Quantitative bounds for sorting-based permutation-invariant embeddings

Nadav Dym[†], Matthias Wellershoff*, Efstratios Tsoukanis*,-, Daniel Levy^x, **Radu Balan***

* Department of Mathematics, University of Maryland, College Park, MD
† Department of Mathematics, Technion, IIT, Israel
× Program in Applied and Computational Mathematics, Princeton University, NJ
- Claremont Graduate University, California

December 6, 2025 Frame Theory Day 2025 University of Missouri, Columbia, MO

Preprint available on arXiv:2510.22186

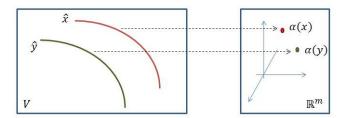
Problem Setup

Introduction

•0000000

Problem: Construct bi-Lipschitz embeddings of the metric space $\hat{V} = V/\sim$ of orbits, $\alpha: \hat{V} \to \mathbb{R}^m$, where $\mathbf{d}([x],[y]) = \inf_{u \in [x], v \in [y]} \|u - v\|$

$$a_0\mathbf{d}([x],[y]) \le \|\alpha([x]) - \alpha([y])\|_2 \le b_0\mathbf{d}([x],[y]).$$



Today we focus on the case $V = \mathbb{R}^{n \times d}$, $X \sim Y \Leftrightarrow Y = PX$ for some $P \in \mathcal{S}_n$. Motivation: Graph deep learning, Assignment Problems.

A sorting based embedding [BHS22]

Consider: $\beta_{\mathbf{A}}: \mathbb{R}^{n \times d} \to \mathbb{R}^{n \times D}$,

Introduction

0000000

$$eta_{\mathbf{A}}(\mathbf{X}) := egin{pmatrix} | & & | & | \\ \downarrow(\mathbf{X}\mathbf{a}_1) & \dots & \downarrow(\mathbf{X}\mathbf{a}_D) \\ | & & | \end{pmatrix}, \qquad \mathbf{X} \in \mathbb{R}^{n \times d},$$

- $\downarrow : \mathbb{R}^n \to \mathbb{R}^n$ denotes sorting vectors in nondecreasing order,
- $(\mathbf{a}_k)_{k=1}^D \in \mathbb{R}^d$ are the columns of $\mathbf{A} \in \mathbb{R}^{d \times D}$.

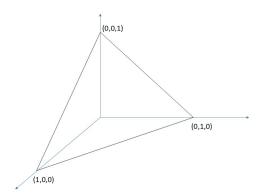
Note: $\beta_{\mathbf{A}}$ descends through the quotient to $\overline{\beta}_{\mathbf{A}}: \mathbb{R}^{n \times d}/S_n \to \mathbb{R}^{n \times D}$

[BHS22] Radu Balan, Naveed Haghani, and Maneesh Singh. Permutation invariant representations with applications to graph deep learning. March 2022. ACHA 2025.

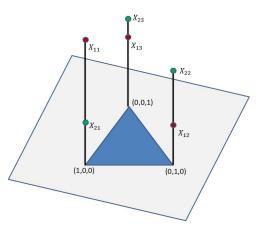
Extra

0000000

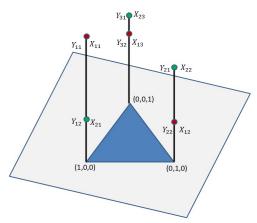
Consider the case: d = 3. Construct the 2-dim simplex:



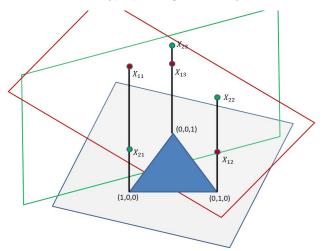
d=3. Rotate the simplex and place the columns of X (here n=2):



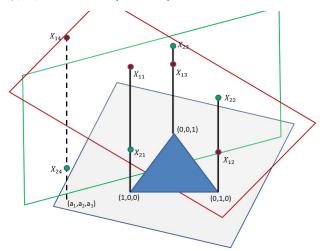
Place the columns of a non-equivalent matrix Y:



