| Introduction | Quadratic Bounds | Infinite Dim | Proofs |
|--------------|------------------|--------------|--------|
|              |                  |              |        |
|              |                  |              |        |

Factorization of positive-semidefinite operators with absolutely summable entries

#### Radu Balan

University of Maryland Department of Mathematics and the Norbert Wiener Center College Park, Maryland *rvbalan@umd.edu* 

March 25, 2025

Joint work with Fushuai (Black) Jiang, arXiv:2409.20372 [math.FA] Codex Seminar 2025





|                 |  | Quadratic Bounds |  |  |  |
|-----------------|--|------------------|--|--|--|
|                 |  |                  |  |  |  |
|                 |  |                  |  |  |  |
| Acknowledgments |  |                  |  |  |  |

### Acknowledgments



This material is based upon work partially supported by the National Science Foundation under grant no. DMS-2108900 and by Simons Foundation. "Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation."

#### Works:

- R. Balan, K. Okoudjou, A. Poria, On a Feichtinger Problem, Operators and Matrices vol. 12(3), 881-891 (2018) http://dx.doi.org/10.7153/oam-2018-12-53
- R. Balan, K.A. Okoudjou, M. Rawson, Y. Wang, R. Zhang, *Optimal 11 Rank One Matrix Decomposition*, in "Harmonic Analysis and Applications", Rassias M., Ed. Springer (2021)
- R. Balan, F. Jiang, Factorization of positive-semidefinite operators with absolutely summable entries, arXiv:2409.20372 [math.FA] [math.CA]

イロト イヨト イヨト

| Introduction |             | Quadratic Bounds |  |
|--------------|-------------|------------------|--|
| 00000        |             |                  |  |
|              |             |                  |  |
| Motivatio    | on          |                  |  |
| A Problem by | Feichtinger |                  |  |

At a 2004 Oberwolfach meeting, Hans Feichtinger asked the following question: (Q1) Given a positive semi-definite trace-class operator  $T : L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$ ,  $Tf(x) = \int K(x, y)f(y)dy$ , with  $K \in M^1(\mathbb{R}^d \times \mathbb{R}^d)$ , and its spectral factorization,  $T = \sum_k \langle \cdot, h_k \rangle h_k$ , must it be  $\sum_k \|h_k\|_{M^1}^2 < \infty$ ?

A modified version of the question is:

(Q2) Given T as before, i.e.,  $T = T^* \ge 0$ ,  $K \in M^1(\mathbb{R}^d \times \mathbb{R}^d)$ , is there a factorization  $T = \sum_k \langle \cdot, g_k \rangle g_k$  such that  $\sum_k \|g_k\|_{M^1}^2 < \infty$ ?

| Introduction $\gamma_{-}$ |     | Quadratic Bounds | Infinite Dim |               |
|---------------------------|-----|------------------|--------------|---------------|
| 00000 00                  | 0 0 | 000000           | 000          | 0000000000000 |

Matrix Language

Consider an infinite matrix  $A = (A_{m,n})_{m,n\geq 0}$  so that  $\|A\|_{\wedge} := \|A\|_1 := \sum_{m,n\geq 0} |A_{m,n}| < \infty$ . This implies that A acts on  $l^2(\mathbb{N})$  as a trace-class compact operator. Assume additionally  $A = A^* \geq 0$  as a quadratic form. Let  $(e_k)_{k\geq 0}$  denote an orthogonal set of eigenvectors normalized so that  $A = \sum_{k\geq 0} e_k e_k^*$ . It is easy to check that  $e_k \in l^1(\mathbb{N})$ , for each k. Equivalent reformulations of the two problems (Heil, Larson '08):

| Introduction |    | Quadratic Bounds |     |               |
|--------------|----|------------------|-----|---------------|
| 0000         | oo | 000000           | 000 | 0000000000000 |

Matrix Language

Consider an infinite matrix  $A = (A_{m,n})_{m,n\geq 0}$  so that  $\|A\|_{\wedge} := \|A\|_1 := \sum_{m,n\geq 0} |A_{m,n}| < \infty$ . This implies that A acts on  $I^2(\mathbb{N})$  as a trace-class compact operator. Assume additionally  $A = A^* \geq 0$  as a quadratic form. Let  $(e_k)_{k\geq 0}$  denote an orthogonal set of eigenvectors normalized so that  $A = \sum_{k\geq 0} e_k e_k^*$ . It is easy to check that  $e_k \in I^1(\mathbb{N})$ , for each k. Equivalent reformulations of the two problems (Heil, Larson '08): Q1: Does it hold  $\sum_{k\geq 0} \|e_k\|_1^2 < \infty$ ?

イロン イ団 とく ヨン イヨン

| Introduction |    | Quadratic Bounds |     |               |
|--------------|----|------------------|-----|---------------|
| 0000         | oò | 000000           | 000 | 0000000000000 |

Matrix Language

Consider an infinite matrix  $A = (A_{m,n})_{m,n\geq 0}$  so that  $\|A\|_{\wedge} := \|A\|_1 := \sum_{m,n\geq 0} |A_{m,n}| < \infty$ . This implies that A acts on  $I^2(\mathbb{N})$  as a trace-class compact operator. Assume additionally  $A = A^* \geq 0$  as a quadratic form. Let  $(e_k)_{k\geq 0}$  denote an orthogonal set of eigenvectors normalized so that  $A = \sum_{k\geq 0} e_k e_k^*$ . It is easy to check that  $e_k \in I^1(\mathbb{N})$ , for each k. Equivalent reformulations of the two problems (Heil, Larson '08): Q1: Does it hold  $\sum_{k\geq 0} \|e_k\|_1^2 < \infty$ ? Answer: Negative in general! (see [1])

イロン イ団 とく ヨン イヨン

| Introduction |    | Quadratic Bounds |     |               |
|--------------|----|------------------|-----|---------------|
| 00000        | oò | 000000           | 000 | 0000000000000 |

Matrix Language

Consider an infinite matrix  $A = (A_{m,n})_{m,n\geq 0}$  so that  $\|A\|_{\wedge} := \|A\|_1 := \sum_{m,n\geq 0} |A_{m,n}| < \infty$ . This implies that A acts on  $l^2(\mathbb{N})$  as a trace-class compact operator. Assume additionally  $A = A^* \geq 0$  as a quadratic form. Let  $(e_k)_{k\geq 0}$  denote an orthogonal set of eigenvectors normalized so that  $A = \sum_{k\geq 0} e_k e_k^*$ . It is easy to check that  $e_k \in l^1(\mathbb{N})$ , for each k. Equivalent reformulations of the two problems (Heil, Larson '08): Q1: Does it hold  $\sum_{k\geq 0} \|e_k\|_1^2 < \infty$ ? Answer: Negative in general! (see [1])

Q2: Is there a factorization 
$$A=\sum_{k\geq 0}f_kf_k^*$$
 so that  $\sum_{k\geq 0}\|f_k\|_1^2<\infty$  ?

| Introduction |    | Quadratic Bounds |     |               |
|--------------|----|------------------|-----|---------------|
| 0000         | oo | 000000           | 000 | 0000000000000 |

Matrix Language

Consider an infinite matrix  $A = (A_{m,n})_{m,n\geq 0}$  so that  $\|A\|_{\wedge} := \|A\|_1 := \sum_{m,n\geq 0} |A_{m,n}| < \infty$ . This implies that A acts on  $I^2(\mathbb{N})$  as a trace-class compact operator. Assume additionally  $A = A^* \geq 0$  as a quadratic form. Let  $(e_k)_{k\geq 0}$  denote an orthogonal set of eigenvectors normalized so that  $A = \sum_{k\geq 0} e_k e_k^*$ . It is easy to check that  $e_k \in I^1(\mathbb{N})$ , for each k. Equivalent reformulations of the two problems (Heil, Larson '08): Q1: Does it hold  $\sum_{k\geq 0} \|e_k\|_1^2 < \infty$ ? Answer: Negative in general! (see [1])

Q2: Is there a factorization 
$$A=\sum_{k\geq 0}f_kf_k^*$$
 so that  $\sum_{k\geq 0}\|f_k\|_1^2<\infty$  ?

