.729 0.529 0.656 0.747 0.637 0.704

The best existing estimator for this task is enn-s2s-ens5 from [20] and has a mean absolute error (MAE) of 0.0529𝑒𝑉 , which
is a factor 1.23 larger than the chemical accuracy. We run the end to end model with three GCN layers in Γ, each with 50 hidden
units. 𝜂 consists of three multi-layer perceptron layers, each with 150 hidden units. We use rectified linear units for the nonlinear
activation function. Finally, we vary 𝑑, the size of the node embeddings output by Γ. We set 𝑑 equal to 1, 10, 50 and 100.

For each method and embedding size we train for 300 epochs. Again, the data augmentation method will have experienced
(effectively) five times as many training data as other methods due to the (implicitly) increased size of its training set. We use a batch
size of 128 graphs. The loss function minimized during training is the mean square error (MSE) between the ground truth and the
network output.

𝑀𝑆𝐸 = 1
𝐵

𝐵∑
𝑡=1

|Δ𝜀𝑡 − 𝜂(𝜙(𝑋(𝑡)))|2 (4.9)

where 𝐵 = 128 is the batch size of 128 graphs and Δ𝜀𝑡 is the electron energy gap of the 𝑡𝑡ℎ graph (molecule). The performance metric
is Mean Absolute Error (MAE)

𝑀𝐴𝐸 = 1
𝐵

𝐵∑
𝑡=1

|Δ𝜀𝑡 − 𝜂(𝜙(𝑋(𝑡)))|. (4.10)

We track the mean absolute error through the course of training. We look at this performance metric on the training set, the holdout
set, and a random node permutation of the holdout set.

The Supplementary Material section contains plots of the loss function (MSE) and of the performance metric (MAE) tracked during
training: Figures A.10, A.11, A.12, and A.13.

4.2.2. Discussion

Numerical results at the end of training (after 300 epochs) are included in Table 4. From the results we see that the ordering
method performed best for 𝑑 = 100 followed closely by the data augmentation method, while both the ordering method and the
kernels method performed well for 𝑑 = 10, though both fell slightly short of data augmentation which performed marginally better
on both the training data and the holdout data, though with significantly more training iterations. For 𝑑 = 1, the kernels method
failed to train adequately. The identity mapping performed relatively well on training data (for 𝑑 = 100 it achieved the smallest MAE
among all methods and all parameters) and even the holdout data, however it lost its performance on the permuted holdout data.
The identity mapping’s failure to generalize across permutations of the holdout set is likely exacerbated by the fact that the QM9 data
as presented to the network comes ordered in its node positions from heaviest atom to lightest. Data augmentation notably kept its
performance despite this due to training on many permutations of the data.

For 𝑑 = 100, our ordering method achieved a MAE of 0.155𝑒𝑉 on training dataset and 0.187𝑒𝑉 on holdout dataset, which are 3.6
and 4.35 times larger than the chemical accuracy (0.043𝑒𝑉), respectively. This is worse than the enn-s2s-ens5 method in [20] (as
of 2022 best method) that achieved a MAE 0.0529 (eV), 1.23 larger than the chemical accuracy, but better than the Coulomb Matrix
(CM) representation in [41] that achieved a MAE 5.32 larger than the chemical accuracy whose features were optimized for this task.

A key message of these experiments is that using a permutation-invariant embedding Φ induces better performance on the holdout
set compared to the control setting (identity).

Applied and Computational Harmonic Analysis 79 (2025) 101798

20

R. Balan, N. Haghani and M. Singh

Table 4
Mean Absolute Error (MAE) for regression of the electron energy gap Δ𝜀=𝐿𝑈𝑀𝑂−𝐻𝑂𝑀𝑂 (eV) of the seven algorithms on QM9 dataset
after 300 epochs for embedding dimensions 𝑑 = 1 (top), 𝑑 = 10 (second), 𝑑 = 50 (third), and 𝑑 = 100 (bottom). For each dataset, the method
with best peformance is highlighted.

