
TYPE Original Research

PUBLISHED 21 August 2025

DOI 10.3389/fams.2025.1632218

OPEN ACCESS

EDITED BY

Lixin Shen,

Syracuse University, United States

REVIEWED BY

Jianqing Jia,

Syracuse University, United States

Rongrong Lin,

Guangdong University of Technology, China

*CORRESPONDENCE

Kathryn Linehan

kjl5t@virginia.edu

RECEIVED 20 May 2025

ACCEPTED 15 July 2025

PUBLISHED 21 August 2025

CITATION

Linehan K and Balan R (2025) CUR matrix

approximation through convex optimization

for feature selection.

Front. Appl. Math. Stat. 11:1632218.

doi: 10.3389/fams.2025.1632218

COPYRIGHT

© 2025 Linehan and Balan. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

CUR matrix approximation
through convex optimization for
feature selection

Kathryn Linehan1,2* and Radu Balan1

1Department of Mathematics, University of Maryland, College Park, MD, United States, 2Research

Computing, University of Virginia, Charlottesville, VA, United States

The singular value decomposition (SVD) is commonly used in applications

that require a low-rank matrix approximation. However, the singular vectors

cannot be interpreted in terms of the original data. For applications requiring

this type of interpretation, e.g., selection of important data matrix columns

or rows, the approximate CUR matrix factorization can be used. Work on the

CUR matrix approximation has generally focused on algorithm development,

theoretical guarantees, and applications. In this study, we present a novel

deterministic CUR formulation and algorithm with theoretical convergence

guarantees. The algorithm utilizes convex optimization, finds important columns

and rows separately, and allows the user to control the number of important

columns and rows selected from the original data matrix. We present numerical

results and demonstrate the e�ectiveness of our CUR algorithm as a feature

selection method on gene expression data. These results are compared to

those using the SVD and other CUR algorithms as the feature selection method.

Finally, we present a novel application of CUR as a feature selection method

to determine discriminant proteins when clustering protein expression data in

a self-organizing map (SOM), and compare the performance of multiple CUR

algorithms in this application.

KEYWORDS

CUR matrix approximation, convex optimization, low-rank matrix approximation,

feature selection, interpretation

1 Introduction

Low-rank matrix approximations are common tools in many applications, including

principal component analysis (PCA), signal denoising, and least squares. While the

truncated singular value decomposition (SVD) is the optimal approximation in terms of

matrix reconstruction (Eckart-Young theorem), the singular vectors cannot be interpreted

in terms of the original data. Mahoney and Drineas [1] provided an example of this:

[12 age−
1√
2
height+ 1

2 income] is an eigenvector for a dataset of features about people that

“is not particularly informative or meaningful." However, the approximate CUR matrix

factorization can be interpreted in terms of the original data, making it an attractive low-

rank approximation option, especially for applications that seek important matrix columns

or rows. Several of these applications exist [2], e.g., selecting important genes from gene

expression data to cluster patients by cancer type [1], and more broadly can be considered

feature selection applications.

The approximate CUR factorization ofX ∈ R
m×n is generally computed in three steps,

but steps (1) and (2) can also be computed simultaneously: (1) select c ∈ N columns of X

and let C ∈ R
m×c contain these columns, (2) select r ∈ N rows of X and let R ∈ R

r×n

Frontiers in AppliedMathematics and Statistics 01 frontiersin.org

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2025.1632218
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2025.1632218&domain=pdf&date_stamp=2025-08-21
mailto:kjl5t@virginia.edu
https://doi.org/10.3389/fams.2025.1632218
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fams.2025.1632218/full
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Linehan and Balan 10.3389/fams.2025.1632218

contain these rows, and (3) compute U ∈ R
c×r , so that CUR is a

good approximation to X. The result is a matrix approximation

X
m×n

≈ C
m×c

U
c×r

R
r×n

,

where generally c ≪ n and r ≪ m. Hence, CUR maintains the

structure of the data, for example, sparsity or non-negativity, and C

andR can be viewed as containing themost important columns and

rows of the original data, respectively. CUR matrix approximation

has been successfully used for feature selection in applications

such as document clustering [1], gene expression data clustering

[1, 2], image classification [3], and sensor selection and channel

assignment [4]. CUR has also been used for simultaneous feature

selection and sample selection for active learning [5].

Hamm and Huang [6] provided a history of CUR and

mentioned that recent work on the CUR approximationmost likely

began with developments in the mid-to-late 1990s by Goreinov

et al., e.g., [7]. Since then, several CUR algorithms have been

developed; some are randomized, e.g., [1, 8, 9], and others are

deterministic, e.g., [2, 10].Work on CUR includes proving accuracy

and/or other theoretical guarantees for algorithms, e.g., [1, 8], and

also performance of CUR algorithms in practice without theoretical

guarantees, e.g., [11]. In this study, we are particularly interested

in deterministic CUR algorithms that can independently select

columns of X without simultaneous selection of its rows due to the

fact that (1) several applications exist that seek important matrix

columns or rows and not a full matrix factorization [2], and (2)

for a practical application, a randomized CUR will likely produce

a different set of important columns and/or rows in each run of the

algorithm, which may not be desirable to the scientist [11, 12].

One deterministic approach to computing a CUR

approximation is to select columns and rows of X for inclusion

in C and R using convex optimization with regularization, e.g.,

[11, 12]. In this study, we propose a novel CUR algorithm utilizing

convex optimization with contributions in the formulation,

implementation, and application of CUR. The main contributions

of the study include (1) a novel convex optimization formulation

for CUR, (2) an algorithm utilizing convex optimization that

solves for C and R separately and allows the user to select c and

r, and (3) an implementation utilizing the “surrogate functional”

technique of Daubechies et al. [13], which we adapt for use with a

new penalty function. We also note that our CUR algorithm and

implementation can accommodate a variety of penalty functions,

allowing the user a flexible framework. We provide numerical

results that compare our CUR algorithm with the SVD and other

deterministic CUR algorithms that select C and R separately,

allowing the user to select c and r. Specifically, we show that our

CUR algorithm performs very well as a feature selection method

in an extension of an experiment by Sorenson and Embree [2]

on gene expression data, in which important genes are selected

to cluster patients into two classes - those with and without a

lung tumor.

Another main contribution of the study is a novel application

of CUR for feature selection. We adapt the clustering analysis

of Higuera et al. [14] in which Self-Organizing Maps (SOMs)1

and the Wilcoxon rank-sum test were used to determine proteins

1 Also known as Kohonen Maps.

that critically affect learning in wild-type and trisomic (Down

syndrome) mice. Specifically, we use CUR as the feature selection

method instead of the Wilcoxon rank-sum test. We show that

CUR can be used effectively in this application and compare the

performance of our CUR algorithm to that of other deterministic

CUR algorithms that select C and R separately and allow the user

to select c and r. This is not only a novel application of CUR, but

to the best of our knowledge, also the first use of CUR on protein

expression data.

The remainder of this article is organized as follows: we present

related work in Section 2, our novel CUR algorithm utilizing

convex optimization in Section 3, the theoretical foundations of

the algorithm in Section 4, numerical experiments in Section 5, a

novel application of CUR as a feature selection method in protein

expression discriminant analysis in Section 6, and a conclusion in

Section 7. Throughout this study, we use MATLAB notation to

denote rows and columns of matrices, e.g., row i of X is denoted

X(i, :) and column j of X is denoted X(:, j). In addition, the set

{1, 2, ..., n} is denoted [n].

2 Related work

As mentioned in Section 1, work on the CUR matrix

approximation has generally focused on algorithm development,

theoretical guarantees, and applications. In this section, we focus on

related work in three areas: (1) deterministic CUR algorithms that

solve for C and R separately and allow the user to select c and r, (2)

CUR algorithms that use convex optimization with regularization

to select columns and rows of the data matrix for inclusion inC and

R, and (3) CUR feature selection applications. Since we mentioned

a number of feature selection applications in the introduction, we

will now provide more details. For the interested reader, Dong and

Martinsson [15] provide a survey of CUR algorithms (including

those that do not fit the criterion for inclusion in this section).

Deterministic CUR algorithms that solve forC andR separately

and allow the user to select c and r include a leverage score approach

[1], a discrete empirical interpolation method (DEIM) approach

[2], and a pivoted QR approach [10]. The leverage score approach

by Mahoney and Drineas [1] is often compared to in the CUR

literature. This approximation is randomized and columns and

rows are sampled based on their “normalized statistical leverage

scores," which capture information on how much a column or

row contributes to the optimal low-rank approximation to the

data matrix, the rank-k SVD, where k is a rank parameter chosen

by the user. However, a deterministic variant of this algorithm is

to select the columns and rows with the largest leverage scores

for inclusion in C and R, respectively. In the DEIM approach by

Sorenson and Embree [2], columns are chosen for inclusion in C

and rows are chosen for inclusion in R using the discrete empirical

interpolation method (DEIM) on the top-k right and left singular

vectors of the data matrix, respectively, where k = c = r. In

the pivoted QR approach by Stewart [10], columns are selected

for inclusion in C and rows are selected for inclusion in R using

a pivoted QR factorization of X and XT, respectively. Sorenson and

Embree [2] present a slight adaptation of this approach in which

rows are selected for inclusion inR using a pivotedQR factorization

of CT. In each of these four CUR algorithms, U is computed as

Frontiers in AppliedMathematics and Statistics 02 frontiersin.org

https://doi.org/10.3389/fams.2025.1632218
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Linehan and Balan 10.3389/fams.2025.1632218

U = C+XR+, i.e., the minimizer of ‖X − CUR‖F [10], where X+

denotes the Moore-Penrose generalized inverse or pseudoinverse

of X.

Since the CUR algorithm that we present in this study uses

convex optimization with regularization to select columns and

rows of the data matrix for inclusion in C and R, we also note

related work in this area. In 2010, Bien et al. [12] related CUR to

sparse PCA and used the following convex minimization problem

to find C:

B∗ = argmin
B∈Rn×n

‖X− XB‖F + λ

n∑

i=1

‖B(i, :)‖2, (1)

where λ > 0 is a regularization parameter. The indices of non-

zero rows of B∗ are the indices of columns to choose from X

for inclusion in C. R can be found using a similar optimization

problem; however, the computation of U is not discussed. Mairal

et al. [11] formulated CUR as a convex optimization problem that

selects columns and rows of X at the same time:

W∗ = argmin
W∈Rn×m

‖X− XWX‖2F + λrow

m∑

i=1

‖W(:, i)‖∞

+λcol

n∑

j=1

‖W(j, :)‖∞, (2)

where λrow and λcol > 0 are regularization parameters. Similar to

Bien et al. [12], the non-zero row indices of W∗ are the indices

of columns to select from X, and the non-zero column indices

of W∗ are the indices of rows to select from X. U is computed

as U = C+XR+. In both Bien et al. [12] and Mairal et al. [11],

the convex optimization CUR algorithm achieves similar matrix

reconstruction accuracy to that of the leverage score-based CUR

[1] in numerical experiments. In addition, Ida et al. [16] presented

a method to speed up the coordinate descent algorithm for solving

Equation 1 as presented in Bien et al. [12] and claimed it can be

extended to solve Equation 2 as well.

In 2018, Peng et al. [17] used an optimization problem

with regularization terms that simultaneously performed a CUR

approximation of a network node attribute matrix (to choose

representative nodes and attributes at the same time) and residual

analysis to detect anomalies on attributed networks. The part of the

optimization formulation related to CUR is similar to Equation 2,

but uses the ℓ2 norm rather than the ℓ∞ norm in the regularization

terms. This optimization problem was solved using alternating

convex optimizations, and parameters were chosen using a grid

search in experimental results. In each of the convex optimization

CUR approaches mentioned above [11, 12, 16, 17], there is no built-

in algorithmic control for selecting c columns and r rows of the

data matrix.

Li et al. [5] used a convex optimization CUR to simultaneously

select features and representative data samples to perform feature

selection and active learning at the same time. The optimization

problem used is similar to Equation 2 except that the regularization

terms use the ℓ2 norm rather than the ℓ∞ norm, and there

is an additional regularization term that provides “local linear

reconstruction.” Parameters were grid searched in experimental

results and after the optimization problem is solved, the indices

of the c rows of W∗ with the largest ℓ2 norms are the indices

of columns selected from the data matrix for inclusion in C. The

indices of r rows to include in R are found similarly.