Using functional analysis arguments:

### Proposition

If (Q2) is answered affirmatively, then there exists a universal constant  $k_U > 0$  so that every psd  $n \times n$  matrix  $A = A^* \ge 0$  admits a decomposition  $A = \sum_{k=1}^m f_k f_k^*$  so that  $\sum_{k=1}^m \|f_k\|_1^2 \le k_U \sum_{i,j=1}^n |A_{i,j}|$ .

Radu Balan (UMD)

| Introduction |     | Quadratic Bounds |  |
|--------------|-----|------------------|--|
| 00000        |     |                  |  |
|              |     |                  |  |
| 14/          | . E |                  |  |

### Warm-Up Exercise

Let  $A \in \mathbb{R}^{n \times n}$  be a matrix and consider the following optimization problem:

$$\gamma(A) := \inf_{A = \sum_{k \ge 1} x_k y_k^T} \sum_k \|x_k\|_1 \|y_k\|_1$$

| Introduction | Quadratic Bounds |  |
|--------------|------------------|--|
| 00000        |                  |  |
|              |                  |  |
|              |                  |  |

## Warm-Up Exercise

Let  $A \in \mathbb{R}^{n \times n}$  be a matrix and consider the following optimization problem:

$$\gamma(A) := \inf_{A = \sum_{k \ge 1} x_k y_k^T} \sum_k \|x_k\|_1 \|y_k\|_1$$

Note:

$$A = [A_{i,j}]_{i,j\in[n]} = \begin{bmatrix} A_{11} \\ A_{21} \\ \vdots \\ A_{n1} \end{bmatrix} \cdot [1,0,\cdots,0] + \cdots + \begin{bmatrix} A_{1n} \\ A_{2n} \\ \vdots \\ A_{nn} \end{bmatrix} \cdot [0,0,\cdots,1]$$

From where:  $\gamma(A) \leq \sum_{i,j} |A_{i,j}| =: ||A||_1$ .

イロト 不同下 不同下 不同下

| Introduction | Quadratic Bounds |  |
|--------------|------------------|--|
| 00000        |                  |  |
|              |                  |  |
|              |                  |  |

## Warm-Up Exercise

Let  $A \in \mathbb{R}^{n \times n}$  be a matrix and consider the following optimization problem:

$$\gamma(A) := \inf_{A = \sum_{k \ge 1} x_k y_k^T} \sum_k \|x_k\|_1 \|y_k\|_1$$

Note:

$$A = [A_{i,j}]_{i,j\in[n]} = \begin{bmatrix} A_{11} \\ A_{21} \\ \vdots \\ A_{n1} \end{bmatrix} \cdot [1,0,\cdots,0] + \cdots + \begin{bmatrix} A_{1n} \\ A_{2n} \\ \vdots \\ A_{nn} \end{bmatrix} \cdot [0,0,\cdots,1]$$

From where:  $\gamma(A) \leq \sum_{i,j} |A_{i,j}| =: ||A||_1$ . For converse: Let  $A = \sum_k x_k y_k^T$  be the optimal decomposition. Then:

$$\|A\|_{1} = \|\sum_{k} x_{k} y_{k}^{T}\|_{1} \leq \sum_{k} \|x_{k} y_{k}^{T}\|_{1} = \sum_{k} \|x_{k}\|_{1} \|y_{k}\|_{1} = \gamma(A).$$

| Introduction    |    | Quadratic Bounds |     |              |  |
|-----------------|----|------------------|-----|--------------|--|
| 00000           | oò | 0000000          | 000 | 000000000000 |  |
|                 |    |                  |     |              |  |
| Projective norm |    |                  |     |              |  |

We obtained:

$$\gamma(A) := \inf_{A = \sum_{k \ge 1} x_k y_k^T} \sum_k \|x_k\|_1 \|y_k\|_1 = \sum_{i,j} |A_{i,j}| =: \|A\|_1$$

folowing Grothendieck, the last norm is sometime referred to as projective norm,  $\|A\|_{\wedge}.$ 

メロト メタト メヨト メヨト

| Introduction    |    | Quadratic Bounds |     |              |  |  |
|-----------------|----|------------------|-----|--------------|--|--|
| 00000           | oò | 0000000          | 000 | 000000000000 |  |  |
|                 |    |                  |     |              |  |  |
| Projective norm |    |                  |     |              |  |  |

## Projective norm

We obtained:

$$\gamma(A) := \inf_{A = \sum_{k \ge 1} x_k y_k^T} \sum_k \|x_k\|_1 \|y_k\|_1 = \sum_{i,j} |A_{i,j}| =: \|A\|_1$$

folowing Grothendieck, the last norm is sometime referred to as *projective norm*,  $\|A\|_{\wedge}$ .

Assume now that  $A = A^{T}$ . Considered a more constrained optimization problem:

$$\gamma_0(A) := \inf_{\substack{A = \sum_{k \ge 1} \varepsilon_k x_k x_k^T \\ \varepsilon_k \in \{+1, -1\}}} \sum_k \|x_k\|_1^2$$

< □ > < □ > < □ > < □ > < □ >

| Introduction |         | Quadratic Bounds |  |
|--------------|---------|------------------|--|
| 00000        |         |                  |  |
|              |         |                  |  |
| Projectiv    | ve norm |                  |  |

We obtained:

$$\gamma(A) := \inf_{A = \sum_{k \ge 1} x_k y_k^T} \sum_k \|x_k\|_1 \|y_k\|_1 = \sum_{i,j} |A_{i,j}| =: \|A\|_1$$

folowing Grothendieck, the last norm is sometime referred to as *projective norm*,  $||A||_{\wedge}$ .

Assume now that  $A = A^{T}$ . Considered a more constrained optimization problem:

$$\gamma_0(A) := \inf_{\substack{A = \sum_{k \ge 1} \varepsilon_k x_k x_k^T \\ \varepsilon_k \in \{+1, -1\}}} \sum_k \|x_k\|_1^2$$

It is not hard to show that  $\gamma_0$  is a norm on  $Sym(\mathbb{R}^n)$  (or  $Sym(\mathbb{C}^n)$ ), and  $||A||_1 \leq \gamma_0(A)$ .

| Introduction | Quadratic Bounds |  |
|--------------|------------------|--|
| 00000        |                  |  |
|              |                  |  |
| Droigetin    |                  |  |

## Projective norm

We obtained:

$$\gamma(A) := \inf_{A = \sum_{k \ge 1} x_k y_k^T} \sum_k \|x_k\|_1 \|y_k\|_1 = \sum_{i,j} |A_{i,j}| =: \|A\|_1$$

folowing Grothendieck, the last norm is sometime referred to as *projective norm*,  $||A||_{\wedge}$ .

Assume now that  $A = A^{T}$ . Considered a more constrained optimization problem:

$$\gamma_0(A) := \inf_{\substack{A = \sum_{k \ge 1} \varepsilon_k x_k x_k^T \\ \varepsilon_k \in \{+1, -1\}}} \sum_k \|x_k\|_1^2$$

It is not hard to show that  $\gamma_0$  is a norm on  $Sym(\mathbb{R}^n)$  (or  $Sym(\mathbb{C}^n)$ ), and  $||A||_1 \leq \gamma_0(A)$ . Leveraging the fact that  $\frac{1}{2}(xy^T + yx^T) = \frac{1}{4}((x+y)(x+y)^T - (x-y)(x-y)^T)$  one obtains:

$$\|A\|_{1} \leq \gamma_{0}(A) := \inf_{\substack{A = \sum_{k \geq 1} \varepsilon_{k} x_{k} x_{k}^{T} \\ \varepsilon_{k} \in \{+1, -1\}}} \sum_{k} \|x_{k}\|_{1}^{2} \leq 2\|A\|_{1}$$

| Introduction |    | Quadratic Bounds |     |               |
|--------------|----|------------------|-----|---------------|
| 00000        | oo | 0000000          | 000 | 0000000000000 |
|              |    |                  |     |               |

## Problem Formulation

Let  $Sym^+(\mathbb{C}^n) = \{A \in \mathbb{C}^{n \times n} \ , \ A^* = A \ge 0\}$ . For  $A \in Sym^+(\mathbb{C}^n)$ , denote

$$\gamma_+(A) := \inf_{A = \sum_{k \ge 1} x_x x_k^*} \sum_k ||x_k||_1^2$$

It is obvious that  $\|A\|_1 \leq \gamma_0(A) \leq \gamma_+(A)$ .

| Introduction |    | Quadratic Bounds |     |               |
|--------------|----|------------------|-----|---------------|
| 00000        | 00 | 000000           | 000 | 0000000000000 |
|              |    |                  |     |               |

## Problem Formulation

Let  $Sym^+(\mathbb{C}^n) = \{A \in \mathbb{C}^{n \times n} \ , \ A^* = A \ge 0\}$ . For  $A \in Sym^+(\mathbb{C}^n)$ , denote

$$\gamma_+(A) := \inf_{A = \sum_{k \ge 1} x_x x_k^*} \sum_k \|x_k\|_1^2$$

It is obvious that  $\|A\|_1 \leq \gamma_0(A) \leq \gamma_+(A)$ .

