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Motivation
A Problem by Feichtinger

At a 2004 Oberwolfach meeting, Hans Feichtinger asked the following question:
(Q1) Given a positive semi-definite trace-class operator T : L2(Rd)→ L2(Rd),
Tf (x) =

∫
K (x , y)f (y)dy , with K ∈ M1(Rd × Rd), and its spectral factorization,

T =
∑

k 〈·, hk〉hk , must it be
∑

k ‖hk‖
2
M1 <∞ ?

A modified version of the question is:
(Q2) Given T as before, i.e., T = T ∗ ≥ 0, K ∈ M1(Rd × Rd) , is there a

factorization T =
∑

k 〈·, gk〉gk such that
∑

k ‖gk‖
2
M1 <∞ ?
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Problem Reformulation
Matrix Language

Consider an infinite matrix A = (Am,n)m,n≥0 so that
‖A‖∧ := ‖A‖1 :=

∑
m,n≥0 |Am,n| <∞.

This implies that A acts on l2(N) as a trace-class compact operator.
Assume additionally A = A∗ ≥ 0 as a quadratic form.
Let (ek)k≥0 denote an orthogonal set of eigenvectors normalized so that
A =

∑
k≥0 eke

∗
k . It is easy to check that ek ∈ l1(N), for each k.

Equivalent reformulations of the two problems (Heil, Larson ‘08):

Q1: Does it hold
∑

k≥0 ‖ek‖
2
1 <∞ ? Answer: Negative in general! (see [1])

Q2: Is there a factorization A =
∑

k≥0 fk f
∗
k so that

∑
k≥0 ‖fk‖

2
1 <∞ ?

Using functional analysis arguments:

Proposition

If (Q2) is answered affirmatively, then there exists a universal constant kU > 0 so
that every psd n × n matrix A = A∗ ≥ 0 admits a decomposition A =

∑m
k=1 fk f

∗
k

so that
∑m

k=1 ‖fk‖
2
1 ≤ kU

∑n
i,j=1 |Ai,j |.
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Warm-Up Exercise

Let A ∈ Rn×n be a matrix and consider the following optimization problem:

γ(A) := inf
A=

∑
k≥1 xky

T
k

∑
k

‖xk‖1‖yk‖1

Note:

A = [Ai,j ]i,j∈[n] =


A11

A21

...
An1

 · [1, 0, · · · , 0] + · · ·+


A1n

A2n

...
Ann

 · [0, 0, · · · , 1]

From where: γ(A) ≤
∑

i,j |Ai,j | =: ‖A‖1.

For converse: Let A =
∑

k xky
T
k be the optimal decomposition. Then:

‖A‖1 = ‖
∑
k

xky
T
k ‖

1

≤
∑
k

‖xkyT
k ‖1 =

∑
k

‖xk‖1‖yk‖1 = γ(A).
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Projective norm

We obtained:

γ(A) := inf
A=

∑
k≥1 xky

T
k

∑
k

‖xk‖1‖yk‖1 =
∑
i,j

|Ai,j | =: ‖A‖1

folowing Grothendieck, the last norm is sometime referred to as projective norm,
‖A‖∧.

Assume now that A = AT . Considered a more constrained optimization problem:

γ0(A) := inf
A =

∑
k≥1 εkxkx

T
k

εk ∈ {+1,−1}

∑
k

‖xk‖2
1

It is not hard to show that γ0 is a norm on Sym(Rn) (or Sym(Cn)), and
‖A‖1 ≤ γ0(A). Leveraging the fact that
1
2 (xyT + yxT ) = 1

4 ((x + y)(x + y)T − (x − y)(x − y)T ) one obtains:

‖A‖1 ≤ γ0(A) := inf
A =

∑
k≥1 εkxkx

T
k

εk ∈ {+1,−1}

∑
k

‖xk‖2
1 ≤ 2‖A‖1
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Problem Formulation

Let Sym+(Cn) = {A ∈ Cn×n , A∗ = A ≥ 0}. For A ∈ Sym+(Cn), denote

γ+(A) := inf
A=

∑
k≥1 xxx

∗
k

∑
k

‖xk‖2
1

It is obvious that ‖A‖1 ≤ γ0(A) ≤ γ+(A).