d = 1 ordering kernels identity data augment sum-pooling sort-pooling set-2-set
Training 0.302 0.867 0.320 0.281 0.349 0.309 0.389
Holdout 0.304 0.868 0.331 0.285 0.344 0.313 0.385
Holdout Perm 0.304 0.868 2.433 0.298 0.344 0.313 0.385

d = 10 ordering kernels identity data augment sum-pooling sort-pooling set-2-set
Training 0.220 0.219 0.182 0.175 0.214 0.226 0.282
Holdout 0.232 0.222 0.244 0.208 0.223 0.278 0.287
Holdout Perm 0.232 0.222 1.099 0.216 0.223 0.278 0.287

d = 50 ordering kernels identity data augment sum-pooling sort-pooling set-2-set
Training 0.163 0.257 0.163 0.172 0.182 0.166 0.196
Holdout 0.191 0.258 0.234 0.212 0.204 0.227 0.211
Holdout Perm 0.191 0.258 1.607 0.219 0.204 0.277 0.211

d = 100 ordering kernels identity data augment sum-pooling sort-pooling set-2-set
Training 0.155 0.269 0.139 0.164 0.178 0.199 0.173
Holdout 0.187 0.267 0.227 0.206 0.201 0.239 0.201
Holdout Perm 0.187 0.267 1.086 0.213 0.201 0.239 0.201

Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.acha.2025.101798.

References

[1] B. Alexeev, J. Cahill, Dustin G. Mixon, Full spark frames, J. Fourier Anal. Appl. 18 (2012) 1167--1194.

[2] A.S. Bandeira, J. Cahill, D. Mixon, A.A. Nelson, Saving phase: injectivity and stability for phase retrieval, Appl. Comput. Harmon. Anal. 37 (1) (2014) 106--125.

[3] A. Auslender, M. Teboulle, Asymptotic Cones and Functions in Optimization and Variational Inequalities, Springer, 2003.

[4] R. Balan, Frames and phaseless reconstruction, in: K. Okoudjou (Ed.), Finite Frame Theory: A Complete Introduction to Overcompleteness, AMS Short Course at
the Joint Mathematics Meetings, San Antonio, January 2015, in: Proceedings of Symposia in Applied Mathematics, vol. 73, 2016, pp. 175--199.

[5] R. Balan, Y. Wang, Invertibility and robustness of phaseless reconstruction, Appl. Comput. Harmon. Anal. 38 (3) (2015) 469--488.

[6] R. Balan, D. Zou, On Lipschitz analysis and Lipschitz synthesis for the phase retrieval problem, Linear Algebra Appl. 496 (2016) 152--181.

[7] A. Beck, A. Ben-Tal, M. Teboulle, Finding a global optimal solution for a quadratically constrained fractional quadratic problem with applications to the regularized
total least squares, SIAM J. Matrix Anal. Appl. 28 (2) (2006) 425--445.

[8] A. Beck, M. Teboulle, On minimizing quadratically constrained ratio of two quadratic functions, J. Convex Anal. 17 (3,4) (2010) 789--804.

[9] B.G. Bodmann, N. Hammen, Stable phase retrieval with low-redundancy frames, Adv. Comput. Math. 41 (2015) 317--331.

[10] Jacek Bochnak, Michel Coste, Marie-Françoise Roy, Real Algebraic Geometry, vol. 36, Springer Science & Business Media, 2013.

[11] Jameson Cahill, Joseph W. Iverson, Dustin G. Mixon, Daniel Packer, Group-invariant max filtering, Found. Comput. Math. (2024) 1--38.

[12] Cédric Villani, Topics in Optimal Transportation, American Mathematical Society, 2003.

[13] Zhengdao Chen, Soledad Villar, Lei Chen, Joan Bruna, On the equivalence between graph isomorphism testing and function approximation with GNNs, in: H.
Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, R. Garnett (Eds.), Advances in Neural Information Processing Systems, in: Curran Associates,
vol. 32, Inc., 2019.

[14] Paul D. Dobson, Andrew J. Doig, Distinguishing enzyme structures from non-enzymes without alignments, J. Mol. Biol. 330 (4) (2003) 771--783.

[15] Emilie Dufresne, Separating invariants and finite reflection groups, Adv. Math. 221 (6) (2009) 1979--1989.