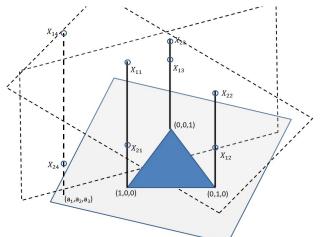
Construct the d-1=2-dim hyperplanes generated by each row of X:



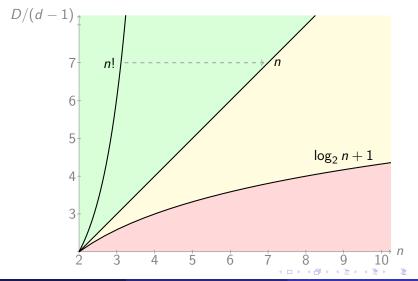
Sample the hyperplanes at $a = (a_1, a_2, a_3)$ and sort the values.:



Can you recover the two (hyper)planes just from the uncolored n(d+1)=8 points? Generically, yes. But $D \ge 2d-1=5$, i.e., another column, for every [X].



Overview of our results



Main results on injectivity

Theorem A:

Introduction

$$\left\lceil \frac{D}{d-1} \right\rceil \leq \log_2 n + 1 \implies \overline{\beta}_{\mathbf{A}} \text{ not injective}$$

(independent of the choice of A).

Theorem B:

$$\frac{D}{d-1} > n \implies \overline{\beta}_{\mathbf{A}}$$
 injective.

(**A** full spark).

Remark: If n=2, $\overline{\beta}_{\mathbf{A}}$ is injective \iff $(\mathbf{a}_k)_{k=1}^D$ form a **phase retrievable** frame for \mathbb{R}^d [BT23]. Hence $D \geq 2d-1$ is a necessary (and generically sufficient) condition.

[BT23] Radu Balan and Efstratios Tsoukanis. Relationships between the phase retrieval problem and permutation invariant embeddings. In 2023 International Conference on Sampling Theory and Applications (SampTA), New Haven, CT, USA, July 2023.

Upper Lipschitz constant

Introduction

The upper Lipschitz constant of $\overline{\beta}_{\bf A}$ is equal to the largest singular value of ${\bf A}$: $b_0 = \sigma_1({\bf A})$:

$$\|\overline{\beta}_{\mathbf{A}}([x]) - \overline{\beta}_{\mathbf{A}}([y])\|_2 \le \sigma_1(\mathbf{A})\mathbf{d}([x], [y]).$$

For Gaussian random matrices, with standard i.i.d. entries, $b_0 = \sigma_1(\mathbf{A}) \leq \sqrt{D} + \sqrt{d} + t$ with probability greater than or equal to $1 - 2exp(-c_1t^2)$.

Hence, we high probability we have $b_0 \sim \sqrt{D} + \sqrt{d}$.

A singular value-based lower Lipschitz bound

Theorem 1

If $D \ge kd((n-1)^2+1)$ for some $k \in \mathbb{N}$, then the lower Lipschitz constant of $\overline{\beta}_{\mathbf{A}}$ is greater than or equal to

$$a_0 \ge \min_{\substack{I \subset [D] \\ |I| = kd}} \sigma_d(\mathbf{A}(I)).$$

Note: k is an integer that can be optimized by user. For Gaussian matrices, using Gordon's theorem we obtained that, for n large enough

$$\mathbb{E}[a_0] \geq \sqrt{\frac{\pi}{8}} \frac{\sqrt{D}}{((n-1)^2+1)^{3/2}} - \sqrt{d} \;\; , \;\; \mathbb{E}[b_0] \leq \sqrt{D} + \sqrt{d}$$

For $D\gg n^4$, the \sqrt{d} term is neglected and distortion is bounded by

$$\frac{\mathbb{E}[b_0]}{\mathbb{E}[a_0]} \le \sqrt{\frac{\pi}{8}} n^3$$

Lower Lipschitz constant based on projective uniformity

Definition Matrix $\mathbf{A} \in \mathbb{R}^{d \times D}$ satisfies (m, δ) -projective uniformity [CIMP24] if $\forall \mathbf{x} \in S^{d-1}$, $\downarrow (|\mathbf{A}^{\top}\mathbf{x}|)_{D-m+1} \geq \delta$, where $m \in [D]$ and $\delta > 0$; i.e., for every unit vector x, the m-th smallest entry of $\mathbf{A}^{T}\mathbf{x}$ exceeds δ .