The matrix problem: For every n ≥ 1 find the best constant Cn such that, for
every A ∈ Sym+(Cn),

γ+(A) ≤ Cn‖A‖1 := Cn

n∑
k,l=1

|Ak,l |

That is, we are interested in finding:

Cn = sup
A≥0

γ+(A)

‖A‖1
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Properties of γ+(A)

The infimum is achieved:

γ+(A) := inf
A=

∑
k≥1 xx x

∗
k

∑
k

‖xk‖2
1 = min

A=
∑n2

k=1
xx x
∗
k

∑
k

‖xk‖2
1.

Upper bounds:

γ+(A) ≤ n trace(A) ≤ n‖A‖1 = n
∑
k,j

|Ak,j |

γ+(A) ≤ n trace(A) ≤ n2‖A‖Op

Lower bounds:

‖A‖1 = min
A=

∑
k≥1 xx y

∗
k

∑
k

‖xk‖1‖yk‖1 ≤ γ+(A)

Convexity: for A,B ∈ Sym+(Cn) and t ≥ 0,

γ+(A + B) ≤ γ+(A) + γ+(B) , γ+(tA) = tγ+(A)

0 2000 4000 6000 8000 10000 12000

size of sqare matrix A; N

0

10

20

30

40

50

60

70

80

90
Decomposition performance via sampling random matrices

J ldl(A)/||A||1,1 : ldl decomposition

Jeigen(A)/||A||1,1 : eigen decomposition

c*sqrt(N)
log(N)

Maximum of
∑

k ‖xk‖
2
1/‖A‖1 over

30 random noise realizations, where
x ′ks are obtained from the eigende-
composition, or the LDL factoriza-
tion.
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Properties of γ+(A)

Lower bound is achieved, γ+(A) = ‖A‖1 in the following cases:

1 If A = xx∗ is of rank one.

2 If A ≥ 0 is a diagonally dominant matrix, Aii ≥
∑

k 6=i |Ai,k |.
3 If A ≥ 0 admits a Non Negative Matrix Factorization (NNMF), A = BBT with

Bij ≥ 0.

Continuity, Lipschitz and linear program reformulation:

1 γ+ : Sym+(Cn)→ R is continuous.

2 If A,B ≥ δI and trace(A), trace(B) ≤ 1 then

|γ+(A)− γ+(B)| ≤
( n

δ2
+ n2

)
‖A− B‖Op.

3 Let S1 = {x ∈ Cn , ‖x‖1 = 1} denote the compact unit sphere with respect to the
l1 norm, and let B(S1) denote the set of Borel measures over S1. Then:

γ+(A) = inf
µ∈B(S1):

∫
S1

xx∗dµ(x)=A
µ(S1) , µ∗(x) =

m∑
k=1

λkδ(x − gk)

where γ+(A) =
∑m

k=1 λk and A =
∑m

k=1 λkgkg
∗
k is the optimal factorization.
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Primal and dual problems for γ+

The linear program is a convex optimization problem (which is great), but it is defined
on an infinite dimensional space (not so great!).
Its dual problem enjoys strong duality (this may not be obvious due to infinite
dimensional technical issues):

Theorem
Assume A ≥ 0. Its associated primal (min) & dual (max) problems are:

max
T=T∗:〈Tx,x〉≤1 , ∀ ‖x‖1≤1

trace(TA) = min
µ∈B(S1):

∫
S1

xx∗dµ(x)=A
µ(S1) = γ+(A)

Why? Assume the optimal support {x1, . . . , xm} is known.
Construct the Lagrange function

L(t1, . . . , tm;T , ν1, . . . , νm) =
m∑

k=1

tk + trace

(
T (A−

m∑
k=1

tkxkx
∗
k )

)
−

m∑
k=1

νktk .