The matrix problem: For every  $n \ge 1$  find the best constant  $C_n$  such that, for every  $A \in Sym^+(\mathbb{C}^n)$ ,

$$\gamma_{+}(A) \leq C_{n} \|A\|_{1} := C_{n} \sum_{k,l=1}^{n} |A_{k,l}|$$

That is, we are interested in finding:

$$C_n = \sup_{A \ge 0} \frac{\gamma_+(A)}{\|A\|_1}$$

|           |                     | Quadratic Bounds |     |              |
|-----------|---------------------|------------------|-----|--------------|
| 00000     | •0                  | 0000000          | 000 | 000000000000 |
|           |                     |                  |     |              |
|           |                     | X.               |     |              |
| Pronertie | es of $\gamma_+(A)$ |                  |     |              |
| rioperu   | ,+(/i               | ·)               |     |              |

$$\gamma_{+}(A) := \inf_{A = \sum_{k \ge 1} x_{k} x_{k}^{*}} \sum_{k} \|x_{k}\|_{1}^{2} = \min_{A = \sum_{k=1}^{n^{2}} x_{k} x_{k}^{*}} \sum_{k} \|x_{k}\|_{1}^{2}.$$

| Introduction<br>00000 | $\gamma_+$ $\bullet \circ$ | Quadratic Bounds<br>0000000 | Infinite Dim<br>000 | Proofs<br>0000000000000 |
|-----------------------|----------------------------|-----------------------------|---------------------|-------------------------|
| <b>D</b>              | <b>C</b> ( <b>A</b>        | <b>\</b>                    |                     |                         |
| Propertie             | s of $\gamma_+(A)$         | )                           |                     |                         |

$$\gamma_{+}(A) := \inf_{A = \sum_{k \ge 1} x_{k} x_{k}^{*}} \sum_{k} \|x_{k}\|_{1}^{2} = \min_{A = \sum_{k=1}^{n^{2}} x_{k} x_{k}^{*}} \sum_{k} \|x_{k}\|_{1}^{2}.$$

Upper bounds:

$$egin{aligned} &\gamma_+(A) \leq n ext{ trace}(A) \leq n \|A\|_1 = n \sum_{k,j} |A_{k,j}| \ &\gamma_+(A) \leq n ext{ trace}(A) \leq n^2 \|A\|_{Op} \end{aligned}$$

メロト メロト メヨト メヨト

| Introduction | $\gamma_+$          | Quadratic Bounds |     | Proofs       |
|--------------|---------------------|------------------|-----|--------------|
| 00000        | •0                  | 0000000          | 000 | 000000000000 |
|              |                     |                  |     |              |
|              |                     |                  |     |              |
| D            | C (A                | <b>\</b>         |     |              |
| Propertie    | es of $\gamma_+(A)$ |                  |     |              |
| - oper ere   | /+(/                | /                |     |              |

$$\gamma_{+}(A) := \inf_{A = \sum_{k \ge 1} x_{k} x_{k}^{*}} \sum_{k} \|x_{k}\|_{1}^{2} = \min_{A = \sum_{k=1}^{n^{2}} x_{k} x_{k}^{*}} \sum_{k} \|x_{k}\|_{1}^{2}.$$

Upper bounds:

$$\gamma_+(\mathsf{A}) \leq \mathsf{n}\,\mathsf{trace}(\mathsf{A}) \leq \mathsf{n}\|\mathsf{A}\|_1 = \mathsf{n}\sum_{k,j}|\mathsf{A}_{k,j}|$$

$$\gamma_+(A) \leq n \, trace(A) \leq n^2 \|A\|_{\mathit{Op}}$$

Lower bounds:

$$\|A\|_{1} = \min_{A = \sum_{k \ge 1} x_{x} y_{k}^{*}} \sum_{k} \|x_{k}\|_{1} \|y_{k}\|_{1} \le \gamma_{+}(A)$$

・ロト ・回ト ・ヨト ・ヨト

| Introduction<br>00000 | $\gamma_+$ •o             | Quadratic Bounds<br>0000000 | Infinite Dim<br>000 | Proofs<br>0000000000000 |
|-----------------------|---------------------------|-----------------------------|---------------------|-------------------------|
|                       |                           |                             |                     |                         |
| Propertie             | es of $\gamma_{\perp}(A)$ |                             |                     |                         |

$$\gamma_{+}(A) := \inf_{A = \sum_{k \ge 1} x_{k} x_{k}^{*}} \sum_{k} \|x_{k}\|_{1}^{2} = \min_{A = \sum_{k=1}^{n^{2}} x_{k} x_{k}^{*}} \sum_{k} \|x_{k}\|_{1}^{2}.$$

1.

Upper bounds:

$$\gamma_+(\mathsf{A}) \leq \mathsf{n} \, \mathsf{trace}(\mathsf{A}) \leq \mathsf{n} \|\mathsf{A}\|_1 = \mathsf{n} \sum_{k,j} |\mathsf{A}_{k,j}|$$

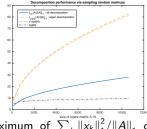
$$\gamma_+(A) \leq n \operatorname{trace}(A) \leq n^2 \|A\|_{Op}$$

Lower bounds:

$$\|A\|_{1} = \min_{A = \sum_{k \ge 1} x_{x} y_{k}^{*}} \sum_{k} \|x_{k}\|_{1} \|y_{k}\|_{1} \le \gamma_{+}(A)$$

Convexity: for  $A, B \in Sym^+(\mathbb{C}^n)$  and  $t \ge 0$ ,

$$\gamma_+(A+B) \leq \gamma_+(A) + \gamma_+(B) \ , \ \gamma_+(tA) = t\gamma_+(A)$$



Maximum of  $\sum_{k}^{n} ||x_{k}||_{1}^{2}/||A||_{1}$  over 30 random noise realizations, where  $x'_{k}s$  are obtained from the eigendecomposition, or the LDL factorization.

| Introduction | $\overset{\gamma_+}{\circ}$ | Quadratic Bounds | Infinite Dim | Proofs        |
|--------------|-----------------------------|------------------|--------------|---------------|
| 00000        |                             | 0000000          | 000          | 0000000000000 |
| Propertie    | es of $\gamma_{\pm}(A)$     | )                |              |               |

Lower bound is achieved,  $\gamma_+(A) = ||A||_1$  in the following cases:

- If  $A = xx^*$  is of rank one.
- **2** If  $A \ge 0$  is a diagonally dominant matrix,  $A_{ii} \ge \sum_{k \neq i} |A_{i,k}|$ .
- If  $A \ge 0$  admits a Non Negative Matrix Factorization (NNMF),  $A = BB^T$  with  $B_{ij} \ge 0$ .