Theorem 2

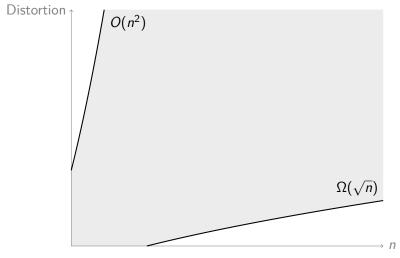
Let $\mathbf{A} \in \mathbb{R}^{d \times D}$ satisfy (m, δ) -projective uniformity with $\delta > 0$ and $m \in [D]$ such that $n^2(m-1) \leq D$. Then, the lower Lipschitz constant of $\overline{\beta}_{\mathbf{A}}$ is greater or equal than $\delta \sqrt{D-n^2(m-1)}$.

Theorem 3

Let $\mathbf{A} \in \mathbb{R}^{d \times D}$ be a matrix with independent standard normal entries. Then, the lower Lipschitz constant $a_0 \geq \frac{\sqrt{2\pi}}{9\sqrt{3}} \frac{\sqrt{D}}{n^2}$ and the distortion of $\overline{\beta}_{\mathbf{A}}$ is in $O(n^2)$ with probability greater or equal than $1-2\exp(-c_1D)-\exp(-c_2n^{-4}D)$, where $c_1,c_2>0$ are universal constants, provided that $D\gtrsim n^4d$.

[CIMP24] Cahill, Iverson, Mixon, Packer. Group-invariant max filtering. FoCM 2024 🖂 🗈 🗸 😩 🖟 😩 🔻 😩 💮 🔾

Overview of our distortion bounds



Upper and lower bounds for distortion

Theorem A: A with independent standard normal entries:

$$\operatorname{dist}(\beta_{\mathbf{A}}) \lesssim n^2$$

with overwhelming probability if $D \gtrsim n^4 d$.

Theorem B: A with columns drawn independently from the uniform distribution on S^{d-1} :

$$\operatorname{dist}(eta_{\mathbf{A}}) \lesssim n^2 \cdot \sqrt{1 + \frac{\log n}{d}}$$

with overwhelming probability if $D \gtrsim n^2 d \log(n(d + \log n))$.

Theorem C:

$$\operatorname{dist}(\beta_{\mathbf{A}}) \gtrsim \sqrt{n}$$

(independent of the choice of A).

Thank you! Questions?

A Universal Embedding

Measure Space Embedding

Consider the map

$$\mu: \widehat{\mathbb{R}^{n \times d}} \to \mathcal{P}(\mathbb{R}^d) \ , \ \mu(X)(x) = \frac{1}{n} \sum_{k=1}^n \delta(x - x_k)$$

where $\mathcal{P}(\mathbb{R}^d)$ denotes the convex set of probability measures over \mathbb{R}^d , and δ denotes the Dirac measure. x_k is the k^{th} row of X.

Clearly $\mu(X') = \mu(X)$ iff X' = PX for some $P \in \mathcal{S}_n$.

The Wasserstein-2 distance is equivalent to the natural metric:

$$W_2(\mu(X), \mu(Y))^2 := \inf_{q \in J(\mu(X), \mu(Y))} \mathbb{E}_q[\|x - y\|_2^2] = \min_{P \in \mathcal{S}_n} \|Y - PX\|^2$$

By Kantorovich-Rubinstein theorem, the Wasserstein-1 distance (the Earth moving distance) extends to a norm on the space of signed Borel measures.

Main drawback: $\mathcal{P}(\mathbb{R}^d)$ is infinite dimensional!

Finite Dimensional Embeddings

Introduction

Idea: "Project" the measure onto a finite dimensional space. This is accomplished by *kernel methods*:

Fix a family of functions f_1, \dots, f_m and consider:

$$\mu(X) \mapsto \int_{\mathbb{R}^d} f_j(x) d\mu(X) = \frac{1}{n} \sum_{k=1}^n f_j(x_k) \quad , \quad j \in [m]$$

Finite Dimensional Embeddings

Idea: "Project" the measure onto a finite dimensional space. This is accomplished by *kernel methods*:

Fix a family of functions f_1, \dots, f_m and consider:

$$\mu(X) \mapsto \int_{\mathbb{R}^d} f_j(x) d\mu(X) = \frac{1}{n} \sum_{k=1}^n f_j(x_k) , \quad j \in [m]$$

Possible choices:

Introduction

- Polynomial embeddings: $\mathbb{R}[X]^{S_n}$, ring of invariant polynomials; [Lipman&al.], [Peyré&al.], [Sanay&al.], [Kemper book] ...
- ② Gaussian kernels: $f_j(x) = exp(-\|x a_j\|^2/\sigma_j^2)$; [Gilmer&al.],[Zaheer&al.], [Vinyals&al.],...
- **3** Fourier kernels (cmplx embd): $f_j(x) = exp(2\pi i \langle x, \omega_j \rangle)$; related to Prony method; [Li&Liao] for bi-Lipschitz estimates.

Main drawback: No global bi-Lipschitz embeddings [Cahill&al.]. Ok on (some) compacts.

The Embedding Problem

Notations (2)

Definition 5.1

Fix $X \in \mathbb{R}^{n \times d}$. A matrix $A \in \mathbb{R}^{d \times D}$ is called admissible for X if $\beta_A^{-1}(\beta_A(X)) = \hat{X}$. In other words, if $Y \in \mathbb{R}^{n \times d}$ so that $\downarrow (XA) = \downarrow (YA)$ then there is $\Pi \in \mathcal{S}_n$ sot that $Y = \Pi X$.

We denote by $A_{d,D}(X)$ (or A(X)) the set of admissible keys for X.

Definition 5.2

Fix $A \in \mathbb{R}^{d \times D}$. A data matrix $X \in \mathbb{R}^{n \times d}$ is said separated by A if $A \in \mathcal{A}(X)$.

We let S(A) denote the set of data matrices separated by A.

The key A is universal iff $S(A) = \mathbb{R}^{n \times d}$.

The Problem: Design universal keys.

Genericity Results for $d \ge 2$

Admissible keys

Theorem 5.3

Let $X \in \mathbb{R}^{n \times d}$. For any $D \geq d+1$ the set $\mathcal{A}_{d,D}(X)$ of admissible keys for X is dense in $\mathbb{R}^{d \times D}$ with respect to Euclidean topology, and it is generic with respect to Zariski topology. In particular, $\mathbb{R}^{d \times D} \setminus \mathcal{A}_{d,D}(X)$ has Lebesgue measure 0, i.e., almost every key is admissible for X.

Proof

It is sufficient to consider the case D=d+1. Also, it is sufficient to analyze the case $A=[I_d\ b]$ and to show that a generic $b\in\mathbb{R}^d$ defines an admissible key. The vector $b\in\mathbb{R}^d$ does **not** define an admissible key if there are $\Xi,\Pi_1,\cdots,\Pi_d\in S_n$ so that for $Y=[\Pi_1x_1,\cdots,\Pi_dx_d]$,

$$Yb = \Xi Xb$$
 but $Y - \Pi X \neq 0$, $\forall \Pi \in \mathcal{S}_n$

Define the linear operator

Genericity Results for $d \ge 2$

Admissible keys

Proof - cont'd

Let

$$\mathcal{P} = \left\{ (\Pi_1, \cdots, \Pi_d) \in (\mathcal{S}_n)^d \ \forall \Pi \in \mathcal{S}_n, \exists k \in [d] \ s.t. \ (\Pi - \Pi_k) x_k \neq 0 \right\}$$

Then

$$\{b \in \mathbb{R}^d : [I_d \ b] \text{ not admissible for } X\} = \bigcup_{(\Xi; \Pi_1, \cdots, \Pi_d) \in \mathcal{S}_n \times \mathcal{P}} \ker(B(\Xi; \Pi_1, \cdots, \Pi_d)) \in \mathcal{S}_n \times \mathcal{P}$$

It is now sufficient to show that each null space has dimension less than d. Indeed, the alternative would mean $B(\Xi;\Pi_1,\cdots,\Pi_d)=0$ but this would imply $(\Pi_1,\cdots,\Pi_d)\not\in\mathcal{P}$. \square

Non-Universality of vector keys

Insufficiency of a single vector key

The following is a no-go result, which shows that there is no universal single vector key for data matrices tall enough.