The dual function

g(T , ν1, . . . , νm) := inf
t
L(t;T , ν) =

{
trace(TA) if 1− 〈Txk , xk〉 − νk = 0 , νk ≥ 0

−∞ if otherwise
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Note the quantity:
ρ1(T ) = max

x :‖x‖1≤1
〈Tx , x〉

The dual problem
max

T=T∗:〈Tx,x〉≤1 , ∀ ‖x‖1≤1
trace(TA)

can be reformulated as

γ+(A) = max
T=T∗:ρ1(T )≤1

trace(TA)

The optimal constant Cn from γ+(A) ≤ Cn‖A‖1 turns into

Cn = max
A≥0:‖A‖1≤1

γ+(A) = max
A≥0:

‖A‖1≤1

max
T=T∗:

ρ1(T )≤1

trace(TA) = max
A≥0:

A 6=0

max
T=T∗:

ρ1(T )>0

trace(TA)

‖A‖1 ρ1(T )
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The bound ρ1

Recall, for T = T ∗:
ρ1(T ) = max

x :‖x‖1≤1
〈Tx , x〉

How to compute it?
Easy cases:

1 If T ≤ 0 then ρ1(T ) = 0

2 If T ≥ 0 then

ρ1(T ) = max
k

Tk,k = max
i,j
|Ti,j | =: ‖T‖∞

This resembles the numerical radius of a matrix, r(T ) = max‖x‖2=1 |〈Tx , x〉|,
which for hermitian matrices equals the largest singular value (operator norm).
Note differences: (i) ‖ · ‖2 → ‖ · ‖1; (ii) no absolute value |.|.
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The bound ρ1 (2)

Assume λmax(T ) > 0, i.e. T is NOT negative semi-definite. Then:

ρ1(T ) = max
x :‖x‖1=1

〈Tx , x〉 = max
A ≥ 0 :

rank(A) = 1
‖A‖1 = 1

trace(TA) = max
A ≥ 0 :

rank(A) = 1
‖A‖1 ≤ 1

trace(TA)

Convex relaxation:
π+(T ) := max

A ≥ 0 :
‖A‖1 ≤ 1

trace(TA)

which is a semi-definite program (SDP). Thus:

ρ1(T ) ≤ π+(T ).
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Primal and dual problems for ρ1

The SDP enjoys strong duality:

Theorem
Assume T = T ∗. The primal-dual programs have strong duality:

π+(T ) = max
A ≥ 0 :
‖A‖1 ≤ 1

trace(TA) = min
Y≥0
‖T + Y ‖∞

where ‖Z‖∞ = maxi,j |Zi,j |.

The proof of this theorem is based on the Von Neumann’s min-max theorem:

min
Y≥0
‖T + Y ‖∞ = min

Y≥0
max

A:‖A‖1≤1
trace((T + Y )A)

vN
= max

A:‖A‖1≤1
min
Y≥0

trace((T + Y )A) =

= max
A:‖A‖1≤1

(
trace(TA) + min

Y≥0
trace(YA)

)
= max

A≥0:‖A‖1≤1

(
trace(TA) + min

Y≥0
trace(YA)

)
=

= max
A≥0:‖A‖1≤1

trace(TA) = π+(T )
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Closing the loop

The final result: the connection between γ+(A) and Cn on one hand, and ρ1(T )
and π+(T ) on the other hand:

Theorem

Cn := max
A ≥ 0
A 6= 0

γ+(A)

‖A‖1

= max
T = T ∗

ρ1(T ) 6= 0

π+(T )

ρ1(T )

The proof is based on the earlier derivation:

Cn = max
A ≥ 0 :
A 6= 0

max
T = T ∗ :
ρ1(T ) > 0

trace(TA)

‖A‖1 ρ1(T )
= max

T = T ∗ :
ρ1(T ) > 0

max
A ≥ 0 :
A 6= 0

trace(TA)

‖A‖1 ρ1(T )
=

= max
T = T ∗ :
ρ1(T ) > 0

1

ρ1(T )
max

A ≥ 0 :
‖A‖1 = 1

trace(TA) = max
T = T ∗ :
ρ1(T ) > 0

π+(T )

ρ1(T )