We provided examples of applications that use CUR for feature

selection in Section 1, and here provide more details for those

examples. Mahoney and Drineas [1] applied CUR to a term-

document matrix and used the results to cluster the documents

into two topics, with interpretation provided by selection of the

five most important terms by CUR. The clustering provided by

CUR outperformed that provided by the truncated SVD. They

also similarly applied CUR to gene expression data to cluster

patients by cancer type. Clustering peformance was equivalent to

that of using the truncated SVD, but CUR provided insight into

which genes are most important to the clustering, and of the 12

selected, some are known to be medically associated with cancer.

Sorenson and Embree [2] also used CUR on gene expression data

to discover genes that cluster patients into those with and without

a tumor. They compared results using their DEIM CUR and the

deterministic leverage score CUR of Mahoney and Drineas [1].

While the DEIM CUR reconstructed the original data matrix better

than the deterministic leverage score CUR, the genes selected by the

leverage score CUR performed much better in separating patients

with and without a tumor.

Liu and Shao [3] leveraged CUR for feature selection to

improve image classification accuracy. CUR performed the best of

the dimensionality reduction methods used, which included PCA.

Esmaeili et al. [4] used CUR for cognitive radio sensor selection

and channel assignment. Specifically, sensors were chosen using

the selected columns from C, and channels were selected using

the highest magnitude elements of U for each chosen sensor, and

the resulting samples were interpolated to create the spectrum

map. They tested various CUR algorithms, including the leverage

score CUR [1], and showed that CUR is more effective than

random uniform sampling (the prior method) in recreating the

spectrum map. As mentioned earlier, Li et al. [5] used CUR for

simultaneous feature selection and sample selection for active

learning to classify synthetic data, gene expression data, molecular

data, image and video data, and human activity recognition data.

They demonstrated that their convex optimization CUR almost

always outperformed other feature selection and active learning

methods, including the randomized leverage score CUR [1], in

terms of classifier accuracy.

3 CUR algorithm

Let X ∈ R
m×n be the matrix we wish to approximate as X ≈

CUR. Our formulation of CUR using convex optimization builds

upon ideas from Bien et al. [12], Mahoney and Drineas [1], and

Mairal et al. [11]. To select a subset of columns from X to form the

matrix C, we solve

W∗ = argmin
W∈Rn×m

‖X− XWX‖2F + λC

n∑

i=1

‖W(i, :)‖∞, (3)

for a given λC ∈ R ≥ 0. Then C = X(:, IC), where IC is the

set of indices of non-zero rows in W∗. Hence, λC controls how

many columns are selected from X, i.e., the larger the value of λC,

Frontiers in AppliedMathematics and Statistics 03 frontiersin.org

https://doi.org/10.3389/fams.2025.1632218
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Linehan and Balan 10.3389/fams.2025.1632218

the more rows of W are forced to 0, and the fewer columns of X

are selected.

After C has been calculated, we select a set of rows from X to

form the matrix R by solving

W∗ = argmin
W∈Rc×m

‖X− CWX‖2F + λR

m∑

j=1

‖W(:, j)‖∞, (4)

for a given λR ∈ R ≥ 0. Then, R = X(IR, :), where IR is the set of

indices of non-zero columns inW∗, and λR controls the number of

rows of selected.

Input to our algorithm includes c and r, the number of columns

and rows to be selected fromX forC andR, respectively. For a given

λC , it is unknown in advance how many columns will be selected

fromX by the solution of Equation 3. Hence, we utilize bisection on

λC with multiple iterates of the column selection procedure to find

a selection of exactly c columns. We use a similar process with λR

and the row selection procedure to find a selection of exactly r rows.

To complete the algorithm, U is computed as U = C+XR+. The
pseudocode for our CUR approximation is given in Algorithm 1.

The initial minimum value for λC in the bisection method is 0,

which corresponds to potentially all columns of X being selected

for the matrix C. The initial maximum value for λC in the bisection

method is the smallest value of λC that forces zero columns of X to

be selected, i.e., the solution to Equation 3 to be W∗ = 0. We call

this the critical value of λC and denote it λ∗C . The range of values
for λR in the bisection method with Equation 4 is set similarly, with

the critical value of λR denoted as λ∗R. To prove the exact values of

λ∗C and λ∗R, we first provide a helpful lemma. We will also use the

matrix identity vec(AXB) = (BT ⊗ A)vec(X) in which ⊗ denotes

the Kronecker product, and vec(X) is a column-stacked version

of X, so that vec(X) ∈ R
mn for X ∈ R

m×n. Using this identity,

Equations 3, 4 can be reshaped as

w∗ = min
w∈Rmn

‖(XT ⊗ X)w− b‖22 + λC

n∑

i=1

max
1≤j≤m

|wi+(j−1)n|, (5)

and

w∗ = min
w∈Rmc

‖(XT ⊗ C)w− b‖22 + λR

m∑

j=1

max
1≤i≤c

|wi+(j−1)n|, (6)

where b = vec(X) ∈ R
mn, w = vec(W) ∈ R

mn (Equation 5) or

w = vec(W) ∈ R
mc (Equation 6), and w∗ is defined similarly to w.

Lemma 3.1. Let v ∈ R
m be fixed, and λ ∈ R. If 〈v, x〉 ≤ λ

2 ‖x‖∞
∀x ∈ R

m, then λ ≥ 2‖v‖1.

Proof.

〈v, x〉 =
m∑

k=1

vkxk ≤
(

m∑

k=1

|vk|
)

max
1≤k≤m

|xk| = ‖v‖1‖x‖∞.

Hence for xk = sign(vk), 〈v, x〉 = ‖v‖1‖x‖∞ and λ = 2‖v‖1.
Since the smallest value of λ, which holds ∀x ∈ R

m, will occur when

〈v, x〉 = λ
2 ‖x‖∞, it is the case that ∀x ∈ R

m, λ ≥ 2‖v‖1.

Theorem 3.2. Let M = reshape((XT ⊗ X)Tb, n,m),

i.e., (XT ⊗ X)Tb reshaped from R
mn to R

n×m so that

(XT ⊗ X)Tb = vec(M). Then,

λ∗C = 2 max
1≤i≤n

‖M(i, :)‖1 = 2‖M‖∞.

Similarly, let N = reshape((XT ⊗ C)Tb, c,m). Then,

λ∗R = 2 max
1≤j≤m

‖N(:, j)‖1 = 2‖N‖1.

Proof. Let A = (XT ⊗ X) and the objective function of Equation 5

be J(w):

J(w) = ‖Aw− b‖22 + λC

n∑

i=1

max
1≤j≤m

|wi+(j−1)n|.

We want to find the smallest λ∗C > 0 such that ∀λ ≥ λ∗C,
argminw∈Rmn J(w) = 0. We have

J(w) = ‖Aw‖22 − 2wTATb+ ‖b‖22 + λC

n∑

i=1

max
1≤j≤m

|wi+(j−1)n|

= ‖Aw‖22 + ‖b‖22 + λC

n∑

i=1

max
1≤j≤m

|wi+(j−1)n| − 2

mn∑

k=1

(ATb)kwk

= ‖Aw‖22 + ‖b‖22 + λC

n∑

i=1

max
1≤j≤m

|Wij| − 2

n∑

i=1

m∑

j=1

MijWij,

whereW = reshape(w, n,m). If ∀i,

λC

2
max
1≤j≤m

|Wij| −
m∑

j=1

MijWij ≥ 0, (7)

then

n∑

i=1


λC

2
max
1≤j≤m

|Wij| −
m∑

j=1

MijWij


 ≥ 0,

and

λC

n∑

i=1

max
1≤j≤m

|Wij| − 2

n∑

i=1

m∑

j=1

MijWij ≥ 0.

Hence, J(w) ≥ J(0) = ‖b‖22, for allw, thus argminw∈Rmn J(w) =
0. By Lemma 3.1, assuming Equation 7 is true, ∀i, λC ≥ 2‖M(i, :)‖1.
Thus, λ∗C = 2max1≤i≤n ‖M(i, :)‖1 = 2‖M‖∞.

A similar proof can be used to show the result for λ∗R, letting
A = (XT ⊗ C) and J(w) be the objective function of Equation 6:

J(w) = ‖Aw− b‖22 + λR

m∑

j=1

max
1≤i≤c

|wi+(j−1)n|.

By Theorem 3.2 and the fact that b = vec(X), we can calculate

λ∗C = 2‖reshape((XT ⊗ X)Tvec(X), n,m)‖∞
= 2‖reshape((X⊗ XT)vec(X), n,m)‖∞
= 2‖reshape(vec(XTXXT), n,m)‖∞
= 2‖XTXXT‖∞,

where the third line follows from the same matrix identity used

above. A similar calculation shows that λ∗R = 2‖CTXXT‖1.

Frontiers in AppliedMathematics and Statistics 04 frontiersin.org

https://doi.org/10.3389/fams.2025.1632218
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Linehan and Balan 10.3389/fams.2025.1632218

Input: X ∈ R
m×n, c ∈ N, r ∈ N

Output: C ∈ R
m×c, U ∈ R

c×r, R ∈ R
r×n such that

X ≈ CUR

1: λ∗C = 2‖XTXXT‖∞
2: nc = 0, λmin = 0, λmax = λ∗C
3: while nc 6= c do

4: λC = (λmax + λmin)/2

5: solve W∗ = argminW∈Rn×m ‖X−XWX‖2F +
λC
∑n

i=1 ‖W(i, :)‖∞
6: let IC be the set of indices of nonzero rows

of W∗

7: nc = |IC|
8: if c > nc then

9: λmin = λC

10: else if c < nc then

11: λmax = λC

12: end if

13: end while

14: C = X(:,IC)

15: λ∗R = 2‖CTXXT‖1
16: nr = 0, λmin = 0, λmax = λ∗R
17: while nr 6= r do

18: λR = (λmax + λmin)/2

19: solve W∗ = argminW∈Rc×m ‖X−CWX‖2F +
λR
∑m

j=1 ‖W(:,j)‖∞
20: let IR be the set of indices of nonzero columns

of W∗

21: nr = |IR|
22: if r > nr then

23: λmin = λR

24: else if r < nr then

25: λmax = λR

26: end if

27: end while

28: R = X(IR, :)

29: U = C+XR+

30: return C,U,R

Algorithm 1. CUR through convex optimization.

3.1 Implementation for minimization
problems

For X of small2 dimensions, we can solve the minimization

problems on lines 5 and 19 of Algorithm 1 using the reshaped

versions (Equations 5, 6) and a convex programming solver, such

as the CVX package in MATLAB [18, 19]. However, using a solver

for X of larger dimensions becomes infeasible due to the use of

the Kronecker product in the reshaped problems. For example, to

store the genetics dataset referenced in Section 5, a dense double

array X ∈ R
107×22,283, 19.07 MB is used; to store XT ⊗ X ∈

R
2,384,281×2,384,281, 45.48 TB is used.

To accommodate large-scale problems, we solve these

minimizations in Algorithm 1 using an extension of an iterative

2 Small is relative to the user’s computer memory size.

method by Daubechies et al. [13] that utilizes a “surrogate

functional” to solve regularized least squares minimization

problems in which weighted ℓp-norm penalty functions are used,

for 1 ≤ p ≤ 2. This technique decouples a large minimization

problem into smaller, easy-to-solve problems. We extend the

results of Daubechies et al. [13] to apply to our penalty functions,

e.g.,
∑n

i=1 ‖W(i, :)‖∞. We demonstrate the method for the line

5 minimization in Algorithm 1. The line 19 minimization is

handled similarly.

Let the objective function of Equation 3 be denoted by

J(W) = ‖X− XWX‖2F + λC

n∑

i=1

‖W(i, :)‖∞,

and the corresponding surrogate functional by

Ĵ(W,Z) = ‖X− XWX‖2F + λC

n∑

i=1

‖W(i, :)‖∞ + µ‖W− Z‖2F

−‖XWX− XZX‖2F ,

where Z ∈ R
n×m and µ > 0. For any Z ∈ R

n×m and µ > 0, we

have

Ĵ(W,Z) = µ‖W‖2F − 2 tr{W(µZT + XXTX− XXTZTXTX)}

+ λC

n∑

i=1

‖W(i, :)‖∞ + ‖X‖2F + µ‖Z‖2F − ‖XZX‖2F

=
n∑

i=1

[
µ‖W(i, :)‖22 − 2〈W(i, :), LT(i, :)〉 + λC‖W(i, :)‖∞

]

+ ‖X‖2F + µ‖Z‖2F − ‖XZX‖2F ,

where L = µZT + XXTX− XXTZTXTX. Hence,

argmin
W∈Rn×m

Ĵ(W,Z) = argmin
W∈Rn×m

µ

n∑

i=1

[
‖W(i, :)− 1

µ
LT(i, :)‖22

−‖ 1
µ
LT(i, :)‖22 +

λC

µ
‖W(i, :)‖∞

]

= argmin
W∈Rn×m

2µ

n∑

i=1

[
1

2
‖W(i, :)− 1

µ
LT(i, :)‖22

+ λC

2µ
‖W(i, :)‖∞

]
.