Continuity, Lipschitz and linear program reformulation:

- $\gamma_+ : Sym^+(\mathbb{C}^n) \to \mathbb{R}$  is continuous.
- **2** If  $A, B \ge \delta I$  and  $trace(A), trace(B) \le 1$  then

$$|\gamma_+(A)-\gamma_+(B)|\leq \left(rac{n}{\delta^2}+n^2
ight)\|A-B\|_{Op}.$$

One Let S<sub>1</sub> = {x ∈ C<sup>n</sup>, ||x||<sub>1</sub> = 1} denote the compact unit sphere with respect to the l<sup>1</sup> norm, and let B(S<sub>1</sub>) denote the set of Borel measures over S<sub>1</sub>. Then:

$$\gamma_+(A) = \inf_{\mu \in \mathcal{B}(S_1): \int_{S_1} xx^* d\mu(x) = A} \mu(S_1) , \ \mu^*(x) = \sum_{k=1}^m \lambda_k \delta(x - g_k)$$

where  $\gamma_+(A) = \sum_{k=1}^m \lambda_k$  and  $A = \sum_{k=1}^m \lambda_k g_k g_k^*$  is the optimal factorization

|  | Quadratic Bounds |  |
|--|------------------|--|
|  | 000000           |  |
|  |                  |  |

### Primal and dual problems for $\gamma_+$

The linear program is a convex optimization problem (which is great), but it is defined on an infinite dimensional space (not so great!).

Its dual problem enjoys strong duality (this may not be obvious due to infinite dimensional technical issues):

### Theorem

Assume  $A \ge 0$ . Its associated primal (min) & dual (max) problems are:

$$\max_{T=T^*:\langle Tx,x\rangle \leq 1} \inf_{y, \forall \|x\|_1 \leq 1} trace(TA) = \min_{\mu \in \mathcal{B}(S_1): \int_{S_1} xx^* d\mu(x) = A} \mu(S_1) = \gamma_+(A)$$

|  | Quadratic Bounds | Infinite Dim |  |
|--|------------------|--------------|--|
|  | 000000           |              |  |
|  |                  |              |  |

### Primal and dual problems for $\gamma_+$

The linear program is a convex optimization problem (which is great), but it is defined on an infinite dimensional space (not so great!).

Its dual problem enjoys strong duality (this may not be obvious due to infinite dimensional technical issues):

### Theorem

Assume  $A \ge 0$ . Its associated primal (min) & dual (max) problems are:

$$\max_{T=T^*:\langle Tx,x\rangle\leq 1}, \forall \|x\|_1\leq 1 trace(TA) = \min_{\mu\in\mathcal{B}(S_1):\int_{S_1}xx^*d\mu(x)=A}\mu(S_1) = \gamma_+(A)$$

Why? Assume the optimal support  $\{x_1, \ldots, x_m\}$  is known. Construct the Lagrange function

$$\mathcal{L}(t_1,\ldots,t_m;T,\nu_1,\ldots,\nu_m)=\sum_{k=1}^m t_k+trace\left(T(A-\sum_{k=1}^m t_kx_kx_k^*)\right)-\sum_{k=1}^m \nu_kt_k.$$

The dual function

$$g(T,\nu_1,\ldots,\nu_m) := \inf_{\mathbf{t}} L(\mathbf{t};T,\nu) = \begin{cases} trace(TA) & \text{if} \quad 1 - \langle Tx_k,x_k \rangle - \nu_k = 0 \\ -\infty & \text{if} \quad otherwise \end{cases}$$

|       |    | Quadratic Bounds | Infinite Dim |               |
|-------|----|------------------|--------------|---------------|
| 00000 | oo | 000000           | 000          | 0000000000000 |
|       |    |                  |              |               |

Note the quantity:

$$\rho_1(T) = \max_{x: \|x\|_1 \le 1} \langle Tx, x \rangle$$

The dual problem

$$\max_{T=T^*:\langle Tx,x\rangle\leq 1}, \forall \|x\|_1\leq 1 trace(TA)$$

can be reformulated as

$$\gamma_+(A) = \max_{T=T^*: 
ho_1(T) \leq 1} trace(TA)$$

The optimal constant  $C_n$  from  $\gamma_+(A) \leq C_n \|A\|_1$  turns into

$$C_{n} = \max_{A \ge 0: ||A||_{1} \le 1} \gamma_{+}(A) = \max_{A \ge 0: \quad T = T^{*}: \\ ||A||_{1} \le 1 \quad \rho_{1}(T) \le 1} \max_{A \ge 0: \quad T = T^{*}: \\ A \ne 0 \quad \rho_{1}(T) > 0} \max_{A \ge 0: \quad T = T^{*}: \\ A \ne 0 \quad \rho_{1}(T) > 0} \max_{A \ge 0: \quad T = T^{*}: \\ A \ne 0 \quad \rho_{1}(T) > 0} \max_{A \ge 0: \quad T = T^{*}: \\ A \ne 0 \quad \rho_{1}(T) > 0} \max_{A \ge 0: \quad T = T^{*}: \\ A \ne 0 \quad \rho_{1}(T) > 0} \max_{A \ge 0: \quad T = T^{*}: \\ A \ne 0 \quad \rho_{1}(T) > 0} \max_{A \ge 0: \quad T = T^{*}: \\ A \ne 0 \quad \rho_{1}(T) > 0} \max_{A \ge 0: \quad T = T^{*}: \\ A \ne 0 \quad \rho_{1}(T) > 0} \max_{A \ge 0: \quad T = T^{*}: \\ A \ne 0 \quad \rho_{1}(T) > 0} \max_{A \ge 0: \quad T = T^{*}: \\ A \ge 0: \quad T = T^{*}: \\ A$$

メロト メタト メヨト メヨト

| Introduction | $\gamma_+$ 00 | Quadratic Bounds | Infinite Dim | Proofs         |
|--------------|---------------|------------------|--------------|----------------|
| 00000        |               | 00●0000          | 000          | 00000000000000 |
| The boun     | $d \rho_1$    |                  |              |                |

Recall, for  $T = T^*$ :

$$\rho_1(T) = \max_{x: \|x\|_1 \le 1} \langle Tx, x \rangle$$

How to compute it?

Easy cases:

• If 
$$T \leq 0$$
 then  $\rho_1(T) = 0$ 

**2** If  $T \ge 0$  then

$$\rho_1(T) = \max_k T_{k,k} = \max_{i,j} |T_{i,j}| =: ||T||_{\infty}$$

This resembles the numerical radius of a matrix,  $r(T) = \max_{\|x\|_2=1} |\langle Tx, x \rangle|$ , which for hermitian matrices equals the largest singular value (operator norm). Note differences: (i)  $\|\cdot\|_2 \to \|\cdot\|_1$ ; (ii) no absolute value |.|.

| Introduction | $^{\gamma_+}_{ m oo}$ | Quadratic Bounds | Infinite Dim | Proofs        |
|--------------|-----------------------|------------------|--------------|---------------|
| 00000        |                       | 0000000          | 000          | 0000000000000 |
| The bour     | nd $ ho_1$ (2)        |                  |              |               |

Assume  $\lambda_{max}(T) > 0$ , i.e. T is NOT negative semi-definite. Then:

$$\rho_{1}(T) = \max_{x:\|x\|_{1}=1} \langle Tx, x \rangle = \max_{\substack{A \ge 0:\\ rank(A) = 1\\ \|A\|_{1} = 1}} \frac{trace(TA)}{A \ge 0:} \max_{\substack{A \ge 0:\\ rank(A) = 1\\ \|A\|_{1} \le 1}} \max_{\substack{A \ge 0:\\ rank(A) = 1\\ \|A\|_{1} \le 1}} \max_{\substack{A \ge 0:\\ rank(A) = 1\\ \|A\|_{1} \le 1}} \max_{\substack{A \ge 0:\\ rank(A) = 1\\ \|A\|_{1} \le 1}} \max_{\substack{A \ge 0:\\ rank(A) = 1\\ \|A\|_{1} \le 1}} \max_{\substack{A \ge 0:\\ rank(A) = 1\\ \|A\|_{1} \le 1}} \max_{\substack{A \ge 0:\\ rank(A) = 1\\ \|A\|_{1} \le 1}} \max_{\substack{A \ge 0:\\ rank(A) = 1\\ \|A\|_{1} \le 1}} \max_{\substack{A \ge 0:\\ rank(A) = 1\\ \|A\|_{1} \le 1}} \max_{\substack{A \ge 0:\\ rank(A) = 1\\ \|A\|_{1} \le 1}} \max_{\substack{A \ge 0:\\ rank(A) = 1\\ \|A\|_{1} \le 1}} \max_{\substack{A \ge 0:\\ rank(A) = 1\\ \|A\|_{1} \le 1}} \max_{\substack{A \ge 0:\\ rank(A) = 1\\ \|A\|_{1} \le 1}} \max_{\substack{A \ge 0:\\ rank(A) = 1\\ \|A\|_{1} \le 1}} \max_{\substack{A \ge 0:\\ rank(A) = 1\\ \|A\|_{1} \le 1}} \max_{\substack{A \ge 0:\\ rank(A) = 1\\ \|A\|_{1} \le 1}} \max_{\substack{A \ge 0:\\ rank(A) = 1\\ \|A\|_{1} \le 1}} \max_{\substack{A \ge 0:\\ rank(A) = 1\\ \|A\|_{1} \le 1}} \max_{\substack{A \ge 0:\\ rank(A) = 1\\ Ra$$