Radu Balan (UMD) Factorizations and Quadratic Bounds March 25, 2025



Introduction γ+ Quadratic Bounds Infinite Dim Proofs

Closing the loop

The final result: the connection between γ+(A) and Cn on one hand, and ρ1(T )
and π+(T ) on the other hand:

Theorem

Cn := max
A ≥ 0
A 6= 0

γ+(A)

‖A‖1

= max
T = T ∗

ρ1(T ) 6= 0

π+(T )

ρ1(T )

The proof is based on the earlier derivation:

Cn = max
A ≥ 0 :
A 6= 0

max
T = T ∗ :
ρ1(T ) > 0

trace(TA)

‖A‖1 ρ1(T )
= max

T = T ∗ :
ρ1(T ) > 0

max
A ≥ 0 :
A 6= 0

trace(TA)

‖A‖1 ρ1(T )
=

= max
T = T ∗ :
ρ1(T ) > 0

1

ρ1(T )
max

A ≥ 0 :
‖A‖1 = 1

trace(TA) = max
T = T ∗ :
ρ1(T ) > 0

π+(T )

ρ1(T )

Radu Balan (UMD) Factorizations and Quadratic Bounds March 25, 2025



Introduction γ+ Quadratic Bounds Infinite Dim Proofs

Bandeira-Mixon-Steinerberger Result

Last year B-M-S announced:

Theorem (Afonso Bandeira, Dustin Mixon, Stefan Steinerberger -
Oberwolfach 2024; ACHA 2024)

There are α > 0, N0 > 1 so that for any n ≥ N0,

Cn ≥ α
√
n

Consequence:

Theorem (R.B, F.Jiang)

1. There exists a PSD trace-class A = A∗ ≥ 0, A = (Am,n)m,n≥0 with∑
m,n |Am,n| <∞, so that for any factorization A =

∑
k≥0 fk f

∗
k ,
∑

k≥0 ‖fk‖
2
1 =∞.

2. There exists K ∈ M1(R2) so that: (i) K (x , y) = K (y , x) for all x , y ; (ii)∫
R2 K (x , y)f (y)f (x)dxdy ≥ 0 for all f ∈ L2(R); and (iii) for any (gn)n≥0 with∫
R K (x , y)f (y)dy =

∑
n≥0 〈f , gn〉gn(x), ∀f ∈ L2(R),

∑
n≥0 ‖gn‖

2
M1 =∞.
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Denote by Γ and Γ+ these classes:

Γ = {A = (Am,n)m,n≥0 : A = A∗ ≥ 0 , ‖A‖1 :=
∑
m,n

|Am,n| <∞}

Γ+ := {A ∈ Γ , ∃(xk)k≥1 ∈ l1(N) , A =
∑
k≥1

xkx
∗
k ,

∑
k≥1

‖xk‖2
1 <∞}

For A ∈ Γ+, let γ+(A) denote the optimal bound:

γ+(A) = inf

∑
k≥1

‖xk‖2
1 , A =

∑
k≥1

xkx
∗
k strongly l∞ → lq,∀q ∈ [1,∞)


Then:

Theorem (Corollary of the BMS Result)

Γ+ ( Γ.
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An approximation result:

Theorem (Density)

Let A ∈ Γ and ε > 0. There exist operators B,C ∈ Γ+ so that:

1 A = B − C ;

2 γ+(C ) < ε.

In particular, Γ+ is dense in Γ in the ‖ · ‖1 topology.

An invariance result:

Theorem (Algebraic Cone)

Let p be a univariate polynomial with nonnegative coefficients. Suppose A ∈ Γ+.
Then p(A) ∈ Γ+.
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Thank you for listening! ... QUESTIONS?
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The Continuity Property

Theorem (The Continuity Property)

The map γ+ : (Sym+(Cn), ‖ · ‖)→ R is continuous.