[16] Nadav Dym, Steven J. Gortler, Low dimensional invariant embeddings for universal geometric learning, Found. Comput. Math. (2025) 375--415.

[17] Felix A. Faber, Bing Hutchison, Luke Huang, Justin Gilmer, Samuel S. Schoenholz, George E. Dahl, Oriol Vinyals, Steven Kearnes, Patrick F. Riley, O. Anatole
von Lilienfeld, Prediction errors of molecular machine learning models lower than hybrid DFT error, J. Chem. Theory Comput. (13) (2017) 5255--5264.

[18] Tom Fawcett, An introduction to ROC analysis, Pattern Recognit. Lett. 27 (2006) 861--874.

[19] Floris Geerts, Juan L. Reutter, Expressiveness and approximation properties of graph neural networks, in: International Conference on Learning Representations,
2022.

[20] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, George E. Dahl, Neural message passing for quantum chemistry, in: Proceedings of the 34th
International Conference on Machine Learning - Volume 70, ICML’17, 2017, pp. 1263--1272, JMLR.org.

[21] G. Kemper, H. Derksen, Computational Invariant Theory, Springer, 2002.

[22] Morris Hirsch, Differential Topology, Springer, 1994.

[23] A.C. Hip J. Cahill, A. Contreras, Complete set of translation invariant measurements with Lipschitz bounds, Appl. Comput. Harmon. Anal. 49 (2) (2020) 521--539.

[24] Nicolas Keriven, Gabriel Peyré, Universal invariant and equivariant graph neural networks, Adv. Neural Inf. Process. Syst. 32 (2019) 7092--7101.

[25] Kristian Kersting, Nils M. Kriege, Christopher Morris, Petra Mutzel, Marion Neumann, Benchmark data sets for graph kernels, http://graphkernels.cs.tu-dortmund.

de, 2016.

[26] Thomas N. Kipf, Max Welling, Semi-supervised classification with graph convolutional networks, in: International Conference on Learning Representations (ICLR),
2017.

[27] W. Li, W. Liao, Stable super-resolution limit and smallest singular value of restricted Fourier matrices, Appl. Comput. Harmon. Anal. 51 (2021) 118--156.

[28] Yujia Li, Daniel Tarlow, Marc Brockschmidt, Richard Zemel, Gated graph sequence neural networks, arXiv e-prints, arXiv:1511.05493, 2015.

[29] D.G. Schaeffer, M. Golubitsky, I. Stewart, Singularities and Groups in Bifurcation Theory, vol. 2, Springer, 1988.

[30] Romanos Diogenes Malikiosis, Vignon Oussa, Full spark frames in the orbit of a representation, Appl. Comput. Harmon. Anal. 49 (3) (2020) 791--814.

[31] Haggai Maron, Heli Ben-Hamu, Nadav Shamir, Yaron Lipman, Invariant and equivariant graph networks, in: International Conference on Learning Representa

tions, 2019.