メロト メロト メヨト メヨト

| Introduction | $^{\gamma_+}_{\circ\circ}$ | Quadratic Bounds | Infinite Dim | Proofs        |
|--------------|----------------------------|------------------|--------------|---------------|
| 00000        |                            | 000€000          | 000          | 0000000000000 |
| The bour     | nd $ ho_1$ (2)             |                  |              |               |

Assume  $\lambda_{max}(T) > 0$ , i.e. T is NOT negative semi-definite. Then:

$$\rho_{1}(T) = \max_{x:\|x\|_{1}=1} \langle Tx, x \rangle = \max_{\substack{A \ge 0:\\ rank(A) = 1\\ \|A\|_{1} = 1}} \frac{trace(TA)}{A \ge 0:} \max_{\substack{A \ge 0:\\ rank(A) = 1\\ \|A\|_{1} \le 1}} \max_{\substack{A \ge 0:\\ rank(A) = 1\\ \|A\|_{1} \le 1}} \max_{\substack{A \ge 0:\\ rank(A) = 1\\ \|A\|_{1} \le 1}} \max_{\substack{A \ge 0:\\ rank(A) = 1\\ \|A\|_{1} \le 1}} \max_{\substack{A \ge 0:\\ rank(A) = 1\\ \|A\|_{1} \le 1}} \max_{\substack{A \ge 0:\\ rank(A) = 1\\ \|A\|_{1} \le 1}} \max_{\substack{A \ge 0:\\ rank(A) = 1\\ \|A\|_{1} \le 1}} \max_{\substack{A \ge 0:\\ rank(A) = 1\\ \|A\|_{1} \le 1}} \max_{\substack{A \ge 0:\\ rank(A) = 1\\ \|A\|_{1} \le 1}} \max_{\substack{A \ge 0:\\ rank(A) = 1\\ \|A\|_{1} \le 1}} \max_{\substack{A \ge 0:\\ rank(A) = 1\\ \|A\|_{1} \le 1}} \max_{\substack{A \ge 0:\\ rank(A) = 1\\ \|A\|_{1} \le 1}} \max_{\substack{A \ge 0:\\ rank(A) = 1\\ \|A\|_{1} \le 1}} \max_{\substack{A \ge 0:\\ rank(A) = 1\\ \|A\|_{1} \le 1}} \max_{\substack{A \ge 0:\\ rank(A) = 1\\ \|A\|_{1} \le 1}} \max_{\substack{A \ge 0:\\ rank(A) = 1\\ \|A\|_{1} \le 1}} \max_{\substack{A \ge 0:\\ rank(A) = 1\\ \|A\|_{1} \le 1}} \max_{\substack{A \ge 0:\\ rank(A) = 1\\ \|A\|_{1} \le 1}} \max_{\substack{A \ge 0:\\ rank(A) = 1\\ Ra$$

Convex relaxation:

$$egin{array}{ll} \pi_+(\mathcal{T}) := & \max & \textit{trace(TA)} \ & A \geq 0: & \ & \|A\|_1 \leq 1 \end{array}$$

which is a semi-definite program (SDP). Thus:

$$\rho_1(T) \leq \pi_+(T).$$

メロト メロト メヨト メヨト

|  | Quadratic Bounds |  |
|--|------------------|--|
|  | 0000000          |  |
|  |                  |  |

## Primal and dual problems for $\rho_1$

The SDP enjoys strong duality:

#### Theorem

Assume  $T = T^*$ . The primal-dual programs have strong duality:

$$\pi_{+}(T) = \max_{\substack{A \ge 0 \\ \|A\|_{1} \le 1}} \operatorname{trace}(TA) = \min_{\substack{Y \ge 0}} \|T + Y\|_{\infty}$$

where  $\left\|Z\right\|_{\infty} = \max_{i,j} |Z_{i,j}|$ .

The proof of this theorem is based on the Von Neumann's min-max theorem:

$$\min_{Y \ge 0} \|T + Y\|_{\infty} = \min_{Y \ge 0} \max_{A: \|A\|_{1} \le 1} trace((T + Y)A) \stackrel{\forall N}{=} \max_{A: \|A\|_{1} \le 1} \min_{Y \ge 0} trace((T + Y)A) =$$
$$= \max_{A: \|A\|_{1} \le 1} \left( trace(TA) + \min_{Y \ge 0} trace(YA) \right) = \max_{A \ge 0: \|A\|_{1} \le 1} \left( trace(TA) + \min_{Y \ge 0} trace(YA) \right) =$$
$$= \max_{A \ge 0: \|A\|_{1} \le 1} trace(TA) = \pi_{+}(T)$$

|       |    | Quadratic Bounds | Infinite Dim |               |
|-------|----|------------------|--------------|---------------|
| 00000 | oo | 0000000          | 000          | 0000000000000 |
|       |    |                  |              |               |

# Closing the loop

The final result: the connection between  $\gamma_+(A)$  and  $C_n$  on one hand, and  $\rho_1(T)$  and  $\pi_+(T)$  on the other hand:

### Theorem

$$C_n := \max_{\substack{A \ge 0 \\ A \ne 0}} \frac{\gamma_+(A)}{\|A\|_1} = \max_{\substack{T = T^* \\ \rho_1(T) \ne 0}} \frac{\pi_+(T)}{\rho_1(T)}$$

|       |    | Quadratic Bounds | Infinite Dim | Proofs        |
|-------|----|------------------|--------------|---------------|
| 00000 | oò | 0000000          | 000          | 0000000000000 |
|       |    |                  |              |               |

# Closing the loop

The final result: the connection between  $\gamma_+(A)$  and  $C_n$  on one hand, and  $\rho_1(T)$ and  $\pi_+(T)$  on the other hand:

### Theorem

$$C_n := \max_{\substack{A \ge 0 \\ A \ne 0}} \frac{\gamma_+(A)}{\|A\|_1} = \max_{\substack{T = T^* \\ \rho_1(T) \ne 0}} \frac{\pi_+(T)}{\rho_1(T)}$$

(T)

The proof is based on the earlier derivation:

$$C_{n} = \max_{\substack{A \ge 0: \quad T = T^{*}: \\ A \ne 0 \quad \rho_{1}(T) > 0}} \max_{\substack{\|A\|_{1} \rho_{1}(T) = \\ \rho_{1}(T) > 0}} \max_{\substack{T = T^{*}: \\ \rho_{1}(T) > 0}} \max_{\substack{A \ge 0: \\ P_{1}(T) > 0}} \max_{\substack{T = T^{*}: \\ \rho_{1}(T) > 0}} \max_{\substack{A \ge 0: \\ P_{1}(T) > 0}} \max_{\substack{T = T^{*}: \\ P_{1}(T) > 0}} \max_{\substack{A \ge 0: \\ P_{1}(T) > 0}} \max_{\substack{T = T^{*}: \\ P_{1}(T) > 0}} \max_{\substack{A \ge 0: \\ P_{1}(T) > 0}} \max_{\substack{T = T^{*}: \\ P_{1}(T) > 0}} \max_{\substack{A \ge 0: \\ P_{1}(T) > 0}} \max_{\substack{T \ge 0:$$

|       |    | Quadratic Bounds |     |               |
|-------|----|------------------|-----|---------------|
| 00000 | oò | 000000           | 000 | 0000000000000 |