Thus, we can easily minimize Ĵ over W by computing the

proximal operator of the ℓ∞ norm,

proxα‖·‖∞ (x) = argmin
y∈Rm

(
1

2
‖y− x‖22 + α‖y‖∞

)
(8)

for x ∈ R
m and α ≥ 0, for each row of W. To find a

minimizer of J, we utilize the minimization of Ĵ in the iterative

process in Algorithm 2. In Section 4, we will show that W∗ =
argminW∈Rn×m J(W), whereW∗ is the output of Algorithm 2.

3.2 Complexity

For this analysis, we will assume that r ≪ m and c ≪ n,

and rename µ as µC to avoid confusion with µR, a similar

Frontiers in AppliedMathematics and Statistics 05 frontiersin.org

https://doi.org/10.3389/fams.2025.1632218
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Linehan and Balan 10.3389/fams.2025.1632218

Input: X ∈ R
m×n, λC ≥ 0,µ > ‖X‖42

Output: W∗ ∈ R
n×m s.t. W∗ =

argminW∈Rn×m ‖X−XWX‖2F + λC
∑n

i=1 ‖W(i, :)‖∞
1: W0 = 0

2: k = 0

3: repeat ⊲ each iteration solves

Wk = argminY∈Rn×m Ĵ(Y,Wk−1).

4: k = k+ 1

5: L = µ(Wk−1)T +XXTX−XXT(Wk−1)TXTX

6: for i = 1 to n do

7: Wk(i, :) = argminy∈Rm

[
1
2 ‖y − 1

µ
LT(i, :)‖22

+ λC
2µ

‖y‖∞
]

8: end for

9: until convergence of the sequence {Wk}
10: W∗ = Wk ⊲ W∗ = limk→∞{Wk}
11: return W∗

Algorithm 2. Convex optimization using the surrogate functional.

TABLE 1 Computational complexities of quantities used in Algorithm 1.

Computation Complexity

λ∗
C O(mn2) ifm ≥ n or O(m2n) ifm < n

XXTX O(mn) utilizing λ∗
C computation

XXT O(m2n)

XTX O(mn2)

µC O(mn)

λ∗
R O(cmn) ifm ≥ c or O(cm2) (utilizing XXT

computation) ifm < c

XXTC O(cm) utilizing λ∗
R computation

CTC O(c2m)

µR O(cm)

parameter needed to solve the line 19 minimization. We provide

computational complexities in Table 1 that help determine the

overall complexity of Algorithm 1. Quantities that are used in each

iteration of one of the bisection loops should be computed once

before the loop begins. For the first bisection loop on lines 3-13, this

includes XXTX (which is the transpose of the matrix computed to

find λ∗C in line 1), XXT, XTX, and µC > ‖X‖42, which is an input

to Algorithm 2. For the second bisection loop on lines 17-27, this

includes XXTC (which is the transpose of the matrix computed to

find λ∗R in line 15), XXT (which was already computed before the

first bisection loop), CTC, and µR > ‖X‖22‖C‖22 (an input to the

algorithm that solves the line 19 minimization), in which ‖X‖2 was
already computed as well.

Before we analyze the entirety of Algorithm 1, we will analyze

the complexity of Algorithm 2, which solves the minimization

problem on line 5 of Algorithm 1. In each iteration, the most

expensive steps are the computation of L and the n proximal

operators. L can be computed in O(mn(m + n)) time and

each proximal operator can be computed in O(m logm) time.

Determining if the sequence has converged in line 9 can be

completed in O(mn) time. Hence, the total time for Algorithm 2,

assuming k iterations are completed, is O(kmn(m + n)). A similar

analysis shows that the complexity of the algorithm for solving the

minimization problem on line 19 of Algorithm 1 is O(k̂cm(m +
c)), assuming k̂ iterations are completed. For each minimization

problem, we have found that using a small maximum number

of iterations in practice, e.g., 20, is sufficient for use in the CUR

algorithm (Algorithm 1). For the remainder of this analysis, we

will assume that the number of iterations for each minimization

problem is a small constant.

In Algorithm 1, the bisection loop in lines 3–13 dominates

the computational complexity. This loop runs in O(ℓmn(m + n))

time, assuming ℓ iterations. This is due to the computation time of

Algorithm 2 and the fact that finding the set IC can be completed

in O(mn) time. Using a similar analysis, the second bisection

loop on lines 17–27 is an order of magnitude less expensive,

i.e., O(ℓ̂cm(m + c)) assuming ℓ̂ iterations. The computation of U

involves two pseudoinverses, C+ and R+, which can be computed

in O(cmmin(c,m)) and O(nrmin(n, r)) time, respectively. The

productU = C+XR+ can be computed inO(cn(m+r)) time ifm ≥
n, or O(mr(n + c)) time if m < n. Hence, the total computational

complexity for Algorithm 1 is O(ℓmn(m+ n)).

3.3 Generalizations

Domain expertise can be incorporated into Equations 3, 4 using

fixed relative column/row weights, e.g.,

min
W∈Rn×m

‖X− XWX‖2F + λC

n∑

i=1

ωi‖W(i, :)‖∞,

where ωi is the provided expert weight for X(:, i). The column/row

weights reflect the relative importance of each column/row

according to the expert. The implementation and theory provided

in this manuscript require very minor modifications to apply to

this generalization.

To form the matrix C, our algorithm and implementation can

also accommodate objective functions of the form

‖X− XWX‖2F + λC

n∑

i=1

‖W(i, :)‖pp,

for 1 ≤ p ≤ 2. The theory for using the surrogate functional

technique with these choices of objective functions is already

complete [13], and the only change to the implementation detailed

above is that the proximal operator in Algorithm 2 would be of the

ℓp-norm. Closed-form solutions for the proximal operator of the

ℓ1 and ℓ2 norms exist, making these easy choices to implement.

Similar penalty function adaptations can be made to the objective

function used to form the matrix R. Hence, our algorithm and

implementation provide a CUR framework. We also note that the

objective function could be generalized as

min
W∈Rn×m

‖X− XWX‖pp + λC

n∑

i=1

‖W(i, :)‖∞,

where p ∈ [1,∞], which remains a potential area for future work.

Frontiers in AppliedMathematics and Statistics 06 frontiersin.org

https://doi.org/10.3389/fams.2025.1632218
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Linehan and Balan 10.3389/fams.2025.1632218

4 Theoretical foundation

In this section, we follow the theoretical approach of

Daubechies et al. [13] to prove the correctness of Algorithm 2 for

solving the minimization on line 5 of Algorithm 1, i.e., that

W∗ = argmin
W∈Rn×m

‖X− XWX‖2F + λC

n∑

i=1

‖W(i, :)‖∞,

where W∗ is the output of Algorithm 2. The correctness of the

algorithm for solving the minimization on line 19 of Algorithm 1

can be proved similarly.

For constant X,µ, λC , let the non-linear operator

TX,µ,λC :R
n×m → R

n×m be defined as Z 7→ TX,µ,λC (Z) = W and

given by:

1. construct L(Z) = µZT + XXTX− XXTZTXTX,

2. for each row of LT (i.e., ∀i ∈ [n]), solve

W(i, :) = argmin
y∈Rm

[
1

2
‖y− 1

µ
LT(i, :)‖22 +

λC

2µ
‖y‖∞

]
,

and

3. reassembleW from its rows,

so that we can write each Wk produced in Algorithm 2 as

Wk = Tk
X,µ,λC

(W0). The primary result that will we prove in this

section is that the sequence {Wk}k∈N converges to a minimizer of

‖X− XWX‖2F+λC
∑n

i=1 ‖W(i, :)‖∞. This is formally stated below.

Theorem 4.1. Let λC ∈ R ≥ 0; µ ∈ R > 0; X ∈ R
m×n; and

W,Z ∈ R
n×m. Define

J(W) = ‖X− XWX‖2F + λC

n∑

i=1

‖W(i, :)‖∞,

and the nonlinear operator TX,µ,λC :R
n×m → R

n×m as Z 7→
TX,µ,λC (Z) = W as above.

a. If µ > ‖X‖42, then the sequence {Wk = Tk
X,µ,λC

(W0)}k∈N
produced by Algorithm 2 converges to a fixed point of TX,µ,λC .

b. A fixed point of TX,µ,λC is a minimizer of J(W).

c. J(W) has a unique minimizer if X is square and full rank.

To condense notation for the remainder of this section, we

write TX,µ,λC = T.

4.1 Convergence to a fixed point of T

We first provide six lemmas to assist in the proof of Theorem

4.1, part a.

Lemma 4.2. (XTX)⊗ (XXT) is symmetric and positive

semidefinite.

Proof. (XTX)⊗ (XXT) is clearly symmetric. We will show that

〈((XTX)⊗ (XXT))v, v〉 ≥ 0, ∀v ∈ R
mn, thus proving the lemma.

Fix v ∈ R
mn and V ∈ R

m×n, such that vec(V) = v.

〈((XTX)⊗ (XXT))v, v〉 = 〈vec((XXT)V(XTX)), vec(V)〉
= 〈(XXT)V(XTX),V〉F
= tr{(XXT)V(XTX)VT}

= tr{(XXT)
1
2V(XTX)

1
2 (XTX)

1
2VT(XXT)

1
2 }

= ‖(XXT)
1
2V(XTX)

1
2 ‖2F ≥ 0,

where 〈. , .〉F is the Frobenius inner product.

Lemma 4.3. ‖(XTX)⊗ (XXT)‖2 ≤ (σmax(X))
4 = ‖X‖42, where

σmax(X) is the largest singular value of the matrix X.

Proof. By Lemma 4.2, the matrix (XTX)⊗ (XXT) is symmetric and

positive semidefinite. Thus, the eigenvalues and singular values of

(XTX)⊗ (XXT) are the same. Hence,

‖(XTX)⊗ (XXT)‖2 = σmax((X
TX)⊗ (XXT))

= max
‖v‖2=1

〈((XTX)⊗ (XXT))v, v〉

= max
‖V‖F=1

‖(XXT)
1
2V(XTX)

1
2 ‖2F ,

where the last equation follows from the proof of Lemma 4.2.

‖(XXT)
1
2V(XTX)

1
2 ‖F ≤ ‖(XXT)

1
2 ‖2‖V(XTX)

1
2 ‖F

= ‖(XXT)
1
2 ‖2‖(XTX)

1
2VT‖F

≤ ‖(XXT)
1
2 ‖2‖(XTX)

1
2 ‖2‖VT‖F

≤ σmax((XX
T)

1
2)σmax((X

TX)
1
2)‖VT‖F

= (σmax(X))
2‖VT‖F

Thus,

max
‖V‖F=1

‖(XXT)
1
2V(XTX)

1
2 ‖2F ≤ (σmax(X))

4,

proving the result.

Lemma 4.4. Let µ ≥ ‖X‖42 and define the operator L :U 7→
µU− XXTUXTX. Then, ‖L‖ ≤ µ.

Proof. The operator norm of L is

‖L‖ = max
‖U‖F=1

‖L(U)‖F

= max
‖U‖F=1

‖vec(µU− XXTUXTX)‖2

= max
‖U‖F=1

‖(µI− (XTX)⊗ (XXT))vec(U)‖2

= σmax(µI− (XTX)⊗ (XXT)).

By Lemmas 4.2 and 4.3, (XTX)⊗ (XXT) is a symmetric positive

semidefinite matrix with 2-norm bounded above by ‖X‖42. Hence,

‖L‖ = σmax(µI− (XTX)⊗ (XXT)) ≤ µ.

Frontiers in AppliedMathematics and Statistics 07 frontiersin.org

https://doi.org/10.3389/fams.2025.1632218
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Linehan and Balan 10.3389/fams.2025.1632218

Lemma 4.5. Letµ ≥ ‖X‖42. Then, the mappingT is non-expansive,

i.e., ∀Z,Z′ ∈ R
n×m,

‖T(Z)− T(Z′)‖F ≤ ‖Z− Z′‖F .