Proposition 5.4

Introduction

If $d \ge 2$ and $n \ge 3$,

$$\bigcup_{X\in\mathbb{R}^{n\times d}}\{b\in\mathbb{R}^d:\ A=\begin{bmatrix}I_d\ b\end{bmatrix}\ \mathrm{not\ admissible\ for}X\}=\mathbb{R}^d.$$

Consequently,

$$\bigcap_{X\in\mathbb{R}^{n\times d}}\mathcal{A}_{d,d+1}(X)=\emptyset.$$

On the other hand, for n = 2, d = 2, any vector $b \in \mathbb{R}^2$ with $b_1b_2 \neq 0$ defines a universal key $A = \begin{bmatrix} I_2 & b \end{bmatrix}$.

Non-Universality of vector keys

Insufficiency of a single vector key - cont'd

Proof

Introduction

To show the result, it is sufficient to consider a counterexample for n = 3, d = 2, with key $b = [1, 1]^T$.

$$X = \begin{bmatrix} 1 & -1 \\ -1 & 0 \\ 0 & 1 \end{bmatrix} , Y = \begin{bmatrix} 1 & 0 \\ -1 & 1 \\ 0 & -1 \end{bmatrix}$$

Then $Xb = [0, -1, 1]^T$ and $Yb = [1, 0, -1]^T$, yet $X \not\sim Y$. Thus $[I_2 \ b]$ is not admissible for X.

Then note if $a \in \mathbb{R}^d$ so that $[I_d \ a]$ is admissible for X then for any $P \in S_d$ and L an invertible $d \times d$ diagonal matrix, $L^{-1}P^TA \in \mathcal{A}_{d,1}(XPL)$. This shows how for any $b \in \mathbb{R}^2$, one can construct $X \in \mathbb{R}^{3 \times 2}$ so that $b \notin \mathcal{A}_{2,1}(X)$.

For n > 3 or d > 2, proof follows by embedding this example.

Genericity Results for $d \ge 2$

Admissible Data Matrices

Theorem 5.5

Assume $a \in \mathbb{R}^d$ is a vector with non-vanishing entries, i.e., $a_1a_2\cdots a_d \neq 0$. Then for any $n \geq 1$, $\mathcal{S}([I_d\ a])$ is dense in $\mathbb{R}^{n\times d}$ and includes an open dense set with respect to Zariski topology. In particular, $\mathbb{R}^{n\times d}\setminus\mathcal{S}([I_d\ a])$ has Lebesgue measure 0, i.e., almost every data matrix X is separated by the vector key a.

Genericity Results for $d \ge 2$

Admissible Data Matrices

Theorem 5.5

Assume $a \in \mathbb{R}^d$ is a vector with non-vanishing entries, i.e., $a_1a_2\cdots a_d \neq 0$. Then for any $n \geq 1$, $\mathcal{S}([I_d\ a])$ is dense in $\mathbb{R}^{n\times d}$ and includes an open dense set with respect to Zariski topology. In particular, $\mathbb{R}^{n\times d}\setminus\mathcal{S}([I_d\ a])$ has Lebesgue measure 0, i.e., almost every data matrix X is separated by the vector key a.

Corollary 5.6

Assume $A \in \mathbb{R}^{d \times (D-d)}$ is a matrix such that at least one column has non-vanishing entries. Then for any $n \geq 1$, $\mathcal{S}([I_d \ A])$ is dense in $\mathbb{R}^{n \times d}$ and is generic with respect to Zariski topology. In particular, $\mathbb{R}^{n \times d} \setminus \mathcal{S}([I_d \ A])$ has Lebesgue measure 0, i.e., almost every data matrix X is separated by the matrix key $[I_d \ A]$.