## Bandeira-Mixon-Steinerberger Result

Last year B-M-S announced:

Theorem (Afonso Bandeira, Dustin Mixon, Stefan Steinerberger - Oberwolfach 2024; ACHA 2024)

There are  $\alpha > 0$ ,  $N_0 > 1$  so that for any  $n \ge N_0$ ,

 $C_n \ge \alpha \sqrt{n}$ 

Consequence:

### Theorem (R.B, F.Jiang)

1. There exists a PSD trace-class  $A = A^* \ge 0$ ,  $A = (A_{m,n})_{m,n\ge 0}$  with  $\sum_{m,n} |A_{m,n}| < \infty$ , so that for any factorization  $A = \sum_{k\ge 0} f_k f_k^*$ ,  $\sum_{k\ge 0} ||f_k||_1^2 = \infty$ . 2. There exists  $\underline{K} \in M^1(\mathbb{R}^2)$  so that: (i)  $K(x,y) = \overline{K(y,x)}$  for all x, y; (ii)  $\int_{\mathbb{R}^2} K(x,y)f(y)\overline{f(x)}dxdy \ge 0$  for all  $f \in L^2(\mathbb{R})$ ; and (iii) for any  $(g_n)_{n\ge 0}$  with  $\int_{\mathbb{R}} K(x,y)f(y)dy = \sum_{n\ge 0} \langle f, g_n \rangle g_n(x), \forall f \in L^2(\mathbb{R}), \sum_{n\ge 0} ||g_n||_{M^1}^2 = \infty$ .

|  | Quadratic Bounds | Infinite Dim |  |
|--|------------------|--------------|--|
|  |                  | 000          |  |
|  |                  |              |  |

Denote by  $\Gamma$  and  $\Gamma_+$  these classes:

$$\Gamma = \{A = (A_{m,n})_{m,n \ge 0} : A = A^* \ge 0, \|A\|_1 := \sum_{m,n} |A_{m,n}| < \infty\}$$

$$\Gamma_{+} := \{ A \in \Gamma \ , \ \exists (x_{k})_{k \geq 1} \in l^{1}(\mathbb{N}) \ , \ A = \sum_{k \geq 1} x_{k} x_{k}^{*} \ , \ \sum_{k \geq 1} \|x_{k}\|_{1}^{2} < \infty \}$$

For  $A \in \Gamma_+$ , let  $\gamma_+(A)$  denote the optimal bound:

$$\gamma_{+}(A) = \inf \left\{ \sum_{k \geq 1} \|x_k\|_1^2 \ , \ A = \sum_{k \geq 1} x_k x_k^* \text{ strongly } l^{\infty} \to l^q, \forall q \in [1, \infty) \right\}$$

Then:

### Theorem (Corollary of the BMS Result)

 $\Gamma_+ \subsetneq \Gamma.$ 

< □ > < □ > < □ > < □ > < □ >

|  | Quadratic Bounds | Infinite Dim |  |
|--|------------------|--------------|--|
|  |                  | 000          |  |
|  |                  |              |  |

#### An approximation result:

| Theorem (Density)                                                                             |
|-----------------------------------------------------------------------------------------------|
| Let $A \in \Gamma$ and $\varepsilon > 0$ . There exist operators $B, C \in \Gamma_+$ so that: |
|                                                                                               |
|                                                                                               |
| In particular, $\Gamma_+$ is dense in $\Gamma$ in the $\ \cdot\ _1$ topology.                 |

#### An invariance result:

### Theorem (Algebraic Cone)

Let p be a univariate polynomial with nonnegative coefficients. Suppose  $A \in \Gamma_+$ . Then  $p(A) \in \Gamma_+$ .

< □ > < □ > < □ > < □ > < □ >

|  | Quadratic Bounds | Infinite Dim |  |
|--|------------------|--------------|--|
|  |                  | 000          |  |
|  |                  |              |  |

### Thank you for listening! ... QUESTIONS?

イロト 不良 とくほとくほう

|  | Quadratic Bounds | Proofs       |
|--|------------------|--------------|
|  |                  | •00000000000 |
|  |                  |              |
|  |                  |              |

## The Continuity Property

### Theorem (The Continuity Property)

The map  $\gamma_+ : (Sym^+(\mathbb{C}^n), \|\cdot\|) \to \mathbb{R}$  is continuous.

#### Remarks

- O This statement extends the continuity result from Sym<sup>++</sup>(ℂ<sup>n</sup>) = {A = A<sup>\*</sup> > 0} to Sym<sup>+</sup>(ℂ<sup>n</sup>) = {A = A<sup>\*</sup> ≥ 0}.
- Proof is based on a (new?) comparison result between non-negative operators.
- Global Lipschitz is still open.

| Introduction | $\gamma_+$ | Quadratic Bounds | Infinite Dim | Proofs       |
|--------------|------------|------------------|--------------|--------------|
| 00000        | 00         | 000000           | 000          | 000000000000 |
|              |            |                  |              |              |

# The Continuity Property

The proof is based on the following two lemmas:

### Lemma (L1)

Let  $A \in Sym^+(\mathbb{C}^n)$  of rank r > 0. Let  $\lambda_r > 0$  denote the  $r^{th}$  eigenvalue of A, and let  $P_{A,r}$  denote the orthogonal projection onto the range of A. For any  $0 < \varepsilon < 1$  and  $B \in Sym^+(\mathbb{C}^n)$  such that  $\|A - B\|_{Op} \leq \frac{\varepsilon \lambda_r}{1-\varepsilon}$ , the following holds true:

$$A - (1 - \varepsilon) P_{A,r} B P_{A,r} \ge 0$$
 (1)

#### Lemma (L2)

Let  $A \in Sym^+(\mathbb{C}^n)$  of rank r > 0. Let  $\lambda_r > 0$  denote the  $r^{th}$  eigenvalue of A. For any  $0 < \varepsilon < \frac{1}{2}$  and  $B \in Sym^+(\mathbb{C}^n)$  such that  $||A - B||_{Op} \le \varepsilon \lambda_r$ , the following holds true:

$$B - (1 - \varepsilon) P_{B,r} A P_{B,r} \ge 0 \qquad (2)$$

where  $P_{B,r}$  denotes the orthogonal projection onto the top r eigenspace of B.

イロン イヨン イヨン イヨン

|  | Quadratic Bounds | Proofs                                  |
|--|------------------|-----------------------------------------|
|  |                  | 000000000000000000000000000000000000000 |
|  |                  |                                         |

# Proof of Continuity of $\gamma_+$

Fix  $A \in Sym^+(\mathbb{C}^n)$ . Let  $(B_i)_{i>1}$ ,  $B_i \in Sym^+(\mathbb{C}^n)$ , be a convergent sequence to A. We need to show  $\gamma_+(B_i) \rightarrow \gamma_+(A)$ . Let  $A = \sum_{k=1}^{n^2} x_k x_k^*$  be the optimal decomposition of A such that  $\gamma_{+}(A) = \sum_{k=1}^{n^{2}} \|x_{k}\|_{1}^{2}$ If A = 0 then  $\gamma_+(A) = 0$  and  $0 \leq \gamma_+(B_i) \leq n \operatorname{trace}(B_i) \leq n^2 \|B_i\|_{O_{\mathbb{P}}}$ Hence  $\lim_{i} \gamma_{+}(B_{i}) = 0$ . Assume rank(A) = r > 0 and let  $\lambda_r > 0$  denote the smallest strictly positive eigenvalue of A. Let  $\varepsilon \in (0, \frac{1}{2})$  be arbitrary. Let  $J = J(\varepsilon)$  be so that  $||A - B_j||_{O_p} < \varepsilon \lambda_r$  for all j > J. Let  $B_j = \sum_{k=1}^{n^2} y_{j,k} y_{j,k}^*$  be the optimal decomposition of  $B_i$  such that  $\gamma_+(B_i) = \sum_{k=1}^{n^2} \|v_{i,k}\|_1^2$ . Let  $\Delta_i = A - (1 - \varepsilon) P_{A,r} B_i P_{A,r}$ . By Lemma L1, for any j > J, 2

$$\gamma_{+}(A) \leq (1-\varepsilon)\gamma_{+}(P_{A,r}B_{j}P_{A,r}) + \gamma_{+}(\Delta_{j}) \leq (1-\varepsilon)\sum_{k=1}^{n} \|P_{A,r}y_{j,k}\|_{1}^{2} + n \operatorname{trace}(\Delta_{j})$$

|       |    | Quadratic Bounds |     | Proofs                                  |
|-------|----|------------------|-----|-----------------------------------------|
| 00000 | oo | 000000           | 000 | 000000000000000000000000000000000000000 |