Proof. By the fact that prox λ
2µ ‖·‖∞ is non-expansive [20] and

Lemma 4.4, we have

‖T(Z)− T(Z′)‖2F =
n∑

i=1

∥∥∥∥prox λ
2µ ‖·‖∞

(
1

µ
[L(Z)]T(i, :)

)

−prox λ
2µ ‖·‖∞

(
1

µ
[L(Z′)]T(i, :)

)∥∥∥∥
2

2

≤
n∑

i=1

∥∥∥∥
1

µ
[L(Z)]T(i, :)− 1

µ
[L(Z′)]T(i, :)

∥∥∥∥
2

2

= 1

µ2
‖L(Z)− L(Z′)‖2F

= 1

µ2
‖L(Z− Z′)‖2F

≤ 1

µ2
‖L‖2‖Z− Z′‖2F

≤ ‖Z− Z′‖2F .

We omit proofs of the next two lemmas, as they largely mirror

those of Daubechies et al. [13].

Lemma 4.6. Let µ > ‖X‖42. Then, the mapping T is asymptotically

regular, i.e., ∀Z ∈ R
n×m,

lim
k→∞

‖Tk+1(Z)− Tk(Z)‖F = 0.

Lemma 4.7. Let the mapping T :R
n×m → R

n×m be non-

expansive and asymptotically regular. Then, the sequence {Wk =
Tk(W0)}k∈N converges to a fixed point of T.

We are now ready to prove Theorem 4.1, part a.

Proof of Theorem 4.1, part a. By Lemmas 4.5 and 4.6, T is non-

expansive and asymptotically regular. By Lemma 4.7, the result

is proven.

4.2 Convergence to a minimizer of J

We now focus on proving Theorem 4.1, part b, and begin by

establishing three lemmas.

Lemma 4.8. Let f : I → R be convex, with I = (a, b). If f (x) =
f1(x) + αx2, where α > 0 and f1(x) is piecewise linear, then f1 is

convex and therefore f is strictly convex.

Proof. Let x0, x1, x2, ..., xn, xn+1 ∈ I, such that a = x0 < x1 < x2 <

... < xn < xn+1 = b, and ∀k ∈ [n+ 1], f1 restricted to (xk−1, xk) is

linear and given by f1(x) = akx+ bk. Due to the convexity of f , f1 is

continuous. Hence, akxk + bk = ak+1xk + bk+1, for every k ∈ [n].

We show that a1 ≤ a2 ≤ ... ≤ an+1, which implies that f1 is convex.

Consider the inequality ak ≤ ak+1 for any k ∈ [n]. Let h ∈ R,

such that 0 ≤ h < min(xk − xk−1, xk+1 − xk). The convexity of f

implies that

f (xk − h)+ f (xk + h)

2
≥ f (xk).

Thus,

ak(xk − h)+ bk + α(xk − h)2 + ak+1(xk + h)+ bk+1 + α(xk + h)2

2

≥
akxk + bk + αx2

k
+ ak+1xk + bk+1 + αx2

k

2
,

where we have used the continuity of f1 at xk on the right hand side

of the inequality. Hence,

(ak+1 − ak)h+ 2αh2 ≥ 0. (9)

(ak+1 − ak)h + 2αh2 is a convex quadratic in h with roots 0 and
−(ak+1−ak)

2α . This leads to three cases:

1. The root
−(ak+1−ak)

2α = 0, i.e., 0 is a root of multiplicity two. This

implies ak = ak+1 and Equation 9 holds.

2. The root
−(ak+1−ak)

2α < 0. This implies ak < ak+1 and Equation 9

holds for h ≥ 0.

3. The root
−(ak+1−ak)

2α > 0. This implies ak > ak+1. For h such

that 0 < h < min(xk − xk−1, xk+1 − xk,
−(ak+1−ak)

2α), Equation 9

does not hold.

Thus, Equation 9 holds ∀h, such that 0 ≤ h < min(xk −
xk−1, xk+1 − xk) if and only if ak ≤ ak+1. Hence, a1 ≤ a2 ≤ ... ≤
an+1, which implies that f1 is convex.

Lemma 4.9. Let f : I → R with I = (a, b), such that 0 ∈ I be

defined as f (α) = F(α) + 1
2α

2 ≥ 0. If F is continuous, piecewise

linear, convex, and F(0) = 0, then F(α) ≥ 0.

Proof. Let α0,α1,α2, ...,αn,αn+1 ∈ I, such that a = α0 < α1 <

α2 < ... < αn < αn+1 = b, and ∀k ∈ [n + 1], F(α) = akα + bk, if

αk−1 ≤ α ≤ αk. We will use two cases to prove the result.

Case 1: Suppose 0 ∈ (αk−1,αk) for some k ∈ [n + 1].

Since F(0) = 0, bk = 0. In addition, ak = 0, which we will

show by contradiction. Suppose ak > 0 and αk−1 < ǫ < 0,

such that |ǫ| < 2ak. Then, f (ǫ) = akǫ + 1
2 ǫ

2 < 0, which

is a contradiction. The case in which ak < 0 similarly leads

to a contradiction. Hence, F(α) = 0 on [αk−1,αk]. Due to the

convexity of F, a1 ≤ a2 ≤ · · · ≤ an ≤ an+1. Therefore,

F′(α) ≤ 0 for α ≤ αk−1 and F′(α) ≥ 0 for α ≥ αk. Hence,

F(α) ≥ 0.

Case 2: Suppose αk = 0 for some k ∈ [n]. Since F(0) = 0,

F(α) = akα and f (α) = akα+ 1
2α

2 on αk−1 ≤ α ≤ αk = 0. We will

show that ak ≤ 0. Suppose ak > 0. Then, f (α) = α(ak+ 1
2α) < 0 on

−2ak < α < 0, which is a contradiction. Similarly, F(α) = αak+1

and f (α) = αak+1 + 1
2α

2 on 0 = αk ≤ α ≤ αk+1. We will show

that ak+1 ≥ 0. Suppose ak+1 < 0. Then, f (α) = α(ak+1 + 1
2α) < 0

on 0 < α < 2|ak+1|, which is a contradiction. Due to the convexity

of F, a1 ≤ a2 ≤ · · · ≤ an ≤ an+1. Therefore, F
′(α) ≤ ak ≤

0 for α ≤ αk and F′(α) ≥ ak+1 ≥ 0 for α ≥ αk. Hence,

F(α) ≥ 0.

Frontiers in AppliedMathematics and Statistics 08 frontiersin.org

https://doi.org/10.3389/fams.2025.1632218
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Linehan and Balan 10.3389/fams.2025.1632218

Lemma 4.10. Let X ∈ R
m×n, W,Z ∈ R

n×m, µ > 0, λC ≥ 0, and

∀i ∈ [n]

W(i, :) = argmin
y∈Rm

[
1

2
‖y− 1

µ
LT(i, :)‖22 +

λC

2µ
‖y‖∞

]
,

where L(Z) = µZT + XXTX − XXTZTXTX. Then, for every

H ∈ R
n×m,

Ĵ(W+H;Z) ≥ Ĵ(W;Z)+ µ‖H‖2F .

Proof. By definition,

Ĵ(W+H,Z) = ‖X− X(W+H)X‖2F + λC

n∑

i=1

‖(W+H)(i, :)‖∞

+ µ‖W+H− Z‖2F − ‖X(W+H)X− XZX‖2F

= Ĵ(W,Z)+ λC

n∑

i=1

(
‖(W+H)(i, :)‖∞ − ‖W(i, :)‖∞

)

+ 2 tr{H(µWT − L)} + µ‖H‖2F

= Ĵ(W,Z)+
n∑

i=1

[
λC(‖(W+H)(i, :)‖∞ − ‖W(i, :)‖∞)

+2µ

〈
H(i, :), (W− 1

µ
LT)(i, :)

〉]
+ µ‖H‖2F .

To prove the result, we need to show that

n∑

i=1

[
λC(‖(W+H)(i, :)‖∞ − ‖W(i, :)‖∞)

+ 2µ

〈
H(i, :), (W− 1

µ
LT)(i, :)

〉]
≥ 0.

Hence, it suffices to show that ∀i ∈ [n],

λC

2µ
(‖(W+H)(i, :)‖∞ − ‖W(i, :)‖∞)

+
〈
H(i, :), (W− 1

µ
LT)(i, :)

〉
≥ 0. (10)

To simplify notation, let w = W(i, :), h = H(i, :), and ℓ =
LT(i, :). Let

F(h) = λC

2µ
(‖w+ h‖∞ − ‖w‖∞)+

〈
h,w− 1

µ
ℓ

〉
,

where h = αu and u ∈ R
m is a random unit vector. Then, we can

denote F(h) = F(α, u), and fix a u, so that F is only a function of α:

F(α) = λC

2µ
(‖w+ αu‖∞ − ‖w‖∞)+ α

〈
u,w− 1

µ
ℓ

〉
.

Let G(w) = 1
2‖w− 1

µ
ℓ‖22 +

λC
2µ‖w‖∞. Then,

G(w+ αu) = 1

2
‖w+ αu− 1

µ
ℓ‖22 +

λC

2µ
‖w+ αu‖∞,

and

G(w+ αu)− G(w) = 1

2
‖w+ αu− 1

µ
ℓ‖22 −

1

2
‖w− 1

µ
ℓ‖22

+ λC

2µ
‖w+ αu‖∞ − λC

2µ
‖w‖∞

= 1

2

(
‖w− 1

µ
ℓ‖22 + 2

〈
αu,w− 1

µ
ℓ

〉

+‖αu‖22 − ‖w− 1

µ
ℓ‖22

)

+ λC

2µ
(‖w+ αu‖∞ − ‖w‖∞)

= λC

2µ
(‖w+ αu‖∞ − ‖w‖∞)

+ α

〈
u,w− 1

µ
ℓ

〉
+ 1

2
α2.

Thus, F(α) = G(w+αu)−G(w)− 1
2α

2. Let f (α) = F(α)+ 1
2α

2.

We note that f is convex since f (α) = G(w + αu) − G(w). To use

Lemma 4.8, we also need to show that F(α) is piecewise linear in

α. There is a constant term of F(α), −λC
2µ ‖w‖∞, and a linear term,

α〈u,w − 1
µ
ℓ〉. The remaining term, λC

2µ‖w+ αu‖∞ is piecewise

linear in α, since as α increases

‖w+ αu‖∞ = max(w1 + αu1, ... ,wm + αum,−w1 − αu1, ... ,

−wm − αum),

and the maximum of a set of linear functions is piecewise

linear. Thus, F(α) is piecewise linear, and by Lemma 4.8, F(α)

is convex.

The remaining step is to show that F(α) ≥ 0, which will

establish the claim in Equation 10 and thus the result. Since w =
argminy G(y), we have f (α) = G(w + αu) − G(w) ≥ 0. We also

know that F(α) is continuous and piecewise linear in α, convex,

and F(0) = 0. Hence, by Lemma 4.9, F(α) ≥ 0.

Lemma 4.10 is applied with W equal to a fixed point

of T to prove Theorem 4.1, part b. However, the proof

mirrors that of Daubechies et al. [13], so it is omitted. To

complete the proof of Theorem 4.1, we provide the proof of

part c.

Proof of Theorem 4.1, part c. The minimizer of J(W) is unique if

‖X− XWX‖2F is strictly convex inW. Since

‖X− XWX‖2F = ‖(XT ⊗ X)w− b‖22,

where b = vec(X) ∈ R
mn and w = vec(W) ∈ R

mn, we need

to guarantee that (XT ⊗ X) has full rank. Since rank(XT ⊗ X) =
rank(XT)rank(X) = (rank(X))2, (XT ⊗ X) has full rank if X is

square and full rank, proving the result.

Remark 4.11. For the minimization problem on line 19 of

Algorithm 1, we note that ‖X− CWX‖2F+λR
∑m

j=1 ‖W(:, j)‖∞ has

a unique minimizer if X ∈ R
m×n is full rank and m ≤ n. This can

be proven similarly to Theorem 4.1, part c.

Frontiers in AppliedMathematics and Statistics 09 frontiersin.org

https://doi.org/10.3389/fams.2025.1632218
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Linehan and Balan 10.3389/fams.2025.1632218

TABLE 2 Summary of methods that we compare to SF CUR in this section.

