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Introduction to the Evidence Theory

Consider a finite state space X = {1, 2, · · · , n} of n possible outcomes (or
results, or possible worlds). In a probability framework, one assigns a
probability mass function (pmf) to each outcome:

p : X → [0, 1] ,
∑
x∈X

p(x) = 1

so that, for any subset A ⊂ X , P(A) =
∑

i∈A p(i), represents the
probability that the outcome of an experiment is included in the set A.

The Dempster-Shafer (DS) Evidence Theory, known also as the theory of
belief functions, was created to quantify and deal with uncertainties. Each
experiment provides evidence that supports more or less certain possible
outcomes (or results). The question is, how to quantify such cases?
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Introduction to the Evidence Theory (2)

Example: A tossing die has six possible outcomes X = {1, 2, 3, 4, 5, 6}.
Alice tossed the die and then says with 60% probability, the die landed on
an even number. Bob got a quick glimpse of the die and was able to see
that it had at least four dots showing. How to quantify these statements?
In classical probability one can formulate a pmf p so that
P({2, 4, 6}) = 0.6 and P({4, 5, 6}) = 1. What can we say about individual
(atomic) probabilities? First we obtain: p(1) = p(2) = p(3) = 0. Thus
P({4, 6}) = 0.6 and hence p(5) = 0.4.
If the prior belief is the uniform probability, p0 = ( 1

6 , 1
6 , 1

6 , 1
6 , 1

6 , 1
6 ) we can

argue that p(4) = p(6) = 0.3.
But isn’t this curious? Alice would believe it must be one of the three
possible outcomes: 2,4 or 6. If Bob tells her that the die did not land on
2, Alice would conclude that the outcome must be either 4 or 6. In any
case, not 5.
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Introduction to the Evidence Theory (3)

For Bob, absent any information, he would believe that 4,5 and 6 would
occur with equal probability. If Charlie (a third party) hears Alice believing
that the outcome must have been an even number, and then Bob saying
that is must be greater than or equal to 4, Charlie would not choose 5 at
all.
In reality, the die may have landed on 4, and this does not produce a
contradiction with any of Alice’s or Bob’s statements.
Notice that I used Bayes’ rule to conclude the posterior distribution p
satisfies p(4) = p(6). But in reality, the die may have been biased. Maybe
the true distribution is p(1) = p(2) = p(3) = 0, p(4) = 0.5, p(5) = 0.4
and p(6) = 0.1. These numbers would be consistent with Alice’s and
Bob’s statements.
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Basic Probability Assignments (BPA)
The DS Evidence Theory starts with a different concept: the basic
probability assignment (bpa), or mass function. A BPA is a map m,

m : P(X )→ [0, 1] ,
∑
A⊂X

m(A) = 1 , m(∅) = 0

where P(X ) = 2X = {A |A ⊂ X} represents the set of all subsets of X
(the power set of X ).
Terminology:

A ⊂ X is called a focal element if m(A) > 0.
m is said deterministic if m has a single focal element. We denote by
eA such a deterministic bpa with focal element A.
m is said Bayesian if all focal elements are singleton subsets. This
means that m is equivalent to a pmf p, p(x) = m({x}) for all x ∈ X .
The deterministic bpa eX is called the vacuous BPA.
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Belief, Plausibility and Commonality functions
Given a BPA m : P(X )→ [0, 1] one constructs the following three
functions:
Belief function Bel ,

Belm : P(X )→ [0, 1] , Belm(A) =
∑
B⊂A

m(B)

Plausibility function Plaus,

Plausm : P(X )→ [0, 1] , Plausm(A) =
∑

B∈P(X):B∩A6=∅
m(B)

Commonality function Q,

Qm : P(X )→ [0, 1] , Qm(A) =
∑

B∈P(X):A⊂B
m(B)

BPA m, Bel, Plaus and Q are equivalent representations: given one we can
always transform into another. We focus on the transformation Bel → m.
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Möbius Transform
Given m a BPA, the Belief function is defined by Belm(A) =

∑
B⊂A m(B).