Applied and Computational Harmonic Analysis 79 (2025) 101798

21

https://doi.org/10.1016/j.acha.2025.101798
http://refhub.elsevier.com/S1063-5203(25)00052-1/bib98F11B7A7880169C3BD62A5A507B3965s1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bib069F349D2E0E3241F49A13C5CD0FA6A7s1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bibA9709DC0FD9DDFB37E104C9F02BF966Ds1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bib23927D8A8461FC35195F011CB9801F5As1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bib23927D8A8461FC35195F011CB9801F5As1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bibB83160C7A8F27AD66D6AA341DEEC2B0Cs1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bib84A2CEB52E502FD3786017A3FE67138Fs1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bib886527FDDC991442BEEFD2646E9D67A5s1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bib886527FDDC991442BEEFD2646E9D67A5s1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bib6D07DC11C72B0FDD7E598CB75C7D2738s1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bibD7EB52FE98D0E619B748F5635B02F2ABs1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bib0E1FF61F0A49931929E931419FF59BBBs1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bib030EC0EF1F143AC8C4C4E237DE30CDB9s1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bib0AAB7184C79009416AB4E917EFFA9D22s1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bibB4EC64B241A864A70B0EA7C730510882s1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bibB4EC64B241A864A70B0EA7C730510882s1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bibB4EC64B241A864A70B0EA7C730510882s1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bibABCA22F78F7B0080C0EC0EFB76AADAB1s1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bib7E0253607D317DB67924767190EAB88Es1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bib03CE2E1F9D3C8361FA73C8BE03A12287s1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bibF744E6B9B322231DBA171012E8B49DEFs1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bibF744E6B9B322231DBA171012E8B49DEFs1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bib042DD99EB0FF8653814E445CA0093427s1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bib9D63A24F8223C8B409FFA87E184C563Es1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bib9D63A24F8223C8B409FFA87E184C563Es1
http://JMLR.org
http://refhub.elsevier.com/S1063-5203(25)00052-1/bib79AF13373488D839A245E15F093F3EB6s1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bibD988318EBAC9F246609D6866A10784AEs1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bibE74BA2A65BD27B67AE0499629FCF9AE6s1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bib1BC4DDD7DAEED1E100F79C7225A72572s1
http://graphkernels.cs.tu-dortmund.de
http://graphkernels.cs.tu-dortmund.de
http://refhub.elsevier.com/S1063-5203(25)00052-1/bib4BDB59E373B91CEF9BF1962CED246852s1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bib4BDB59E373B91CEF9BF1962CED246852s1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bibC5174284FC9AF7573677190AB9C6ED93s1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bibAEAB062A691C744023D1A5F7E0920E83s1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bib1C7B4D0D56A285D3CD83005B600C61D0s1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bibF73EC98AE92904B606566E9AC585D0F3s1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bibDE367478B0F1E49C775F500E3FE310C1s1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bibDE367478B0F1E49C775F500E3FE310C1s1

R. Balan, N. Haghani and M. Singh

[32] Haggai Maron, Ethan Fetaya, Nimrod Segol, Yaron Lipman, On the universality of invariant networks, in: Kamalika Chaudhuri, Ruslan Salakhutdinov (Eds.),
Proceedings of the 36th International Conference on Machine Learning, 9--15 Jun 2019, in: Proceedings of Machine Learning Research, vol. 97, PMLR, 2019,
pp. 4363--4371.

[33] Caroline Moosmüller, Alexander Cloninger, Linear optimal transport embedding: provable Wasserstein classification for certain rigid transformations and per

turbations, Inf. Inference 12 (1) (2023) 363--389.

[34] Rémi Peyre, Comparison between 𝑊2 distance and 𝐻̇−1 norm, and localization of Wasserstein distance, ESAIM Control Optim. Calc. Var. 24 (4) (2018) 1489--1501.

[35] R.R. Phelps, Convex sets and nearest points, Proc. Am. Math. Soc. 8 (1957) 790--797.

[36] Omri Puny, Matan Atzmon, Edward J. Smith, Ishan Mishra, Aditya Grover, Heli Ben-Hamu, Yaron Lipman, Frame averaging for invariant and equivariant network
design, in: International Conference on Learning Representations, 2022.

[37] Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas, Pointnet: deep learning on point sets for 3d classification and segmentation, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp. 652--660.

[38] Ali Rahimi, Benjamin Recht, Random features for large-scale kernel machines, in: J. Platt, D. Koller, Y. Singer, S. Roweis (Eds.), Advances in Neural Information
Processing Systems, in: Curran Associates, vol. 20, Inc., 2007.

[39] Raghunathan Ramakrishnan, Pavlo O. Dral, Matthias Rupp, O. Anatole Von Lilienfeld, Quantum chemistry structures and properties of 134 kilo molecules, Sci.
Data 1 (1) (2014) 1--7.

[40] H.L. Royden, P.M. Fitzpatrick, Real Analysis, 4th ed., Pearson Education, Inc., 2010.

[41] Matthias Rupp, Alexandre Tkatchenko, Klaus-Robert Müller, O. Anatole von Lilienfeld, Fast and accurate modeling of molecular atomization energies with
machine learning, Phys. Rev. Lett. 108 (2012) 058301.