Method Complexity Computation of C and R

LS-R CUR O(k′mn)+ O(rmn) Columns (rows) sampled from a

probability distribution based on

leverage scores computed from the

leading k′ right (left) singular vectors. k′

is a rank parameter

LS-D CUR O(k′mn)+ O(rmn) Columns (rows) with largest leverage

scores computed from the leading k′

right (left) singular vectors. k′ is a rank
parameter

DEIM CUR O(kmn) Columns (rows) chosen using DEIM

point selection algorithm on the leading

k right (left) singular vectors

QR CUR O(mn2) Columns (rows) chosen using pivoted

QR of X (CT)

Rank-k SVD O(kmn) –

The complexity given is forX ∈ R
m×n , letting c be the number of columns in C, r the number

of rows of R, and c = r = k. We assume that m < n and c, r ≤ m. For each CUR method,

U = C+XR+ .

5 Numerical experiments

We demonstrate our CUR algorithm on two datasets: (1) a

document-term matrix, and (2) a gene expression dataset. CUR

has been previously applied to these types of datasets, e.g., [1, 2,

9] for document-term matrices and [1, 11] for gene expression

data. We compare performance of our CUR algorithm to that

of (1) the leverage score CUR [1] (the randomized version and

deterministic variant), (2) the DEIM CUR [2], (3) the QR CUR

variant described in Sorenson and Embree [2], and (4) the low-rank

SVD. In the remainder of this article, we denote our CUR algorithm

as SF CUR (for surrogate functional CUR), and the deterministic

(randomized) leverage score CUR as LS-D (LS-R) CUR. For a brief

summary of these methods, see Table 2, and for more details, see

Section 2. While each CUR method selects C and R separately and

allows the user to select c and r, the LS-R CUR is not deterministic.

We include results from the LS-R CUR in comparisons of accuracy

and computation time since this method is often compared to in

the literature, but exclude it from feature selection performance

experiments. Comparisons with the SVD are included as a baseline.

Experiments were performed in MATLAB R2023b on the

University of Virginia’s High-Performance Computing system,

Rivanna. We used one (CPU) node, using 8 cores of an Intel(R)

Xeon(R) Gold 6248 CPU at 2.50 GHz, and 72 GB of RAM. Code

for all experiments performed in this study is provided at https://

github.com/klinehan1/cur_feature_selection.

5.1 Document-term matrix

This first experiment serves to compare the accuracy and

computation time of the SF CUR with those of other CUR

algorithms and the SVD on a document-term matrix, T ∈
R
2,389×21,238. Accuracy is given by the relative error in the

Frobenius norm of each approximation, e.g., ‖T − CUR‖F/‖T‖F .
T is sparse with 0.23% non-zero entries and was downloaded and

FIGURE 1

Relative error of CUR approximations and the rank-k SVD on a

document-term matrix. The rank of the SVD approximation is the

same as the number of selected columns/rows for the CUR

approximations.

created from the 20 Newsgroups dataset [21] using the scikit-learn

package [22]. The documents include the training set documents

for the four recreation categories; headers, footers, quotes, and

a list of English stop words were removed from the text. The

documents were vectorized using TFIDF and the resulting matrix

rows were normalized using the ℓ2 norm.3 T is a rank-deficient

matrix; rank(T) = 2, 295.

Figure 1 presents the relative error and Figure 2 presents the

computation time for each CUR approximation in which c = r and

c, r vary over {200, 400, ..., 2,200, 2,295}, and for the rank-k SVD in

which k = c = r. Since the LS-R CUR is randomized, we ran five

experiments for each value of c, r and reported the average relative

error and time with the standard deviations given by error bars.

We note that due to sampling, the LS-R CUR may have chosen a

number of columns and/or rows slightly more or less than c and/or

r. For both LS-D and LS-R CUR, the rank parameter for leverage

score computation was 10.

In general, the SF CUR and LS-D CUR achieve similar relative

errors, as do the DEIM CUR and QR CUR, which achieve lower

relative errors than those of the SF CUR and LS-D CUR. However,

for c, r ≥ 400, the DEIM CUR has greater computation time than

the QR CUR. For c, r ≥ 1, 600, the DEIM CUR has computation

times larger than 100 s as compared to computation times of <20 s

for all values of c, r for the QR CUR. The LS-R CUR has the smallest

computation time for c, r ≥ 400, but does not perform well in

relative error as c, r increase. Clearly, the SVD achieves the lowest

relative error and has computation times approximately 10 s. The

3 The data were downloaded using the function

sklearn.datasets.fetch_20newsgroups and vectorized using

sklearn.feature_extraction.text.TfidfVectorizer. The processing was

completed as described using options in these functions. The stop word list

used was the built-in list provided in scikit-learn, and the TFIDF calculations

were based on the default parameter settings.

Frontiers in AppliedMathematics and Statistics 10 frontiersin.org

https://doi.org/10.3389/fams.2025.1632218
https://github.com/klinehan1/cur_feature_selection
https://github.com/klinehan1/cur_feature_selection
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Linehan and Balan 10.3389/fams.2025.1632218

FIGURE 2

Computation time of CUR approximations and the rank-k SVD on a

document-term matrix. The rank of the SVD approximation is the

same as the number of selected columns/rows for the CUR

approximations.

LS-D CUR is relatively fast with computation times less than those

of the SF CUR, DEIM CUR, QR CUR, and SVD. The SF CUR

is the slowest of the algorithms, with computation times that are

generally larger than 1,000 s (16.67 min). While the SF CUR is the

most expensive algorithm in terms of computation time, we will

demonstrate its effectiveness as a feature selection method in the

next experiment.

5.2 Gene expression data

We compare the relative error and feature selection

performance of the SF CUR algorithm with that of other

complementary CUR algorithms and the SVD on the National

Institutes of Health (NIH) gene expression dataset, GSE10072 [23].

We repeat and extend the experiment of Sorenson and Embree

[2] who compared the performance of the DEIM CUR and the

LS-D CUR on this dataset by (1) calculating the error of each CUR

approximation for varying values of c, r, and (2) assessing if the top

15 probes selected by each CUR algorithm separate the patients

into those with and without a tumor. We extend this experiment

by adding (1) relative error results for the SF CUR, QR CUR,

and SVD, (2) computation times for each matrix approximation,

(3) metrics to compare the overall probe selection of each matrix

approximation method, and (4) results when selecting the top 5,

10, ..., 100 probes. We also include relative error and computation

times for the LS-R CUR on this dataset, but exclude it from the

probe selection comparison since it is not deterministic.

The GSE10072 dataset, G ∈ R
22,283×107, contains gene

expression data for 107 patients, of which 58 have a lung tumor

and 49 do not. All entries of G are positive, and larger entries

represent a greater reaction to a probe. Each row of G is centered

using its mean. We approximate GT (so that probes, i.e., columns,

are selected first in the SF algorithm) and again use the Frobenius

FIGURE 3

Relative error of CUR approximations and the rank-k SVD on gene

expression data. The rank of the SVD approximation is the same as

the number of selected columns/rows for the CUR approximations.

norm for the relative error calculation (instead of ‖G− CUR‖2 as
in Sorenson and Embree [2]). To assess how well a probe separates

the patients into two classes, the number of patients in each class

with a (mean-centered) entry inGT greater than one for that probe

is counted. As mentioned in Sorenson and Embree [2], there are

23 probes for which at least 30 patients with a tumor have an

entry greater than one, and 95 probes for which at least 30 patients

without a tumor have an entry greater than one. No probe is

included in both of these sets.

Figure 3 presents the relative error and Figure 4 presents the

computation time for each CUR and SVD approximation. Values of

c, r vary over {5, 10, ..., 105, 107} and for each CUR approximation

c = r. For the rank-k SVD, k = c = r. We report the average

relative error and computation time over five runs for the LS-

R CUR, along with the corresponding standard deviations. For

both LS-D and LS-R CUR, the rank parameter for leverage score

computation was 2. The SF CUR and LS-D CUR have similar

relative errors for all values of c, r; however, the SF CUR generally

takes about 5 s to compute, whereas the LS-D CUR generally takes

about 0.1 s. The QR CUR achieves lower relative error than the

SF CUR for c, r ≥ 20, and the DEIM CUR achieves the lowest

relative error of the CUR approximations for every c, r value. The

LS-R CUR has an average relative error lower than that of the SF

CUR for c, r ≤ 65. The SF CUR takes the longest to compute,

while the other methods have relatively similar computation times

under 0.5 s. These trends are fairly similar to the relative error

and computation time trends seen in the previous experiments of

Section 5.1.

Next, we determine probe selection performance for each CUR

and SVD approximation. For each CUR approximation, we set c to

the corresponding number of probes, i.e., 5, 10, ..., 100, and report

the selected probes (i.e., columns of GT). For the rank-k SVD, we

perform PCA using a rank-2 SVD since the two classes (tumor and

no tumor) are separated well when the data are projected onto the

Frontiers in AppliedMathematics and Statistics 11 frontiersin.org

https://doi.org/10.3389/fams.2025.1632218
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Linehan and Balan 10.3389/fams.2025.1632218

FIGURE 4

Time of CUR approximations and the rank-k SVD on gene

expression data. The rank of the SVD approximation is the same as

the number of selected columns/rows for the CUR approximations.

leading two principal axes [2],4 and then select the c probes that

have the largest correlation (in absolute value) with either the first

or second principal component. To compare the probe selection

performance of the five methods, we compute the absolute value of

the difference between the number of entries greater than one in

GT for patients with and without a tumor for each selected probe in

each method. See Table 3 for an example of probe selection results

using c = 15.5 To quantify the performance of each method, we

calculate the median and mean, and standard deviation of the c

differences, reported in Tables 4, 5, respectively.

The probes selected by SF CUR and LS-D CUR perform very

well in separating patients with a tumor from those without a

tumor, as they have larger median andmean differences and smaller

standard deviations of differences than the probes selected by the

other methods. The probes selected by SVD also perform fairly well

in this task due to their fairly large median and mean differences,

but they exhibit standard deviations that are generally double those

of the SF CUR and LS-DCUR probes. The probes selected byDEIM

CUR and QR CUR perform poorly in median and mean difference

and exhibit standard deviations that are generally double those of

the SF CUR and LS-D CUR probes as well.

While the SF CUR and LS-D CUR methods achieve very

similar results,6 the SF CUR outperforms the LS-D CUR in this

experiment. For three out of 20 values of c, the probes selected by

the two methods produce equal values for the median and mean

difference, and standard deviation of differences (since they select

4 Sorenson and Embree [29] for this result; however, this was withdrawn

from the arXiv.

5 For this particular example, SF CUR and LS-D CUR returned the exact

same set of 15 probes, hence these results are reported together in Table 3a.

6 These two methods select many of the same probes for each value of c.

See Supplementary Table S1.

TABLE 3 Probe selection results for c = 15.

Probe # of Entries > 1 in GT

No tumor Tumor |Di�|
(a) SF CUR and LS-D CUR

210081_at 45 2 43

214387_x_at 48 6 42

211735_x_at 48 5 43

209875_s_at 2 50 48

205982_x_at 48 5 43

209613_s_at 47 2 45

215454_x_at 46 0 46

210096_at 44 6 38

204712_at 43 5 38

203980_at 44 2 42

219230_at 38 2 36

209612_s_at 46 2 44

214135_at 47 3 44

205866_at 39 0 39

205200_at 39 0 39

(b) DEIM CUR

210081_at 45 2 43

214895_s_at 3 8 5

209156_s_at 6 5 1

211653_x_at 1 18 17

214777_at 3 27 24

219612_s_at 17 17 0

204304_s_at 4 16 12

203824_at 4 17 13

204748_at 14 18 4

201909_at 34 21 13

214774_x_at 0 34 34

211074_at 4 7 3

210096_at 44 6 38

204475_at 0 27 27

214612_x_at 0 16 16

(c) QR CUR

214387_x_at 48 6 42

201909_at 34 21 13

206239_s_at 2 30 28

205725_at 33 7 26

219612_s_at 17 17 0

203290_at 29 19 10

213831_at 28 18 10

(Continued)

Frontiers in AppliedMathematics and Statistics 12 frontiersin.org

https://doi.org/10.3389/fams.2025.1632218
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Linehan and Balan 10.3389/fams.2025.1632218

TABLE 3 (Continued)

of Entries > 1 in GT

Probe No tumor Tumor |Di�|
213674_x_at 8 17 9

204475_at 0 27 27

201884_at 0 30 30

209278_s_at 0 21 21

204885_s_at 12 18 6

207430_s_at 6 9 3

205476_at 11 16 5

209309_at 7 17 10

(d) SVD

204931_at 36 0 36

206702_at 34 0 34

201540_at 43 0 43

209074_s_at 45 1 44

206742_at 38 0 38

205200_at 39 0 39

219213_at 19 0 19

204894_s_at 29 0 29

213103_at 5 0 5

206209_s_at 36 0 36

219719_at 13 0 13

204719_at 42 0 42

208981_at 22 0 22

210081_at 45 2 43

204396_s_at 36 0 36

Probes are listed in ranked order (1–15) for LS-D CUR, DEIM CUR, QR CUR, and SVD

methods since these methods return selected columns in a ranked order.

the same exact probes). However, the SF CUR probes achieve a

median difference greater than or equal to that of the LS-D CUR

probes for all values of c, and a mean difference greater than or

equal to that of the LS-D CUR probes for 12 out of 20 values of c.