The inverse transform is called the Möbius transform: Given
Bel : P(X )→ [0, 1] its BPA m is given by

m(∅) = Bel(∅) = 0 , m({x}) = Bel({x}) , ∀x ∈ X

and then recursively

m(A) = Bel(A)−
∑
B(A

m(B)

m(A) is “the amount of belief committed to A that has not already been
committed to its subsets” [Halpern 2003]. The closed form formula is

m(A) =
∑
B⊂A

(−1)|A|−|B|Bel(B) , ∀B ∈ P(X )
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Belief Functions
Definition. A Belief Function Bel is a map Bel : P(X )→ [0, 1] that
satisfies the following:

1 Bel(∅) = 0.
2 Bel(X ) = 1,
3 For A1, A2, · · · , Ak ∈ P(X ),

Bel(∪k
i=1Ai ) ≥

k∑
i=1

∑
I∈[k],|I|=i

(−1)i+1Bel(∩j∈IAj)

Conditions 1 and 2: positivity and normalization. Condition 3: stronger
form of super-additivity. In particular, a belief function satisfies:

A ⊂ B ⇒ Bel(A) ≤ Bel(B)

Bel(A ∪ B) ≥ Bel(A) + Bel(B)− Bel(A ∩ B)
Radu Balan (UMD) Evidence Theory 02/05/2025
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Example revisited
X = {1, 2, 3, 4, 5, 6}. Alice tossed the die and then says with 60%
probability, the die landed on an even number. Bob got a quick glimpse of
the die and was able to see that it had at least four dots showing.
The Evidence Theory framework would produce:

Bel({2, 4, 6}) = 0.6 , Bel({4, 5, 6}) = 1

Beliefs is assigned to other sets compatible with definition:
If A ∩ {1, 2, 3} 6= ∅ then m(A) = 0
m({4}) + m({6}) + m({4, 6}) = 0.6
m({5}) + m({4, 5}) + m({5, 6}) + m({4, 5, 6}) = 0.4

Two extreme cases: all sets have mass 0 except for:
(1) the class of Bayesian BPAs (PMFs): m({4}) + m({6}) = 0.6 and
m({5}) = 0.4;
(2) the class of non-PMFs: m({4, 6}) = 0.6 and m({4, 5, 6}) = 0.4.
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Bayes’ Rule of Combination
Asume x ∈ X and y ∈ Y are two random variables characterized by their
joint distribution pX ,Y . The goal of this secton is to describe how to
obtain the conditional probability distributions pX |Y and pY |X , marginals,
pX and pY , and converse relationships.
The conditional probabilities and marginals are related via

pX |Y =y (x)pY (y) = pX ,Y (x , y) = pY |X=x (y)pX (x)

We can say pX |Y =y ∝ pX ,Y (x , y) where the proportionality constant
(independent of x) must be chose to normalize the left hand-side. What
can we say about the distribution of x if we only know y ∈ U ⊂ Y ? We
denote this by pX |U

pX |U(x) ∝
∑
y∈U

pX ,Y (x , y)⇒ pX |U(x) = 1
C
∑
y∈Y

pX ,Y (x , y)1U(y)

where C = PY (U) =
∑

y∈U pY (y).
Radu Balan (UMD) Evidence Theory 02/05/2025
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Bayes’ rule of combination (2)
The marginal pX must obey:

pX (x) ∝
∑
y∈Y

pX ,Y (x , y) =
∑
y∈Y

pX ,Y (x , y)1Y (y)

Since the right hand-side is already normalized we conclude

pX (x) =
∑
Y∈Y

pX ,Y (x , y)
Conditionals:
Type 1: When A ⊂ X condition the pmf pX with respect to x ∈ A:
pX |A(x) = 1

C pX (x)1A(x) with C = pX (A) =
∑

x ′∈A pX (x ′).
Type 2: For U ⊂ Y , the conditioning of joint pmf pX ,Y to y ∈ U is given by:

pX |U(x) ∝
∑
y∈Y

pX ,Y (x , y)1U(y)

the right hand-side needs to be normalized to obtain:

pX |U(x) = 1
C
∑
y∈Y

pX ,Y (x , y)1U(y) , C = PY (U) =
∑
y∈U

pY (y).
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Dempster’s Rule of Combination
Dempster’s rule of combination says how to combine two BPAs, say m1
and m2 referring to same single variable x . The combined BPA is denoted
m1 ⊕m2 and is defined by:

m1 ⊕m2(A) = 1
K

∑
B1, B2 ∈ P(X )
B1 ∩ B2 = A

m1(B1)m2(B2)

where the normalization constant K is
K = 1−

∑
B1, B2 ∈ P(X )