Remarks

1 This statement extends the continuity result from
Sym++(Cn) = {A = A∗ > 0} to Sym+(Cn) = {A = A∗ ≥ 0}.

2 Proof is based on a (new?) comparison result between non-negative
operators.

3 Global Lipschitz is still open.
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The Continuity Property

The proof is based on the following two lemmas:

Lemma (L1)

Let A ∈ Sym+(Cn) of rank r > 0. Let λr > 0 denote the r th eigenvalue of A, and
let PA,r denote the orthogonal projection onto the range of A. For any 0 < ε < 1
and B ∈ Sym+(Cn) such that ‖A− B‖Op ≤

ελr

1−ε , the following holds true:

A− (1− ε)PA,rBPA,r ≥ 0 (1)

Lemma (L2)

Let A ∈ Sym+(Cn) of rank r > 0. Let λr > 0 denote the r th eigenvalue of A. For
any 0 < ε < 1

2 and B ∈ Sym+(Cn) such that ‖A− B‖Op ≤ ελr , the following
holds true:

B − (1− ε)PB,rAPB,r ≥ 0 (2)

where PB,r denotes the orthogonal projection onto the top r eigenspace of B.
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Proof of Continuity of γ+

Fix A ∈ Sym+(Cn). Let (Bj)j≥1, Bj ∈ Sym+(Cn), be a convergent sequence to A.
We need to show γ+(Bj)→ γ+(A).

Let A =
∑n2

k=1 xkx
∗
k be the optimal decomposition of A such that

γ+(A) =
∑n2

k=1 ‖xk‖
2
1.

If A = 0 then γ+(A) = 0 and

0 ≤ γ+(Bj) ≤ n trace(Bj) ≤ n2‖Bj‖Op.

Hence limj γ+(Bj) = 0.
Assume rank(A) = r > 0 and let λr > 0 denote the smallest strictly positive
eigenvalue of A. Let ε ∈ (0, 1

2 ) be arbitrary. Let J = J(ε) be so that

‖A− Bj‖Op < ελr for all j > J. Let Bj =
∑n2

k=1 yj,ky
∗
j,k be the optimal

decomposition of Bj such that γ+(Bj) =
∑n2

k=1 ‖yj,k‖
2
1.

Let ∆j = A− (1− ε)PA,rBjPA,r . By Lemma L1, for any j > J,

γ+(A) ≤ (1− ε)γ+(PA,rBjPA,r ) + γ+(∆j) ≤ (1− ε)
n2∑
k=1

‖PA,ryj,k‖2
1 + n trace(∆j)
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Proof of Continuity of γ+ (cont)

Pass to a subsequence j ′ of j so that yj′,k → yk , for every k ∈ [n2], and
γ+(Bj′)→ lim inf j γ+(Bj). Then limj′ PA,ryj′,k = PA,ryk = yk and

lim
j′

n2∑
k=1

‖PA,ryj′,k‖2
1 = lim

j′

n2∑
k=1

‖yj′,k‖2
1 = lim inf

j
γ+(Bj)

On the other hand, limj trace(∆j) = ε trace(A). Hence:

γ+(A) ≤ (1− ε) lim inf
j

γ+(Bj) + ε trace(A)

Since ε > 0 is arbitrary, it follows γ+(A) ≤ lim inf j γ+(Bj).
The inequality lim supj γ+(Bj) ≤ γ+(A) follows from Lemma L2 similarly: with

∆j = Bj − (1− ε)PBj ,rAPBj ,r and A =
∑n2

k=1 xkx
∗
k optimal,

γ+(Bj) ≤ (1−ε)γ+(PBj ,rAPBj ,r )+n trace(∆j) = (1−ε)
n2∑
k=1

‖PBj ,rxk‖
2

1
+n trace(∆j).

Next take limsup of lhs by noticing PBj ,r → PA,r and lim supj ‖∆j‖Op = ε‖A‖Op:

lim supj γ+(Bj) ≤ (1− ε)γ+(A) + n2ε‖A‖Op. Take ε− > 0 and result follows. �
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Proof of Lemmas
Proof of Lemma L1

Let P = PA,r . and ∆ = A− (1− ε)PA,rBPA,r . For any x ∈ Cn:

〈∆x , x〉 = 〈APx ,Px〉 − (1− ε)〈BPx ,Px〉 = 〈(A− (1− ε)B)Px ,Px〉 =

= ε〈APx ,Px〉+(1−ε)〈(A− B)Px ,Px〉 ≥ ελr‖Px‖2−(1−ε)‖A− B‖Op‖Px‖
2 ≥ 0

because ‖A− B‖Op ≤
ελr

1−ε .