Proof that $S([I_d A])$ is generic

The case D > d

Assume $A \in \mathbb{R}^{d \times (D-d)}$ satisfies $A_{1,k}A_{2,k}\cdots A_{d,k} \neq 0$ for some $k \in [D-d]$. The set of non-separated data matrices $X \in \mathbb{R}^{n \times d}$ (i.e., the complement of $\mathcal{S}([I_d \ A])$) factors as follows:

$$\mathbb{R}^{n\times d}\setminus\mathcal{S}([I_d\ A])=\bigcup_{(\Xi_1,\cdots,\Xi_{D-d};\Pi_1,\cdots,\Pi_d)\in(\mathcal{S}_n)^D}(\ker L(\Xi_1,\cdots,\Xi_{D-d};\Pi_1,\cdots,\Pi_d;A))$$

$$\setminus \bigcup_{\Pi \in \mathcal{S}_n} \ker M(\Pi, \Pi_1, \cdots, \Pi_d)$$
 (*)

where, with $A = [a_1, \dots, a_{D-d}], X = [x_1, \dots, x_d]$:

$$L(\Xi_1,\cdots,\Xi_{D-d};\Pi_1,\cdots,\Pi_d;A):\mathbb{R}^{n\times d}\to\mathbb{R}^{n\times D-d}\ ,\ (L((\ldots)X)_k=[(\Xi_k-\Pi_1)x_1,\cdots,(\Xi_k-\Pi_d)x_d]a_k\ ,\ k\in[D-d]$$

$$M(\Pi,\Pi_1,\cdots,\Pi_d):\mathbb{R}^{n\times d}\to\mathbb{R}^{n\times d}\quad,\quad M(\Pi,\Pi_1,\cdots,\Pi_d)X=[(\Pi-\Pi_1)\underline{x_1},\cdots,(\Pi-\Pi_d)\underline{x_d}]$$

Proof that S(A) is generic

cont'd

Introduction

1. The outer union can be reduced by noting that on the "diagonal" Δ ,

$$\Delta = \{ (\Xi_1, \cdots, \Xi_{D-d}; \Pi_1, \cdots, \Pi_d) \in (\mathcal{S}_n)^D \ , \ \Pi_1 = \Pi_2 = \cdots = \Pi_d \}$$
$$M(\Pi_1, \Pi_1, \cdots, \Pi_d) = 0 \to \bigcup_{\Pi \in \mathcal{S}_n} \ker M(\Pi, \Pi_1, \cdots, \Pi_d) = \mathbb{R}^{n \times d}$$

- 2. If $(\Xi_1,\cdots,\Xi_{D-d};\Pi_1,\cdots,\Pi_d)\in (\mathcal{S}_n)^D\setminus \Delta$ then for every $k\in [D-d]$ there is $j\in [d]$ such that $\Xi_k-\Pi_j\neq 0$. In particular choose the k column of A that is non-vanishing. Let $x_j\in \mathbb{R}^n$ so that $(\Xi_k-\Pi_j)x_j\neq 0$. Consider the matrix $X=[0,\cdots,0,x_j,0,\cdots,0]$ where x_j is the only non identically 0 column. Claim: $X\not\in\ker L(\Xi_1,...,\Pi_d;A)$. Indeed, the resulting k column of L()X is $A_{j,k}(\Xi_k-\Pi_j)x_j\neq 0$. It follows that $\dim\ker L(\Xi_1,\cdots,\Xi_{D-d};\Pi_1,\cdots,\Pi_d;A)< nd$
- Hence $\mathbb{R}^{n\times d}\setminus\mathcal{S}([I_d\ A])$ is a finite union of subsets of closed linear spaces properly included in $\mathbb{R}^{n\times d}$. This proves the theorem.

Additional Relations

Introduction

Note the following relationship and matrix representation of X when matrices are column-stacked:

$$M(\Pi, \Pi_1, \cdots, \Pi_d) = L(\Pi, \cdots, \Pi; \Pi_1, \cdots, \Pi_d; I)$$

$$L \equiv \begin{bmatrix} A_{1,1}(\Xi_1 - \Pi_1) & A_{2,1}(\Xi_1 - \Pi_2) & \cdots & A_{d,1}(\Xi_1 - \Pi_d) \\ A_{1,2}(\Xi_2 - \Pi_1) & A_{2,2}(\Xi_2 - \Pi_2) & \cdots & A_{d,2}(\Xi_2 - \Pi_d) \\ \vdots & \vdots & \ddots & \vdots \\ A_{1,D-d}(\Xi_{D-d} - \Pi_1) & A_{2,D-d}(\Xi_{D-d} - \Pi_2) & \cdots & A_{d,D-d}(\Xi_{D-d} - \Pi_d) \end{bmatrix}$$

a $n(D-d) \times nd$ matrix.