B1 ∩ B2 = ∅

m1(B1)m2(B2)

The normalizaion constant is a measure of “conflict” between the two
belief assignments: if K = 0 m1 and m2 are said to be in total conflict and
cannot be combined. If K = 1 then m1 and m2 are said non-conflicting.
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Dempster’s Rule of Combination (2)

A key observation:For the commonality function:

Qm1⊕m2 = 1
K Qm1Qm2

Why:
Recall Qm(A) =

∑
A⊂B⊂X m(B). Fix A ⊂ X ,∑

A⊂B⊂X

∑
B1, B2 ∈ P(X )
B1 ∩ B2 = A

m1(B1)m2(B2) =
∑

A⊂B1⊂X

∑
A⊂B2⊂X

m1(B1)m2(B2)

=

 ∑
A⊂B1⊂X

m1(B1)

 ∑
A⊂B2⊂X

m2(B2)


And the constant K remains the same.
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Dempster’s Rule of Combination (3)

Suppose that mX and mY are BPAs of two different variables x ∈ X and
y ∈ Y . In this case, the combination m1 ⊕m2 is defined on
P(X × Y ) = 2X×Y via

mX ⊕mY (A× B) = mX (A)mY (B) , A ∈ P(X ), B ∈ P(Y )

No additional normalization needed since this is already normalized.
The above relation assumes some sort of “independence”. However it may
be more general. It tries to mimick the Bayes’ rule pX |Y pY = pX ,Y .
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Marginalization in DS Theory
Consider m a BPA for X × Y . How to get BPAs on X and Y spaces only?
We define the “projection” operators ↓ X : P(X × Y )→ P(X ) by

A ∈ P(X × Y ) 7→ A↓X = {x ∈ X , ∃y ∈ Y s.t. (x , y) ∈ A}

A↓X represents the “footprint” of set A when projected to X . Similar
definition for A↓Y , the projection onto Y space.
Then for m a BPA on X × Y , its marginal m↓X : P(X )→ [0, 1] is

m↓X (B) =
∑

A ∈ X × Y
A↓X = B

m(A)

Relationship: If mX and mY are BPAs on X and Y respectively and
mX ⊕mY is the BPA on X × Y defined by Dempster’s rule, then:

(mX ⊕mY )↓X = mX , (mX ⊕mY )↓Y = mY .
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Shannon’s Entropy, Hartley’s Entropy
Assume x is a random variable with finite state (sampling) space
X = {1, 2, · · · , n} and pmf pX .
Shannon defines the information content of state x as

I(x) = log
( 1

pX (x)

)
The Shannon entropy is then the expected value of its information content:

H(x) =
∑
x∈X

pX (x) log
( 1

pX (x)

)
= −

∑
x∈X

pX (x)log(pX (x))

For Hartley, the measure of uncertainty is given by the size of X ,
specifically by its logarithm:

H0(x) = log(n)

Note the two measures (entropies) coincide when x has a uniform
distribution over X , i.e., pX (x) = 1

n .
Radu Balan (UMD) Evidence Theory 02/05/2025
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Höhle, Smets, Yager and Nguyen Entropies
Consider m a BPA on X , and Belm, Plausm and Qm its associated belief,
plausability and commonality function respectively. Then

(Höhle) Ho(m) =
∑

A∈P(X)
m(A) log

( 1
Belm(A)

)

(Smets) Hs(m) =
∑

A∈P(X)
log
( 1

Qm(A)

)

(Yager) HYager (m) =
∑

A∈P(X)
m(A) log

( 1
Plausm(A)

)

(Nguyen) HNguyen(m) =
∑

A∈P(X)
m(A) log

( 1
m(A)

)
They all capture the conflict portion of uncertainty. For Bayesian BPAs,
H0 = Hy = Hn = H, they reduce to Shannon’s information.
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Transform based Entropies
A different type of entropies are obtained by first transforming the BPA m
into a PMF p, and then computing the Shannon’s sntropy of p. There are
three transforms:

1 The pignistic transform:

BetPm(x) =
∑

A∈P(X):x∈A

m(A)
|A| , x ∈ X

Jousselme et al entropy:

Hj(m) = H(BetPm) =
∑
x∈X

BetPm(x) log
( 1

BetPm(x)

)
2 The credal set is defined by

Πm =
{

p ∈ [0, 1]n :
∑

x
p(x) = 1 , ∀A ∈ P(X ) ,

∑
x∈A

p(x) ≥ Belm(A)
}

Belief is the lower probability; Plausibility is the upper probability.
Radu Balan (UMD) Evidence Theory 02/05/2025
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Transform based Entropies (2)
2 (cont’d) The Max Entropy of the credal set introduced by Harmanec

and Klir:

(Harmanec and Klir) HHK (m) = max
p∈Πm

H(p)

The Maximum Entropy Credal Set transform CrPm is the maximizer
above.

3 The plausibility transform:

PlausPm(x) = 1
K Plausm({x}) = 1

K
∑

A∈P(X):x∈A
m(A) , x ∈ X

where K is a nomalizing constant,
K =

∑
x∈X Plausm({x}) =

∑
A∈P(X) |A|m(A).

Jirousek and Shenoy considered the Shannon entropy associated to
PlausPm, H(PlausPm). Their full entropy adds a secod term to it.
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Expanded entropies
To satisfy additional properties, more recent families of entropies were
introduced by taking the sum of two terms, one that captures the conflict
portion of the uncertainty and the other that is a measure of
non-specificity. In most cases, the non-specificity part is given by the
Dubois and Prade entropy:

HDP(m) =
∑

A∈P(X)
m(A)log(|A|).

(Lamata and Moral) HLM(m) = HYager (m) + HDP(m)
(Maeda and Ichihasi) HMI(m) = H(CrPm)+HDP(m) = HHK (m)+HDP(m)

(Deng) HD(m) = HNguyen(m) +
∑

A∈P(X)
m(A)log(2|A| − 1)

(Jirousek and Shenoy)1 HJS(m) = H(PlausPm) + HDP(m)
1Acknowledgment: Most of the results and notation taken from their paper,

Int.J.Approx.Reason. 2018
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Desired properties for an “ideal” entropy
1 (Existence and Continuity) The “ideal” entropy m 7→ S(m) should be

continuous.
2 (Probabilistic Consistency) If m is Bayesian BPA with PMF p, then

S(m) = H(p).
3 (Non-negativity) S(m) ≥ 0 and S(m) = 0 iff m is Bayesian and

deterministic, i.e., m({x}) = 1 for some x ∈ X .
4 (Maximum Entropy) The vacuous BPA eX has maximum entropy:

S(m) ≤ S(eX )
5 (Monotonicity) If |X | < |Y | then S(eX ) < S(eY )
6 (Additivity) For mX and mY on two distinct X and Y so mX ⊕mY is

defined on P(X × Y ), S(mX ⊕mY ) = S(mX ) + S(mY ).
7 (Subadditivity) If m is a BPA on X × Y then H(m) ≤ H(m↓X ) + H(m↓Y ).
8 (Consistency with DS)2 If a component of the entropy is defined via a PMF

m 7→ pm, then the PMF transform must satisfy pm1⊕m2 = pm1 ⊗ pm2 .
2from Jirousek and Shenoy. HJS satisfies 1-8 except 7. HHK and HDP satisfy 7.
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What is the Value of Information in this context?

In certain works, the value of information is defined as the decrease in
Shannon’s entropy between the state without information and the state
with information. Specifically, assume X is the variable of interest, and Y
denotes the information. Then the value of information Y is quantified by

ValueX (Y ) = H(X )− H(X |Y )

where the conditional entropy is defined as

H(X |Y ) =
∑
y∈Y

pY (y)H(pX |Y =y ).

We posit that the value of information in the context of Dempster-Shafer
theory of belief functions, should be measured by a similar decrease in
entropy. The challenge will be to see which of the 10+ entropies is the
most appropriate!
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THANK YOU!

QUESTIONS?
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