Proof of Lemma L2
Let P = PB,r and ∆ = B − (1− ε)PB,rAPB,r . Let C = B − PB,rBPB,r ≥ 0. Let
µr be the r th eigenvalue of B. Note |µr − λr | ≤ ‖A− B‖Op ≤ ελr . Thus
µr ≥ (1− ε)λr . For any x ∈ Cn:

〈∆x , x〉 = 〈Cx , x〉+ 〈BPx ,Px〉 − (1− ε)〈APx ,Px〉 = 〈Cx , x〉+ ε〈BPx ,Px〉+

+(1− ε)〈(B − A)Px ,Px〉 ≥ 〈Cx , x〉+ (εµr − (1− ε)‖A− B‖Op)‖Px‖2 ≥ 0

because ‖A− B‖Op ≤ ελr ≤
εµr

1−ε .
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The Linear Program approach
Optimal Factorization from a Measure Theoretic Viewpoint

Let S1 = {x ∈ Cn , ‖x‖1 = 1} denote the compact unit sphere with respect to
the l1 norm, and let B(S1) denote the set of Borel measures over S1. For
A ∈ Sym(Cn)+(Cn) consider the optimization problem:

(p∗, µ∗) = infµ∈B(S1):
∫
S1

xx∗dµ(x)=A µ(S1) (M)

Theorem (Optimal Measure)

For any A ∈ Sym+(Cn) the optimization problem (M) is convex and its global
optimum (minimum) is achieved by

p∗ = γ+(A) , µ∗(x) =
m∑

k=1

λkδ(x − gk)

where A =
∑m

k=1(
√
λkgk)(

√
λkgk)∗ is an optimal decomposition that achieves

γ+(A) =
∑m

k=1 λk .
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Super-resolution and Convex Optimizations

γ+(A) = min
x1,...,xm : A=

∑
k xkx

∗
k

m∑
k=1

‖xk‖2
1 , m = n2 (P)

p∗ = inf
µ∈B(S1) : A=

∫
S1

xx∗dµ(x)

∫
S1

dµ(x) (M)

Remarks
1 The optimization problem (P) is non-convex, but finite-dimensional. The

optimization problem (M) is convex, but infinite-dimensional.

2 If g1, ..., gm ∈ S1 in the support of µ∗ are known so that
µ∗ =

∑m
k=1 λkδ(x − gk), then the optimal λ1, ..., λm ≥ 0 are determined by a

linear program. More general, (M) is an infinite-dimensional linear program.

3 Finding the support of µ∗ is an example of a super-resolution problem. One
possible approach is to choose a redundant dictionary (frame) that includes
the support of µ∗, and then solve the induced linear program.
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Proof of the Optimal Measure Result

Recall: we want to show the following problems admit the same solution:

γ+(A) = min
x1,...,xm : A=

∑
k xkx

∗
k

m∑
k=1

‖xk‖2
1 , m = n2 (P)

p∗ = inf
µ∈B(S1) : A=

∫
S1

xx∗dµ(x)

∫
S1

dµ(x) (M)

a. Assume A =
∑m

k=1 xkx
∗
k is a global minimum for (P). Then

µ(x) =
∑m

k=1 ‖xk‖
2
1δ(x − xk

‖xk‖1
) is a feasible solution for (M). This shows

p∗ ≤ γ+(A).
b. For reverse: Let µ∗ be an optimal measure in (M). Fix ε > 0. Construct a
disjoint partition (Ul)1≤l≤L of S1 so that each Ul is included in some ball Bε(zl) of
radius ε with ‖zl‖1 = 1. Thus Ul ⊂ Bε(zl) ∩ S1.