Additionally, the standard deviation of differences for the SF CUR

probes is less than that of the LS-D CUR probes for 15 out of 20

values of c.

6 Protein expression discriminant
analysis with CUR

Finally, we present a novel application of CUR as a feature

selection method for a clustering algorithm on protein expression

data. We modify the clustering analysis of Higuera et al. [14] in

which discriminant proteins that critically affect learning in wild

type and trisomic mice were discovered in biologically relevant

pairwise class comparisons with clustering provided by SOMs

and feature selection provided by the Wilcoxon rank-sum test.

Specifically, we demonstrate the use and effectiveness of CUR as

the feature selection method in a subset of these computational

experiments on the same dataset used by Higuera et al. [24].

We compare the performance of multiple CUR algorithms in

this application.

6.1 Prior computational experiments

In this section, we provide a summary of the dataset used

and computational experiments (MATLAB R2011b) performed in

Higuera et al. [14].

6.1.1 Data
The protein expression data used by Higuera et al. was created

in prior research [25, 26]. The data were measured from two groups

of mice, control and trisomic. Each mouse was exposed to one

option from each of two treatments:

1. Context fear conditioning (CFC), an associative learning

assessment task, of either context-shock (CS) or shock-context

(SC), and

2. an injection of memantine, a drug known to treat learning

impairment, or saline.

The CFC task consisted of placing a mouse in a novel cage and

allowing it to explore. The context-shock option involves giving the

mouse an electric shock after a few minutes of cage exploration,

whereas the shock-context option involves an immediate shock

to the mouse before exploration. Control mice given the context-

shock option will learn an association between the cage and

shock, whereas those given the shock-context option will not.

However, trisomic mice given the context-shock option will not

learn the association between the cage and shock. Thus, the second

treatment, an injection of memantine or saline, is given prior to the

CFC task. Trisomic mice injected with memantine before the CFC

context-shock task will learn the association as the control mice do.

Learning in control mice is not affected by memantine injection.

Table 6 summarizes the eight classes of mice and presents class size

and type of learning. For the remainder of this study, we will refer

to classes by their names in Table 6.

Data consist of expression levels for 77 proteins measured from

the brains of the 72 mice represented in Table 6. Each protein

was measured 15 times for each mouse, giving a total of 1,080

measurements of 77 proteins, resulting in a data matrix that is 1,080

× 77. For each of the 1,080 observations, the mouse ID and class of

the mouse that produced the measurements are also provided. The

dataset is available in the supporting information of Higuera et al.

[14] and in the University of California, Irvine Machine Learning

Repository [24].

Missing data arises as a consequence of the protein

measurement process. Higuera et al. processed the data by

(1) removing an outlier mouse with mainly missing data, (2) filling

in missing entries, and (3) normalizing the data. For any mice in

class cmissing data for protein p, the missing entries were replaced

with the average expression level of protein p from the reported

(non-missing) entries for mice in class c. Min-max normalization

Frontiers in AppliedMathematics and Statistics 13 frontiersin.org

https://doi.org/10.3389/fams.2025.1632218
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Linehan and Balan 10.3389/fams.2025.1632218

TABLE 4 Comparison of probe selection methods using the metrics of median (MDN) and mean di�erence between classes.

of Probes SF LS-D DEIM QR SVD

MDN Mean MDN Mean MDN Mean MDN Mean MDN Mean

5 43 43.80 43 43.80 17 18 26 21.80 38 39

10 43 42.80 43 42.80 12.50 13.20 19.50 19.50 36 32.30

15 43 42 43 42 13 16.67 10 16 36 31.93

20 42.50 41.75 42.50 42.10 13 15.80 10 14.55 36 31.95

25 42 40.68 42 40.32 14 16.28 13 15.56 34 31.32

30 40 39.20 40 39.30 13.50 15.57 13 15.87 34 30.67

35 39 38.66 39 38.69 14 15.86 13 16.40 31 29.83

40 38 38.28 38 38.30 14.50 16.15 16.50 17.25 30 29.43

45 38 38.16 38 38.11 16 16.89 17 17.73 31 30.02

50 37 37.94 36.50 37.76 15.50 15.92 16.50 16.96 30 29.36

55 36 37.42 36 37.31 14 15.02 16 16.62 29 28.49

60 36 37.12 36 36.78 14.50 14.93 14.50 16.10 29 27.63

65 36 36.69 36 36.52 14 14.65 16 16 29 27.55

70 36 36.31 36 36.17 15.50 15.01 16 15.89 28 27

75 36 36.13 36 35.95 14 15.05 16 16.05 28 26.61

80 35.50 35.84 35 35.64 13 14.49 15.50 16.03 27.50 26.08

85 35 35.54 35 35.44 13 14.25 15 16.07 28 26.04

90 35 35.20 35 35.14 13 14.12 14 15.97 28 25.89

95 35 34.95 35 34.82 13 13.66 14 16.06 28 25.88

100 34 34.63 34 34.49 12.50 13.46 14 16.06 26.50 25.62

A greater difference implies better performance, i.e., better separation of the tumor and no tumor classes by the selected probes. The greatest median and mean differences are bolded in each

row.

was then applied to each column of the data, i.e., for each protein.

When we analyzed the raw data, we could not identify the outlier

mouse and suspected that the data for this mouse had already

been removed from the dataset before it was posted for download.

We found that 1.7% of entries in the data were missing, with only

six out of 77 proteins missing 20 or more measurements out of

the 1,080 total. We also discovered that two columns of the raw

data are equal; these columns correspond to the proteins ARC_N

and pS6_N. These columns are clearly the same after the data are

processed as well, and thus make the matrix of protein expression

data rank deficient.

6.1.2 Methodology
We first give a high-level overview of the methodology and

then follow with more details. SOMs and the Wilcoxon rank-sum

test7 were used to discover discriminant proteins in biologically

relevant pairwise class comparisons. An SOM is an unsupervised

neural network clustering method that can identify the topology

and distribution of data such that clusters that exist close together

in the topology should cluster similar data points. It is useful

for dimension reduction and provides a 2D visualization of the

7 Also called the Mann–Whitney U-test.

data. An SOM is used in this case to cluster mice with similar

protein expression levels to discover protein expression patterns

among classes. The data provided to the SOM included the protein

expression data, but not the class of each mouse. The Wilcoxon

rank-sum test is then used to find discriminant proteins between

pairs of SOM “class-specific clusters” of mice (details below).

This non-parametric test checks for equal medians between two

independent samples of data, which are not necessarily of the

same size.

Higuera et al. used this method on (1) data from the four

control classes, (2) data from the four trisomic classes, and (3) a

mixture of the two (c-CS-s, c-CS-m, t-CS-m, t-CS-s, and c-SC-s).

We explored feature selection with CUR instead of the Wilcoxon

rank-sum test on data from the four control classes only. The

computational experiments by Higuera et al. on the four control

classes are detailed below.

Initially, ten 7 × 7 SOMs are computed on the processed data

from the four control classes, a 570× 77 dataset. Since SOMneuron

weights are initialized randomly, each SOM instance will most

likely be different. The average quantization error, q, is measured

for each SOM as

q = 1

n

n∑

i=1

‖di − wBMU(di)‖2,

Frontiers in AppliedMathematics and Statistics 14 frontiersin.org

https://doi.org/10.3389/fams.2025.1632218
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Linehan and Balan 10.3389/fams.2025.1632218

TABLE 5 Standard deviation results for probe selection methods.

of Probes SF LS-D DEIM QR SVD

5 2.39 2.39 16.73 15.94 4.36

10 3.16 3.16 12.89 12.91 11.98

15 3.36 3.36 13.80 12.17 11.93

20 3.34 2.94 12.49 11.20 10.68

25 3.94 4.80 11.62 10.64 9.76

30 5.07 4.97 11.17 10.39 10.65

35 5.21 5.23 10.75 11.14 10.40

40 4.99 5.02 10.87 11.26 10

45 4.88 4.90 10.54 11.13 10.22

50 4.68 4.86 10.58 11.24 10.44

55 4.86 4.97 10.62 11.27 10.37

60 4.89 5.11 10.30 10.96 10.89

65 5.02 5.14 10.15 11.02 10.54

70 5.05 5.22 10.35 10.74 10.36

75 5.04 5.16 10.67 11.03 10.33

80 5.02 5.16 10.63 11.05 11.10

85 5.06 5.19 10.46 11.43 11.30

90 5.13 5.19 10.32 11.46 11.32

95 5.11 5.30 10.24 11.31 11.26

100 5.23 5.39 10.10 11.24 11.42

The smallest standard deviation of differences is bolded in each row.

where n is the number of observations, di ∈ R
77 is an observation

(a row of the data matrix), and wBMU(di) ∈ R
77 is the weight

vector of the Best Matching Unit (BMU) or closest neuron to di.

The SOM with the smallest average quantization error is then used

to identify “class-specific clusters," defined in Higuera et al. [14]

as “(i) two or more adjacent [neurons] that contain mice of the

same class and no mice from other classes, or (ii) a single [neuron]

that contains ≥ 80% (or ≥ 12 of 15) of the measurements of one

mouse and no measurements of mice from any other class.” While

the class of each mouse was not used in the learning process of

the SOM, the class of each mouse is used to determine the class-

specific clusters. Two class-specific clusters can be compared using

the weight vectors of the neurons included in the cluster and 77

instances of theWilcoxon rank-sum test, one for each protein (each

neuron weight vector is length 77). For example, to compare levels

of the protein in column 5 of the dataset, the Wilcoxon rank-sum

test would use two samples: one created from the fifth element of

each neuron weight vector for the neurons in the first class-specific

cluster, and one created from the fifth element of each neuron

weight vector for the neurons in the second class-specific cluster.

Those proteins for which the Wilcoxon rank-sum test returns a

p-value of <0.05 are considered to be the discriminant proteins

between the two class-specific clusters and thus the two classes

they represent.

A new 7 × 7 SOM is then created using data for the

discriminant proteins only (a 570 × k matrix where k is

the number of discriminant proteins). Class-specific clusters

are identified in this SOM. The discriminant proteins

are validated through a qualitative analysis of this SOM,

which includes the number of mixed class neurons and the

number of observations in mixed class neurons as metrics

to determine how well the discriminant proteins clustered

the data.

In particular, Higuera et al. found the common discriminant

proteins in four pairwise comparisons involving successful

learning, c-CS-s vs. c-SC-s, c-CS-m vs. c-SC-m, c-CS-m vs. c-SC-

s, and c-CS-s vs. c-SC-m, and then used these results in two other

computational experiments.

1. Experiment 1 discriminant proteins: The union of those between

c-CS-m and c-CS-s and the common discriminant proteins

between the four successful learning comparisons.

2. Experiment 2 discriminant proteins: The union of those between

c-SC-m and c-SC-s and the common discriminant proteins

between the four successful learning comparisons.

Each experiment produced an SOM that was qualitatively

analyzed to validate the selection of discriminant proteins.

In the following two subsections of this article, we describe

how we used CUR as a feature selection method in this

methodology and provide results for its use in Experiments

1 and 2.