# Proof of Continuity of $\gamma_+$ (cont)

Pass to a subsequence j' of j so that  $y_{j',k} \to y_k$ , for every  $k \in [n^2]$ , and  $\gamma_+(B_{j'}) \to \liminf_j \gamma_+(B_j)$ . Then  $\lim_{j'} P_{A,r}y_{j',k} = P_{A,r}y_k = y_k$  and

$$\lim_{j'}\sum_{k=1}^{n^2} \|P_{A,r}y_{j',k}\|_1^2 = \lim_{j'}\sum_{k=1}^{n^2} \|y_{j',k}\|_1^2 = \liminf_{j} \gamma_+(B_j)$$

On the other hand,  $\lim_{j} trace(\Delta_j) = \varepsilon trace(A)$ . Hence:

$$\gamma_+({\mathsf A}) \leq (1-arepsilon) \liminf_j \gamma_+({\mathsf B}_j) + arepsilon ext{ trace}({\mathsf A})$$

Since  $\varepsilon > 0$  is arbitrary, it follows  $\gamma_{+}(A) \leq \liminf_{j} \gamma_{+}(B_{j})$ . The inequality  $\limsup_{j} \gamma_{+}(B_{j}) \leq \gamma_{+}(A)$  follows from Lemma L2 similarly: with  $\Delta_{j} = B_{j} - (1 - \varepsilon)P_{B_{j},r}AP_{B_{j},r}$  and  $A = \sum_{k=1}^{n^{2}} x_{k}x_{k}^{*}$  optimal,

$$\gamma_{+}(B_{j}) \leq (1-\varepsilon)\gamma_{+}(P_{B_{j},r}AP_{B_{j},r}) + n \operatorname{trace}(\Delta_{j}) = (1-\varepsilon)\sum_{k=1}^{n} \left\|P_{B_{j},r}x_{k}\right\|_{1}^{2} + n \operatorname{trace}(\Delta_{j}).$$

Next take limsup of lhs by noticing  $P_{B_j,r} \to P_{A,r}$  and  $\limsup_j \|\Delta_j\|_{Op} = \varepsilon \|A\|_{Op}$ :  $\limsup_j \gamma_+(B_j) \le (1-\varepsilon)\gamma_+(A) + n^2\varepsilon \|A\|_{Op}$ . Take  $\varepsilon \to 0$  and result follows.  $\Box \sim \varepsilon$ 

| Introduction  |        | Quadratic Bounds | Infinite Dim | Proofs                                  |
|---------------|--------|------------------|--------------|-----------------------------------------|
|               |        |                  |              | 000000000000000000000000000000000000000 |
|               |        |                  |              |                                         |
| Proof of      | Lemmas |                  |              |                                         |
| Proof of Lemr | na l 1 |                  |              |                                         |

Let 
$$P = P_{A,r}$$
. and  $\Delta = A - (1 - \varepsilon)P_{A,r}BP_{A,r}$ . For any  $x \in \mathbb{C}^n$ :

$$\begin{split} \langle \Delta x, x \rangle &= \langle APx, Px \rangle - (1 - \varepsilon) \langle BPx, Px \rangle = \langle (A - (1 - \varepsilon)B)Px, Px \rangle = \\ &= \varepsilon \langle APx, Px \rangle + (1 - \varepsilon) \langle (A - B)Px, Px \rangle \geq \varepsilon \lambda_r \|Px\|^2 - (1 - \varepsilon)\|A - B\|_{Op} \|Px\|^2 \geq 0 \\ \text{because } \|A - B\|_{Op} \leq \frac{\varepsilon \lambda_r}{1 - \varepsilon}. \end{split}$$

#### Proof of Lemma L2

Let  $P = P_{B,r}$  and  $\Delta = B - (1 - \varepsilon)P_{B,r}AP_{B,r}$ . Let  $C = B - P_{B,r}BP_{B,r} \ge 0$ . Let  $\mu_r$  be the  $r^{th}$  eigenvalue of B. Note  $|\mu_r - \lambda_r| \le ||A - B||_{Op} \le \varepsilon \lambda_r$ . Thus  $\mu_r \ge (1 - \varepsilon)\lambda_r$ . For any  $x \in \mathbb{C}^n$ :

$$\langle \Delta x, x \rangle = \langle Cx, x \rangle + \langle BPx, Px \rangle - (1 - \varepsilon) \langle APx, Px \rangle = \langle Cx, x \rangle + \varepsilon \langle BPx, Px \rangle + \varepsilon \langle$$

$$+(1-\varepsilon)\langle (B-A)Px, Px\rangle \geq \langle Cx, x\rangle + (\varepsilon\mu_r - (1-\varepsilon)||A-B||_{Op})||Px||^2 \geq 0$$
  
because  $||A-B||_{Op} \leq \varepsilon\lambda_r \leq \frac{\varepsilon\mu_r}{1-\varepsilon}.$ 

|       |    | Quadratic Bounds |     | Proofs        |
|-------|----|------------------|-----|---------------|
| 00000 | oo | 0000000          | 000 | 0000000000000 |
|       |    |                  |     |               |

### The Linear Program approach

Optimal Factorization from a Measure Theoretic Viewpoint

Let  $S_1 = \{x \in \mathbb{C}^n, \|x\|_1 = 1\}$  denote the compact unit sphere with respect to the  $l^1$  norm, and let  $\mathcal{B}(S_1)$  denote the set of Borel measures over  $S_1$ . For  $A \in \text{Sym}(\mathbb{C}^n)^+(\mathbb{C}^n)$  consider the optimization problem:

$$(p^*, \mu^*) = inf_{\mu \in \mathcal{B}(S_1): \int_{S_1} xx^* d\mu(x) = A} \mu(S_1)$$
 (M)

#### Theorem (Optimal Measure)

For any  $A \in Sym^+(\mathbb{C}^n)$  the optimization problem (M) is convex and its global optimum (minimum) is achieved by

$$p^* = \gamma_+(A)$$
 ,  $\mu^*(x) = \sum_{k=1}^m \lambda_k \delta(x - g_k)$ 

where  $A = \sum_{k=1}^{m} (\sqrt{\lambda_k} g_k) (\sqrt{\lambda_k} g_k)^*$  is an optimal decomposition that achieves  $\gamma_+(A) = \sum_{k=1}^{m} \lambda_k$ .

|       |    | Quadratic Bounds |     | Proofs        |
|-------|----|------------------|-----|---------------|
| 00000 | oo | 000000           | 000 | 0000000000000 |

### Super-resolution and Convex Optimizations

$$egin{aligned} &\mu_+(A) = \min_{x_1,\ldots,x_m \; : \; A = \sum_k x_k x_k^*} \sum_{k=1}^m \|x_k\|_1^2 \;, \; m = n^2 \quad (P) \ &p^* = \inf_{\mu \in \mathcal{B}(S_1) \; : \; A = \int_{S_1} x x^* d\mu(x)} \int_{S_1} d\mu(x) \quad (M) \end{aligned}$$

### Remarks

• The optimization problem (P) is non-convex, but finite-dimensional. The optimization problem (M) is convex, but infinite-dimensional.

 If g<sub>1</sub>,..., g<sub>m</sub> ∈ S<sub>1</sub> in the support of μ\* are known so that μ\* = ∑<sub>k=1</sub><sup>m</sup> λ<sub>k</sub>δ(x − g<sub>k</sub>), then the optimal λ<sub>1</sub>,..., λ<sub>m</sub> ≥ 0 are determined by a linear program. More general, (M) is an infinite-dimensional linear program.