For each l , compute xl = 1
µ∗(Ul )

∫
Ul
x dµ∗(x) ∈ Bε(zl). Let gl =

√
µ∗(Ul)xl .
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Proof: The Optimal Measure Result (cont)

Key inequality:

0 ≤ Rl :=

∫
Ul

(x − xl)(x − xl)
∗ dµ∗(x) =

∫
Ul

xx∗ dµ∗(x) − µ∗(Ul)xlx
∗
l

Sum over l and with R =
∑L

l=1 Rl get

A =
L∑

l=1

∫
Ul

xx∗ dµ∗(x) ≤
L∑

l=1

glg
∗
l + R

By sub-additivity and homogeneity:

γ+(A) ≤
L∑

l=1

‖gl‖2
1 + γ+(R) ≤

L∑
l=1

µ∗(Ul)‖xl‖2
1 + n trace(R)

But ‖xl − zl‖1 ≤ ε and ‖x − xl‖1 ≤ 2ε for every x ∈ Ul . Hence ‖xl‖1 ≤ 1 + ε and
trace(Rl) ≤ 4µ∗(Ul)ε

2. (In fact, ‖xl‖1 ≤ 1 by triangle inequality)
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Proof: The Optimal Measure Result (end)

Thus:
γ+(A) ≤ µ∗(S1) + (2ε+ ε2 + 4nε2)µ∗(S1)

Since ε > 0 is arbitrary, it follows

γ+(A) ≤ µ∗(S1) = p∗

This ends the proof of the measure result. �
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Third new result: Strong duality for γ+

Theorem
For every A ≥ 0,

max
T = T ∗

〈Tx , x〉 ≤ 1 , ∀ ‖x‖1 ≤ 1

trace(TA) = min
µ ∈ B(S1)∫

S1
xx∗dµ(x) = A

µ(S1) = γ+(A)

Proof [Fushuai “Black” Jiang]
The second equality was established earlier as a “super-resolution” result.
For the first equality:
1. Let A =

∑m
k=1 xkx

∗
k be its optimal decomposition such that

γ+(A) =
∑m

k=1 ‖xk‖
2
1, and let T = T ∗ be a generic matrix so that 〈Ty , y〉 ≤ 1 for

all ‖y‖1 ≤ 1. Denote yk = xk
‖xk‖1

. Then

trace(TA) =
m∑

k=1

〈Txk , xk〉 =
m∑

k=1

‖xk‖2
1〈Tyk , yk〉 ≤

m∑
k=1

‖yk‖2
1 = γ+(A)
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Proof of strong duality for γ+ (2)

2. For the reverse inequality, let H ⊂ Sym+(Cn)× R denote the set

H =

{
(

∫
S1

zz∗ dµ(z), r +

∫
S1

dµ) , µ ∈ B(S1) , r ≥ 0

}
Claim 1: H is closed.
Use Banach-Alaoglou theorem that the set of unit Borel measures is weak-*
compact.
Claim 2: H is convex. – immediate
Let q = maxT=T∗ trace(TA) subject to 〈Tx , x〉 ≤ 1 for all ‖x‖1 ≤ 1.
Claim 3: (A, q) ∈ H, which establishes the theorem.
Assume the contrary: (A, q) 6∈ H. Then it is separated by a hyperplane from H:

trace

(
R

∫
S1

xx∗ dµ(z)

)
+a(r+

∫
S1

dµ) ≥ c0 > trace(AR)+aq , ∀µ ∈ B(S1), r ≥ 0

Deduce: a ≥ 0, c0 ≤ 0. If a = 0 then contradiction for µ = µ∗. Rescale by
dividing through a. Denote T0 = −R/a.
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Proof of strong duality for γ+ (3)

We obtained: ∫
S1

(1− 〈T0x , x〉)dµ ≥ c0 > q − trace(AT0)

for every Borel measure µ ∈ B(S1). This means 〈T0x , x〉 ≤ 1 for all ‖x‖ = 1. This
also implies 〈T0x , x〉 ≤ 1 for all ‖x‖1 ≤ 1. On the other hand
q < trace(AT0) + c0 ≤ trace(AT0) which contradicts the optimality of q. Q.E.D.
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