6.2 Feature selection using CUR

To use CUR as a feature selection method between two class-

specific clusters, we construct a matrix D that contains pairwise

differences between neuron weight vectors in opposite clusters. For

example, if cluster A contains a neurons (call their weight vectors

A1, ...,Aa) and cluster B contains b neurons (call their weight

vectors B1, ...,Bb), thenD ∈ R
ab×77, and

D(j+ b(i− 1), :) = Ai − Bj,

for i ∈ [a] and j ∈ [b]. We then compute 77 CUR approximations

of D; one for each possible number of columns to select for the

matrix C, i.e., 1, 2, ..., 77.8 For this particular application, we are

only interested in the subset of columns selected for C, and in

each CUR approximation that we use, the columns are chosen first,

independently of the rows. Hence, we could select any number of

rows for the matrix R. We chose to use all rows and set R = D. To

select a CUR approximation from the 77 calculated, we compute

the Akaike information criterion (AIC) [27] and the Bayesian

information criterion (BIC) [28] for each CUR model as given

in the formulas below. Let D ∈ R
m×77, and CUR be the CUR

8 Since two columns of the raw protein expression data are equal, D also

has this property. Thus, the SFCURmay fail to produce a selection of columns

for particular values of the number of columns to select. In these cases, we

ignore these values of the number of columns to select.

Frontiers in AppliedMathematics and Statistics 15 frontiersin.org

https://doi.org/10.3389/fams.2025.1632218
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Linehan and Balan 10.3389/fams.2025.1632218

TABLE 6 Classes of 72 total mice.

Class name Genotype CFC (stimulation to learn) Injection Learning Class size

c-CS-s Control Context-shock (yes) Saline Normal 9

c-CS-m Control Context-shock (yes) Memantine Normal 10

c-SC-s Control Shock-context (no) Saline None 9

c-SC-m Control Shock-context (no) Memantine None 10

t-CS-s Trisomic Context-shock (yes) Saline Failed 7

t-CS-m Trisomic Context-shock (yes) Memantine Rescued 9

t-SC-s Trisomic Shock-context (no) Saline None 9

t-SC-m Trisomic Shock-context (no) Memantine None 9

approximation toD, where C ∈ R
m×c. Then,

AIC = 2(mc+ 3)+ 77m ln

(‖D− CUR‖2F
77m

)
,

and

BIC = (mc+ 3) ln(77m)+ 77m ln

(‖D− CUR‖2F
77m

)
.

The CURmodel with the lowest AIC score and the CURmodel

with the lowest BIC score are selected. The columns chosen to

be in the matrix C of each CUR correspond to the discriminant

proteins. We then train two SOMs: the first using the discriminant

proteins from the CUR model with the lowest AIC and the second

using the discriminant proteins from the CUR model with the

lowest BIC. Hence, using CUR for feature selection will result in

two possibilities for the set of discriminant proteins, which can be

compared through a qualitative assessment of the SOMs trained on

each set.

6.3 Results

We repeated Experiments 1 and 2 by Higuera et al. with

two exceptions: (1) we used CUR as the feature selection process

instead of the Wilcoxon rank-sum test, and (2) each time

we needed to use an SOM, we trained 10 SOMs and chose

the one with the minimum number of mixed-class neurons.

If multiple SOMs had the minimum number of mixed-class

neurons, we chose the SOM with the minimum number of

observations in mixed-class neurons. We focused on these

metrics based on their importance in the qualitative analysis

of the discriminant protein SOMs in Higuera et al. [14]. We

compared the performance of four CUR algorithms in this

feature selection task, SF CUR, LS-D CUR, DEIM CUR, and

QR CUR, as well as that of the Wilcoxon rank-sum test. In all

experiments, the LS-D CUR rank parameter for leverage score

computation was 2. All experiments were run in MATLAB R2023b

on a laptop with 16GB RAM and a 2.20 GHz Intel Core i7-

1360P processor.9

9 The SOM implementation in MATLAB’s Deep Learning Toolbox was used

with the default parameters except the SOM size.

Figure 5 presents the SOM using all 77 proteins. Neurons

are labeled with the classes of mice they contain in sorted

order, i.e., the first class listed is the majority class, and the

number of observations contained in each neuron is indicated.

Neurons are colored by their majority class—c-CS-m: yellow, c-

CS-s: green, c-SC-m: tan, c-SC-s: orange—and a bold outline

of a neuron represents class-specific cluster membership—c-

CS-m class cluster: red outline, c-CS-s class cluster: green

outline, c-SC-m class cluster: brown outline, c-SC-s class cluster:

black outline. This color scheme is based on that in Higuera

et al. [14].

We define a mixed-CS-class neuron as a mixed-class neuron

that includes either c-CS-m or c-CS-s observations, and a mixed-

SC-class neuron as a mixed-class neuron that includes either c-

SC-m or c-SC-s observations. As a reference for comparison in

the results of Experiments 1 and 2, the SOM in Figure 5 has five

mixed-CS-class neurons, which contain 84 observations, and four

mixed-SC-class neurons, which contain 54 observations. The goal

of Experiment 1 is to select discriminant proteins such that when

an SOM is trained on the discriminant protein data only, the SOM

improves, i.e., has a smaller number of mixed-CS-class neurons and

observations contained within those neurons, as compared to the

SOM in Figure 5 that was trained on all protein data. The goal

of Experiment 2 is similar, except that the discriminant protein

SOM should have a smaller number of mixed-SC-class neurons

and observations contained within those neurons. Since each CUR

algorithm results in two potential sets of discriminant proteins

(one for the CUR with minimum AIC and one for the CUR

with minimum BIC), we present results for nine feature selection

methods: (1) Wilcoxon rank-sum test, (2-3) SF CUR AIC/BIC, (4-

5) LS-D CUR AIC/BIC, (6-7) DEIM CUR AIC/BIC, and (8-9) QR

CUR AIC/BIC.

6.3.1 Experiment 1
For each feature selection method, we (1) identified the

common discriminant proteins between the four successful

learning comparisons, c-CS-s vs. c-SC-s, c-CS-m vs. c-SC-m, c-

CS-m vs. c-SC-s, and c-CS-s vs. c-SC-m, and (2) identified the

discriminant proteins between the c-CS-m and c-CS-s classes. The

union of these two sets of proteins is the set of discriminant

proteins. We present the results of Experiment 1 in Table 7. In

addition, Figure 6 contains the discriminant protein SOMs for the

Frontiers in AppliedMathematics and Statistics 16 frontiersin.org

https://doi.org/10.3389/fams.2025.1632218
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Linehan and Balan 10.3389/fams.2025.1632218

FIGURE 5

SOM using all 77 proteins.

TABLE 7 Experiment 1 results.

Feature selection # Mixed-CS # Observations in # Discriminant
method neurons mixed-CS neurons proteins

None 5 84 –

Wilcoxon rank-sum test 2 19 15

SF CUR—AIC 5 90 35

SF CUR—BIC 7 91 21

LS-D CUR—AIC 7 85 49

LS-D CUR—BIC 6 105 28

DEIM CUR—AIC 5 71 20

DEIM CUR—BIC 7 90 18

QR CUR—AIC 3 47 18

QR CUR—BIC 7 77 16

The minimum number of mixed-CS-class neurons and observations are in bold.

Wilcoxon rank-sum test and each CUR algorithm using the AIC

model selection criteria. Since the CUR algorithms using the AIC

criteria generally outperformed those using the BIC criteria, the

discriminant protein SOMs for the CUR algorithms using the BIC

model selection criteria are found in Supplementary Figure S1.

The Wilcoxon rank-sum test performs the best of the feature

selection methods, resulting in two mixed-CS-class neurons and

19 observations in those neurons, which is by far the minimum

number of observations in mixed-CS-class neurons. It is interesting

to note that not only does the Wilcoxon rank-sum test perform

the best, but it also selects the fewest number of discriminant

proteins. Amongst CUR algorithms, the QR CUR—AIC performs

the best, resulting in only three mixed-CS-class neurons containing

47 observations. All CUR algorithms except the QR CUR—AIC,

QR CUR—BIC, and DEIM CUR—AIC perform worse than the

baseline of no feature selection. Although the QR CUR—BIC

Frontiers in AppliedMathematics and Statistics 17 frontiersin.org

https://doi.org/10.3389/fams.2025.1632218
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Linehan and Balan 10.3389/fams.2025.1632218

FIGURE 6

Experiment 1 discriminant protein SOMs for the Wilcoxon rank-sum test and CUR algorithms using the AIC model selection criteria. (a) Wilcoxon

rank-sum test. (b) SF CUR, AIC. (c) LS-D CUR, AIC. (d) DEIM CUR, AIC. (e) QR CUR, AIC.

Frontiers in AppliedMathematics and Statistics 18 frontiersin.org

https://doi.org/10.3389/fams.2025.1632218
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Linehan and Balan 10.3389/fams.2025.1632218

results are mixed: there are two more mixed-CS-class neurons,

but these neurons contain fewer observations than the baseline.

While CUR-based feature selection did not perform as well as the

Wilcoxon rank-sum test for this experiment, we will see a different

result in Experiment 2.

6.3.2 Experiment 2
For each feature selection method, we (1) again identified

the common discriminant proteins between the four successful

learning comparisons, c-CS-s vs. c-SC-s, c-CS-m vs. c-SC-m, c-

CS-m vs. c-SC-s, and c-CS-s vs. c-SC-m, and (2) identified the

discriminant proteins between the c-SC-m and c-SC-s classes. The

union of these two sets of proteins is the set of discriminant

proteins. Results for Experiment 2 are presented in Table 8.

The discriminant protein SOMs for the Wilcoxon rank-sum test

and CUR algorithms using the AIC model selection criteria

are given in Figure 7. The discriminant protein SOMs for CUR

algorithms using the BIC model selection criteria are given in

Supplementary Figure S2.

The best-performing feature selection methods are DEIM

CUR—AIC and DEIM CUR—BIC, each resulting in two mixed-

SC-class neurons containing 42 observations. The Wilcoxon rank-

sum test also performs well, resulting in two mixed-SC-class

neurons containing 47 observations. While the SF CUR—AIC

results in three mixed-SC-class neurons, it does achieve the

minimum number of observations in mixed-SC-class neurons with

37; however, it selects 49 discriminating proteins, which is at least

20 more than all other feature selection methods. The QR CUR—

AIC performs relatively well; however, not as well as the Wilcoxon

rank-sum test, since it results in three mixed-SC-class neurons

containing 52 observations. The SF CUR—BIC, LS-D CUR—AIC,

and LS-DCUR—BIC perform poorly compared to the other feature

selection methods. In addition, these three methods and the QR

CUR—BIC perform worse than the baseline of no feature selection.

The results of Experiments 1 and 2 demonstrate that CUR-

based feature selection can be an effective feature selection

method for this application, but the results are data and CUR

algorithm-dependent. Nonetheless, we demonstrated that DEIM-

CUR is an excellent option for feature selection in Experiment 2.

7 Conclusion

We have presented SF CUR, a novel CUR matrix

approximation using convex optimization with supporting

theory and numerical experiments. Specifically, the SF CUR

algorithm uses the surrogate functional [13] to solve the convex

optimization problems that arise in the method. To the best

of our knowledge, this is the only CUR method using convex

optimization that solves for C and R separately and allows the

user to choose the number of columns and rows for inclusion

in C and R, respectively. In addition, we extended the theory

of the surrogate functional technique to apply to SF CUR. We

numerically demonstrated the use of SF CUR on sparse and

dense data. Specifically, we (1) calculated its relative error and

computation time on a document-term dataset and a gene

expression dataset, and (2) used it as a feature selection method

on the gene expression dataset to classify patients as those with or

without a tumor, as in Sorenson and Embree [2]. We compared

SF CUR performance on these numerical tasks to the SVD and

other complementary CUR approximations. We found that while

the SVD provides the optimal approximation to each dataset, SF

CUR performed the best in selecting probes to separate patient

classes on the gene expression dataset, with LS-D CUR a close

second in performance. However, the computational time of the

SF CUR is about three orders of magnitude higher than that of the

LS-D CUR and at least one order of magnitude higher than that

of the other CUR approximations used in this feature selection

experiment. The computational time of the SF CUR is a current

limitation of the method, hence we recommend using SF CUR on

small to medium datasets for which computational resources and

time constraints are not an issue.

We also presented a novel application of CUR to determine

discriminant proteins when clustering protein expression data in

an SOM. These computational experiments were based on those

in Higuera et al. [14], with the exception that CUR was used

TABLE 8 Experiment 2 results.

Feature selection # Mixed-SC # Observations in # Discriminant
method neurons mixed-SC neurons proteins

None 4 54 –

Wilcoxon rank sum test 2 47 27

SF CUR—AIC 3 37 49

SF CUR—BIC 7 99 27

LS-D CUR—AIC 6 89 29

LS-D CUR—BIC 8 109 28

DEIM CUR—AIC 2 42 26

DEIM CUR—BIC 2 42 26

QR CUR—AIC 3 52 25

QR CUR—BIC 4 67 20

The minimum number of mixed-SC-class neurons and observations are in bold.