[42] Akiyoshi Sannai, Yuuki Takai, Matthieu Cordonnier, Universal approximations of permutation invariant/equivariant functions by deep neural networks, 2020.

[43] Oriol Vinyals, Samy Bengio, Manjunath Kudlur, Order matters: sequence to sequence for sets, in: International Conference on Learning Representations, 2016.

[44] B. Yu Weisfeiler, A.A. Leman, The reduction of a graph to canonical form and the algebra which appears therein, Nauchno-Technicheskaya Informatsia 2 (9)
(1968) 12--16, English translation by G. Ryabov is available at https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf.

[45] J.H. Wells, L.R. Williams, Embeddings and Extensions in Analysis, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 84, Springer-Verlag, 1975.

[46] Dmitry Yarotsky, Universal approximations of invariant maps by neural networks, Constr. Approx. 55 (1) (2022) 407--474.

[47] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R. Salakhutdinov, Alexander J. Smola, Deep sets, in: I. Guyon, U.V. Luxburg, S.
Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett (Eds.), Advances in Neural Information Processing Systems, in: Curran Associates, vol. 30, Inc., 2017.

[48] Muhan Zhang, Zhicheng Cui, Marion Neumann, Yixin Chen, An end-to-end deep learning architecture for graph classification, in: Thirty-Second AAAI Conference
on Artificial Intelligence, 2018.

Applied and Computational Harmonic Analysis 79 (2025) 101798

22

http://refhub.elsevier.com/S1063-5203(25)00052-1/bib029A976FE186401A66247DC94CFA49FBs1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bib029A976FE186401A66247DC94CFA49FBs1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bib029A976FE186401A66247DC94CFA49FBs1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bib4B6125ED64ED5083EF5B83BC83DAB9F8s1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bib4B6125ED64ED5083EF5B83BC83DAB9F8s1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bibF3ECA487D3EACC524231EE5B80391177s1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bib21BAD07A52B27383C2D8DE25D9422C2Bs1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bibF11B768F4215DD934870925E328190DBs1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bibF11B768F4215DD934870925E328190DBs1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bibD6E36A69BF998C4E54DAAF25187F289Fs1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bibD6E36A69BF998C4E54DAAF25187F289Fs1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bibE08E2290249E374ECBB86337E085CA3As1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bibE08E2290249E374ECBB86337E085CA3As1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bib5F3C2EB6458A5754357FAAD5286E168Ds1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bib5F3C2EB6458A5754357FAAD5286E168Ds1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bib5516D8A5DBF42FA0B5DBB341653E9E36s1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bib7465489803F5D705ABDDE48A3CD6AC00s1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bib7465489803F5D705ABDDE48A3CD6AC00s1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bib58D57E80619C8AB66A4FA9F0F1BDE6A4s1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bib886F059C66F6C88C59D0C3AE4AAE0823s1
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf
http://refhub.elsevier.com/S1063-5203(25)00052-1/bibD7FBDACB20158BC4777D53717A3BDFADs1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bib495EBBBA18D4F1FC868F963C18748753s1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bib57F2122083B45149BBC7F37F567D40FFs1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bib57F2122083B45149BBC7F37F567D40FFs1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bibFFCDF7AED6CA554A2A3698DCC343E0E4s1
http://refhub.elsevier.com/S1063-5203(25)00052-1/bibFFCDF7AED6CA554A2A3698DCC343E0E4s1

	Permutation-invariant representations with applications to graph deep learning
	1 Introduction
	1.1 Prior works

	2 Algebraic embeddings
	2.1 Kernel methods
	2.2 The polynomial embedding
	2.3 Dimension reduction in the case d=2 and consequences

	3 Sorting based embedding
	3.1 Characterizations of (X) and S(A)
	3.2 Construction of universal keys
	3.3 Bi-Lipschitz properties of universal keys
	3.4 Dimension reduction
	3.5 Proof of Corollary 1.3

	4 Applications to graph deep learning
	4.1 Graph classification
	4.1.1 Methodology
	4.1.2 Discussion

	4.2 Graph regression
	4.2.1 Methodology
	4.2.2 Discussion

	Appendix A Supplementary material
	References