Finding the support of μ\* is an example of a super-resolution problem. One possible approach is to choose a redundant dictionary (frame) that includes the support of μ\*, and then solve the induced linear program.

|  | Quadratic Bounds | Proofs        |
|--|------------------|---------------|
|  |                  | 0000000000000 |
|  |                  |               |

### Proof of the Optimal Measure Result

Recall: we want to show the following problems admit the same solution:

$$\gamma_{+}(A) = \min_{x_{1},...,x_{m} \ : \ A = \sum_{k} x_{k} x_{k}^{*}} \sum_{k=1}^{m} \|x_{k}\|_{1}^{2}, \ m = n^{2}$$
 (P)

$$p^* = \inf_{\mu \in \mathcal{B}(S_1) : A = \int_{S_1} x x^* d\mu(x)} \int_{S_1} d\mu(x) \quad (M)$$

a. Assume  $A = \sum_{k=1}^{m} x_k x_k^*$  is a global minimum for (P). Then  $\mu(x) = \sum_{k=1}^{m} \|x_k\|_1^2 \delta(x - \frac{x_k}{\|x_k\|_1})$  is a feasible solution for (M). This shows  $p^* \leq \gamma_+(A)$ .

b. For reverse: Let  $\mu^*$  be an optimal measure in (M). Fix  $\varepsilon > 0$ . Construct a disjoint partition  $(U_l)_{1 \le l \le L}$  of  $S_1$  so that each  $U_l$  is included in some ball  $B_{\varepsilon}(z_l)$  of radius  $\varepsilon$  with  $||z_l||_1 = 1$ . Thus  $U_l \subset B_{\varepsilon}(z_l) \cap S_1$ . For each *I*, compute  $x_l = \frac{1}{\mu^*(U_l)} \int_{U_l} x d\mu^*(x) \in B_{\varepsilon}(z_l)$ . Let  $g_l = \sqrt{\mu^*(U_l)} x_l$ .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

|       |    | Quadratic Bounds |     | Proofs          |
|-------|----|------------------|-----|-----------------|
| 00000 | oò | 000000           | 000 | 000000000000000 |

### Proof: The Optimal Measure Result (cont)

Key inequality:

$$0 \leq R_{l} := \int_{U_{l}} (x - x_{l})(x - x_{l})^{*} d\mu^{*}(x) = \int_{U_{l}} xx^{*} d\mu^{*}(x) - \mu^{*}(U_{l})x_{l}x_{l}^{*}$$

Sum over *I* and with  $R = \sum_{l=1}^{L} R_l$  get

$$A = \sum_{l=1}^{L} \int_{U_l} x x^* \, d\mu^*(x) \le \sum_{l=1}^{L} g_l g_l^* + R$$

By sub-additivity and homogeneity:

$$\gamma_{+}(A) \leq \sum_{l=1}^{L} \|g_{l}\|_{1}^{2} + \gamma_{+}(R) \leq \sum_{l=1}^{L} \mu^{*}(U_{l}) \|x_{l}\|_{1}^{2} + n \operatorname{trace}(R)$$

But  $||x_l - z_l||_1 \le \varepsilon$  and  $||x - x_l||_1 \le 2\varepsilon$  for every  $x \in U_l$ . Hence  $||x_l||_1 \le 1 + \varepsilon$  and trace $(R_l) \le 4\mu^*(U_l)\varepsilon^2$ . (In fact,  $||x_l||_1 \le 1$  by triangle inequality)

|       |    | Quadratic Bounds |     | Proofs                                  |
|-------|----|------------------|-----|-----------------------------------------|
| 00000 | oo | 000000           | 000 | 000000000000000000000000000000000000000 |

# Proof: The Optimal Measure Result (end)

Thus:

$$\gamma_+(A) \leq \mu^*(S_1) + (2\varepsilon + \varepsilon^2 + 4n\varepsilon^2)\mu^*(S_1)$$

Since  $\varepsilon > 0$  is arbitrary, it follows

$$\gamma_+(A) \leq \mu^*(S_1) = p^*$$

This ends the proof of the measure result.  $\Box$ 

イロト イヨト イヨト イヨト

|       |    | Quadratic Bounds |     | Proofs                                  |
|-------|----|------------------|-----|-----------------------------------------|
| 00000 | oò | 000000           | 000 | 000000000000000000000000000000000000000 |

# Third new result: Strong duality for $\gamma_+$

#### Theorem

For every  $A \ge 0$ ,

$$\begin{array}{ccc} \max & trace(TA) = & \min & \mu(S_1) = \gamma_+(A) \\ T = T^* & \mu \in \mathcal{B}(S_1) \\ \langle Tx, x \rangle \leq 1 , \ \forall \|x\|_1 \leq 1 & \int_{S_1} xx^* d\mu(x) = A \end{array}$$

#### Proof [Fushuai "Black" Jiang]

The second equality was established earlier as a "super-resolution" result. For the first equality:

1. Let  $A = \sum_{k=1}^{m} x_k x_k^*$  be its optimal decomposition such that  $\gamma_+(A) = \sum_{k=1}^{m} ||x_k||_1^2$ , and let  $T = T^*$  be a generic matrix so that  $\langle Ty, y \rangle \leq 1$  for all  $||y||_1 \leq 1$ . Denote  $y_k = \frac{x_k}{||x_k||_1}$ . Then

$$trace(TA) = \sum_{k=1}^{m} \langle Tx_k, x_k \rangle = \sum_{k=1}^{m} \|x_k\|_1^2 \langle Ty_k, y_k \rangle \le \sum_{k=1}^{m} \|y_k\|_1^2 = \gamma_+(A)$$

|       |    | Quadratic Bounds |     | Proofs           |
|-------|----|------------------|-----|------------------|
| 00000 | oò | 000000           | 000 | 0000000000000000 |

# Proof of strong duality for $\gamma_+$ (2)

2. For the reverse inequality, let  $H\subset Sym^+(\mathbb{C}^n) imes\mathbb{R}$  denote the set

$$H = \left\{ (\int_{S_1} z z^* \, d\mu(z), r + \int_{S_1} d\mu) \hspace{0.2cm}, \hspace{0.2cm} \mu \in \mathcal{B}(S_1) \hspace{0.2cm}, \hspace{0.2cm} r \geq 0 
ight\}$$

Claim 1: H is closed.

Use Banach-Alaoglou theorem that the set of unit Borel measures is weak-\* compact.

Claim 2: *H* is convex. – immediate

Let  $q = max_{T=T^*}$  trace(TA) subject to  $\langle Tx, x \rangle \leq 1$  for all  $||x||_1 \leq 1$ . Claim 3:  $(A, q) \in H$ , which establishes the theorem. Assume the contrary:  $(A, q) \notin H$ . Then it is separated by a hyperplane from H:

$$trace\left(R\int_{\mathcal{S}_{1}}xx^{*}\,d\mu(z)
ight)+a(r+\int_{\mathcal{S}_{1}}d\mu)\geq c_{0}>trace(AR)+aq\;\;,\;\;\forall\mu\in\mathcal{B}(\mathcal{S}_{1}),r\geq 0$$

Deduce:  $a \ge 0$ ,  $c_0 \le 0$ . If a = 0 then contradiction for  $\mu = \mu^*$ . Rescale by dividing through a. Denote  $T_0 = -R/a$ .

|       |    | Quadratic Bounds |     | Proofs       |
|-------|----|------------------|-----|--------------|
| 00000 | oo | 0000000          | 000 | 000000000000 |
|       |    |                  |     |              |

### Proof of strong duality for $\gamma_+$ (3)

We obtained:

$$\int_{\mathcal{S}_1} (1 - \langle T_0 x, x \rangle) d\mu \ge c_0 > q - trace(AT_0)$$

for every Borel measure  $\mu \in \mathcal{B}(S_1)$ . This means  $\langle T_0x, x \rangle \leq 1$  for all ||x|| = 1. This also implies  $\langle T_0x, x \rangle \leq 1$  for all  $||x||_1 \leq 1$ . On the other hand  $q < trace(AT_0) + c_0 \leq trace(AT_0)$  which contradicts the optimality of q. Q.E.D.

イロト イヨト イヨト