Frontiers in AppliedMathematics and Statistics 19 frontiersin.org

https://doi.org/10.3389/fams.2025.1632218
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Linehan and Balan 10.3389/fams.2025.1632218

FIGURE 7

Experiment 2 discriminant protein SOMs for the Wilcoxon rank-sum test and CUR algorithms using the AIC model selection criteria. (a) Wilcoxon

rank-sum test. (b) SF CUR, AIC. (c) LS-D CUR, AIC. (d) DEIM CUR, AIC. (e) QR CUR, AIC.

Frontiers in AppliedMathematics and Statistics 20 frontiersin.org

https://doi.org/10.3389/fams.2025.1632218
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Linehan and Balan 10.3389/fams.2025.1632218

as the feature selection method instead of the Wilcoxon rank-

sum test. We compared the performance of SF CUR with that

of the Wilcoxon rank-sum test and other complementary CUR

approximations. We performed two computational experiments

and found that performance varied between datasets and CUR

algorithms. While CUR-based feature selection performance

was generally poor in Experiment 1, multiple CUR algorithms

performed well in Experiment 2. In fact, DEIM CUR—AIC and

DEIM CUR—BIC were the best-performing feature selection

methods in Experiment 2. In addition, to the best of our knowledge,

this was the first use of CUR on protein expression data.

While we have shown the effectiveness of CUR as a feature

selection method in numerical experiments on gene and protein

expression datasets, it is interesting to note that CUR’s performance

in these applications is data and algorithm-dependent. SF CUR

and LS-D CUR performed very well on the gene expression

dataset, whereas DEIM CUR and QR CUR did not. QR CUR—

AIC performed moderately well in Experiment 1 on the protein

expression dataset, but all other CUR algorithms performed poorly,

and DEIM CUR performed very well in Experiment 2 on the

protein expression dataset, whereas the LS-D, for example, did not.

This naturally leads to the research question of how to choose the

CUR algorithm for a given dataset and/or task. We have begun to

explore CUR algorithm performance in terms of dataset properties

such as sparsity and spectrum, but do not yet have any conclusive

results. Future work may include further investigation into why

certain CUR algorithms perform better than others in particular

applications or on particular datasets, which can hopefully lead to

a CUR algorithm selection framework. Other potential areas for

future work include generalizing the SF CUR objective function as

mentioned in Section 3.3 and SF CUR implementation speed-ups.

Data availability statement

The original contributions presented in the study are included

in the article/Supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

KL: Conceptualization, Formal analysis, Methodology,

Software, Validation, Visualization, Writing – original draft,

Writing – review & editing. RB: Conceptualization, Formal

analysis, Methodology, Supervision, Writing – review & editing.

Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. Radu Balan was partially

supported by NSF under DMS-2108900.

Acknowledgments

The authors acknowledge Research Computing at

the University of Virginia for providing computational

resources that have contributed to the results reported

within this article (URL: https://rc.virginia.edu) and

thank Sallie Keller for her support in the early stages of

the research.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation

of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fams.2025.

1632218/full#supplementary-material

References

1. Mahoney MW, Drineas P. CUR matrix decompositions for improved data
analysis. Proc Nat Acad Sci. (2009) 106:697–702. doi: 10.1073/pnas.0803205106

2. Sorenson DC, Embree M. A DEIM induced CUR factorization. SIAM J Sci
Comput. (2016) 38:A1454–82. doi: 10.1137/140978430

3. Liu Y, Shao J. High dimensionality reduction using CUR matrix decomposition
and auto-encoder for web image classification. In: Qiu G, Lam KM, Kiya H, Xue
XY, Kuo CCJ, Lew MS, editors. Advances in Multimedia Information Processing

- PCM 2010. Berlin, Heidelberg: Springer Berlin Heidelberg (2010). p. 1–12.
doi: 10.1007/978-3-642-15696-0_1

4. Esmaeili A, Joneidi M, Salimitari M, Khalid U, Rahnavard N. Two-way spectrum
pursuit for CUR decomposition and its application in joint column/row subset
selection. In: 2021 IEEE 31st International Workshop on Machine Learning for Signal
Processing (MLSP). Gold Coast: IEEE (2021). p. 1–6. doi: 10.1109/MLSP52302.2021.
9596233

Frontiers in AppliedMathematics and Statistics 21 frontiersin.org

https://doi.org/10.3389/fams.2025.1632218
https://rc.virginia.edu
https://www.frontiersin.org/articles/10.3389/fams.2025.1632218/full#supplementary-material
https://doi.org/10.1073/pnas.0803205106
https://doi.org/10.1137/140978430
https://doi.org/10.1007/978-3-642-15696-0_1
https://doi.org/10.1109/MLSP52302.2021.9596233
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

Linehan and Balan 10.3389/fams.2025.1632218

5. Li C, Wang X, Dong W, Yan J, Liu Q, Zha H. Joint active learning with feature
selection via CUR matrix decomposition. IEEE Trans Pattern Anal Mach Intell. (2019)
41:1382–96. doi: 10.1109/TPAMI.2018.2840980

6. Hamm K, Huang L. Perspectives on CUR decompositions. Appl Comput Harmon
Anal. (2020) 48:1088–99. doi: 10.1016/j.acha.2019.08.006

7. Goreinov SA, Tyrtyshnikov EE, Zamarashkin NL. A theory of
pseudoskeleton approximations. Linear Algebra Appl. (1997) 261:1–21.
doi: 10.1016/S0024-3795(97)80059-6

8. Drineas P, Kannan R,MahoneyMW. FastMonte Carlo algorithms formatrices III:
computing a compressed approximate matrix decomposition. SIAM J Comput. (2006)
36:184–206. doi: 10.1137/S0097539704442702

9. Drineas P, Mahoney MW, Muthukrishnan S. Relative-error CUR matrix
decompositions. SIAM J Matrix Anal Appl. (2008) 30:844–81. doi: 10.1137/07070471X

10. Stewart GW. Four algorithms for the efficient computation of truncated
pivoted QR approximations to a sparse matrix. Nume Math. (1999) 83:313–23.
doi: 10.1007/s002110050451

11. Mairal J, Jenatton R, Obozinski G, Bach F. Convex and network flow
optimization for structured sparsity. J Mach Learn Res. (2011) 12:2681–720.

12. Bien J, Xu Y, Mahoney MW. CUR from a sparse optimization viewpoint. In:
Proceedings of the 23rd International Conference on Neural Information Processing
Systems - Volume 1. NeurIPS’10. Red Hook, NY: Curran Associates Inc. (2010). p.
217–25.

13. Daubechies I, Defrise M, De Mol C. An iterative thresholding algorithm for
linear inverse problems with a sparsity constraint. Commun Pure Appl Math. (2004)
57:1413–57. doi: 10.1002/cpa.20042

14. Higuera C, Gardiner KJ, Cios KJ. Self-organizing feature maps identify proteins
critical to learning in a mouse model of Down syndrome. PLoS ONE. (2015)
10:e0129126. doi: 10.1371/journal.pone.0129126

15. Dong Y, Martinsson PG. Simpler is better: a comparative study of randomized
pivoting algorithms for CUR and interpolative decompositions. Adv Comput Math.
(2023) 49:66. doi: 10.1007/s10444-023-10061-z

16. Ida Y, Kanai S, Fujiwara Y, Iwata T, Takeuchi K, Kashima H. Fast deterministic
CURmatrix decomposition with accuracy assurance. In: Daumé III H, SinghA, editors.
Proceedings of the 37th International Conference on Machine Learning, Vol. 119. PMLR
(2020). p. 4594–603.

17. Peng Z, Luo M, Li J, Liu H, Zheng Q. ANOMALOUS: a joint modeling approach
for anomaly detection on attributed networks. In: Lang J, editor. Proceedings of

the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-
18. International Joint Conferences on Artificial Intelligence Organization (2018). p.
3513–9. doi: 10.24963/ijcai.2018/488

18. Grant M, Boyd S. CVX: Matlab Software for Disciplined Convex Programming,
version 2.1. (2014). Available online at: http://cvxr.com/cvx (Accessed January 24,
2024).

19. Grant M, Boyd S. Graph implementations for nonsmooth convex programs. In:
Blondel V, Boyd S, Kimura H, editors. Recent Advances in Learning and Control. Lecture
Notes in Control and Information Sciences. Cham: Springer-Verlag Limited (2008). p.
95–110. doi: 10.1007/978-1-84800-155-8_7

20. Parikh N, Boyd S. Proximal algorithms. Found Trends Optim. (2014) 1:127–239.
doi: 10.1561/2400000003

21. Rennie J. 20 Newsgroups. (2008). Available online at: http://people.csail.mit.edu/
jrennie/20Newsgroups/ (Accessed March 7, 2024).

22. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al.
Scikit-learn: machine learning in Python. J Mach Learn Res. (2011) 12:2825–30.

23. Landi M, Dracheva T, Rotunno M, Figueroa J, Liu H, Dasgupta A,
et al. Gene expression signature of cigarette smoking and its role in lung
adenocarcinoma development and survival. PLoS ONE. (2008) 3:e1651.
doi: 10.1371/journal.pone.0001651

24. Higuera C, Gardiner K, Cios K. Mice protein expression. UCI Machine Learning
Repository. (2015). doi: 10.24432/C50S3Z

25. Ahmed MM, Dhanasekaran AR, Block A, Tong S, Costa ACS, Gardiner KJ.
Protein Profiles associated with context fear conditioning and their modulation
by memantine. Mol Cell Proteom. (2014) 13:919–37. doi: 10.1074/mcp.M113.
035568

26. Ahmed MM, Dhanasekaran AR, Block A, Tong S, Costa ACS, Stasko
M, et al. Protein dynamics associated with failed and rescued learning in
the Ts65Dn mouse model of down syndrome. PLoS ONE. (2015) 10:1–25.
doi: 10.1371/journal.pone.0119491

27. Akaike H. Information theory and an extension of the maximum likelihood
principle. In: Petrov BN, Csáki F, editors. 2nd International Symposium on Information
Theory. Budapest, Hungary: Akadémia Kiadó. (1973). p. 267–81.

28. Schwarz G. Estimating the dimension of a model. Ann Stat. (1978) 6:461–4.
doi: 10.1214/aos/1176344136

29. Kundu A, Nambirajan S, Drineas P. Identifying influential entries in a matrix.
arXiv. (2013). [Preprint]. arXiv:1310.3556. doi: 10.48550/arXiv.1310.3556

Frontiers in AppliedMathematics and Statistics 22 frontiersin.org

https://doi.org/10.3389/fams.2025.1632218
https://doi.org/10.1109/TPAMI.2018.2840980
https://doi.org/10.1016/j.acha.2019.08.006
https://doi.org/10.1016/S0024-3795(97)80059-6
https://doi.org/10.1137/S0097539704442702
https://doi.org/10.1137/07070471X
https://doi.org/10.1007/s002110050451
https://doi.org/10.1002/cpa.20042
https://doi.org/10.1371/journal.pone.0129126
https://doi.org/10.1007/s10444-023-10061-z
https://doi.org/10.24963/ijcai.2018/488
http://cvxr.com/cvx
https://doi.org/10.1007/978-1-84800-155-8_7
https://doi.org/10.1561/2400000003
http://people.csail.mit.edu/jrennie/20Newsgroups/
http://people.csail.mit.edu/jrennie/20Newsgroups/
https://doi.org/10.1371/journal.pone.0001651
https://doi.org/10.24432/C50S3Z
https://doi.org/10.1074/mcp.M113.035568
https://doi.org/10.1371/journal.pone.0119491
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.48550/arXiv.1310.3556
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

	CUR matrix approximation through convex optimization for feature selection
	1 Introduction
	2 Related work
	3 CUR algorithm
	3.1 Implementation for minimization problems
	3.2 Complexity
	3.3 Generalizations

	4 Theoretical foundation
	4.1 Convergence to a fixed point of T
	4.2 Convergence to a minimizer of J

	5 Numerical experiments
	5.1 Document-term matrix
	5.2 Gene expression data

	6 Protein expression discriminant analysis with CUR
	6.1 Prior computational experiments
	6.1.1 Data
	6.1.2 Methodology

	6.2 Feature selection using CUR
	6.3 Results
	6.3.1 Experiment 1
	6.3.2 Experiment 2

	7 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References

	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Figure 7:

