Bi-Lipschitz Euclidean Embeddings of Metric Spaces induced by Finite Group Representations

Radu Balan

Department of Mathematics and Norbert Wiener Center for Harmonic Analysis and Applications
University of Maryland, College Park, MD

December 5, 2025

Colloquium Talk – University of Missouri **Dedicated to Pete Casazza**

Acknowledgments

Intro

This material is based upon work partially supported by the National Science Foundation under grant no. DMS-2510216. "Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation."

Collaborators & Co-authors:

Nadav Dym (Technion)

Daniel Levy (UMD, Princeton)

Naveed Haghani (UMD, APL-JHU)

Maneesh Singh (Verisk)

Radu Balan (UMD)

Efstratios Tsoukanis (UMD, Claremont Graduate Center - CA)

Matthias Wellershoff (UMD)

Preprints

Intro

Preprints:

- 1. R.B., Naveed Haghani, Maneesh Singh, "Permutation-Invariant Representations with Applications to Graph Deep Learning", ACHA, vol. 9 (2025)
- 2. R.B., Efstratios Tsoukanis, "Relationships between the Phase Retrieval Problem and Permutation Invariant Embeddings", arXiv:2306.13111 [math.FA] , [cs.IT] , [math.IT]
- 3. R.B., Efstratios Tsoukanis, "G-Invariant Representations using Coorbits: Bi-Lipschitz Properties", arXiv:2308.11784 [math.RT]
- 4. R.B., Efstratios Tsoukanis, "G-Invariant Representations using Coorbits: Injectivity Properties", arXiv:2310.16365 [math.RT]
- 5. R.B, Efstratios Tsoukanis, Matthias Wellershoff, "Stability of sorting based embeddings", arXiv:2410.05446 [math.FA]
- 6. N. Dym, M. Wellershoff, E. Tsoukanis, D. Levy, R. Balan, "Quantitative Bounds for Sorting-based Permutation-Invariant Embeddings", arXiv:2510.22186[cs.LG, cs.IT, math.FA, math.MG]

Table of Contents:

- Problem Formulation
- 2 Motivation
- 3 Approach
- Main Results
- 6 Planar Rotations
- 6 Numerical Examples in Graph Deep Learning
- Extra

Table of Contents

- Problem Formulation
- 2 Motivation

Intro

0000

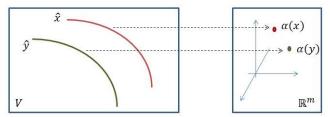
- Approach
- 4 Main Results
- 5 Planar Rotations
- 6 Numerical Examples in Graph Deep Learning
- 7 Extra

High-Level View

In this talk, we discuss Euclidean embeddings of metric spaces induced by orthogonal representations of finite groups G acting on a linear space V with inner product.

Problem: Construct bi-Lipschitz embeddings of the metric space $\hat{V} = V/\sim$ of orbits, $\alpha: \hat{V} \to \mathbb{R}^m$, where $\mathbf{d}([x],[y]) = \inf_{u \in [x], v \in [y]} \|u - v\|$

$$a_0\mathbf{d}([x],[y]) \le \|\alpha([x]) - \alpha([y])\|_2 \le b_0\mathbf{d}([x],[y]).$$



4 D > 4 B > 4 B > 4 B > 900

The Program

Given a discrete group G acting unitarly on a normed real space V, we formulate four general problems

- Construct injective embeddings of the quotient space V/G, $\alpha: \hat{V} \to \mathbb{R}^m$. The injectivity problem.
- **②** Construct/Obtain bi-Lipschitz properties for the Euclidean embedding $\alpha: \hat{V} \to \mathbb{R}^m$. The stability problem.
- **3** Develop algorithms for inversion $\alpha^{-1}: \mathbb{R}^m \to \hat{V}$. The recovery problem.
- 4 Analyze specific cases. Applications.

The Program

Given a discrete group G acting unitarly on a normed real space V, we formulate four general problems

- Construct injective embeddings of the quotient space V/G, $\alpha: \hat{V} \to \mathbb{R}^m$. The injectivity problem.
- **2** Construct/Obtain bi-Lipschitz properties for the Euclidean embedding $\alpha: \hat{V} \to \mathbb{R}^m$. The stability problem.
- **3** Develop algorithms for inversion $\alpha^{-1}: \mathbb{R}^m \to \hat{V}$. The recovery problem.
- 4 Analyze specific cases. Applications.

The Program

Given a discrete group G acting unitarly on a normed real space V, we formulate four general problems

- Construct injective embeddings of the quotient space V/G, $\alpha: \hat{V} \to \mathbb{R}^m$. The injectivity problem.
- **2** Construct/Obtain bi-Lipschitz properties for the Euclidean embedding $\alpha: \hat{V} \to \mathbb{R}^m$. The stability problem.
- **3** Develop algorithms for inversion $\alpha^{-1}: \mathbb{R}^m \to \hat{V}$. The recovery problem.
- 4 Analyze specific cases. Applications.

Today we discuss results about the first two problems: injectivity,

bi-Lipschitz stability.

Table of Contents

- Problem Formulation
- 2 Motivation

Intro

- Approach
- 4 Main Results
- 6 Planar Rotations
- 6 Numerical Examples in Graph Deep Learning
- Extra

I. Phase Retrieval Problems

Intro

Since 2006 ACHA paper¹ lots of research on this theme.

The group: $G = O(1) = \{+1, -1\}$ or $G = U(1) \sim \mathbb{T}^1$ acting on \mathbb{K}^n .

Embedding: $x \mapsto \{|\langle x, f_k \rangle|\}_{k \in [m]}$ for a fixed frame $\{f_1, \dots, f_m\} \subset \mathbb{K}^n$, $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$.

Two type of results of particular interest:

- Minimal embeddings: For $\mathbb{K} = \mathbb{R}$, $m_{min} \geq 2n 1$ ¹; For $\mathbb{K} = \mathbb{C}$: $m_{min} \leq 4n 4$; $m_{min} = 4n 4$ when $n = 2^p + 1$ [Conca, Edidin, Hering, Vinzant'15]; [Vinzant'15]: n = 4, $m_{min} = 11 = 4n 5$
- Bi-Lipschitz: [EldarMend'14,BandCahlMixnNels'14,BWang'15,BZou'15'16] Any finite-dimensional injective embedding is bi-Lipschitz. Global inverse Lipschitz.

Radu Balan (UMD) G-Invariant Embeddings 12/5/2025

¹R.B, Pete Casazza, Dan Edidin, On Signal Reconstruction without Noisy Phase, Appl. Comp. Harm. Anal., 20 (2006)

II. Graph Learning Problems

Intro

Given a data graph (e.g., social network, transportation network, citation network, chemical network, protein network, biological networks):

- Graph adjacency or weight matrix, $A \in \mathbb{R}^{n \times n}$;
- Data matrix, $X \in \mathbb{R}^{n \times r}$, where each row corresponds to a feature vector per node.

Contruct a map $f:(A,X) \to f(A,X)$ that performs:

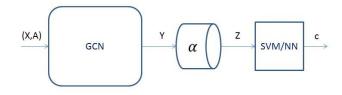
- classification: $f(A, X) \in \{1, 2, \dots, c\}$
- **2** regression/prediction: $f(A, X) \in \mathbb{R}$.

Key observation: The outcome should be invariant to vertex permutation: $f(PAP^T, PX) = f(A, X)$, for every $P \in S_n$.

Graph Deep Learning with GCN/GNN

Intro

Our approach for these learning tasks (classification or regression) is based on the following scheme (see GCN^2 and equivariance³):



where α is a permutation invariant map (embedding), and SVM/NN is a single-layer or a deep neural network (Support Vector Machine or a Fully Connected Neural Network) trained on invariant representations.

Our focus is on the α component.

²Kipf, T. N. and Welling, M., Semi-Supervised Classification with Graph Convolutional Networks, arXiv e-prints , arXiv:1609.02907 (Sep 2016).

³H. Maron, E. Fetaya, N. Segol, Y. Lipman, On the Universality of Invariant Networks, arXiv:1901.09342 [cs.LG] (May 2019).

Radu Balan (UMD) G-Invariant Embeddings 12/5/2025

III. Assignment Problems

The Graph Isomorphism Problem

Intro

Consider two graphs $G=(\mathcal{V},\mathcal{E})$ and $\tilde{G}=(\tilde{\mathcal{V}},\tilde{\mathcal{E}})$ with n nodes. The graph isomorphism problem is the computational problem of determining whether these graphs are identical after a relabeling of nodes.

If A and \tilde{A} denote their adjacency matrices, these graphs are isomorphic if and only if $\tilde{A} = \Pi A \Pi^T$ for some permutation matrix $\Pi \in \mathcal{S}_n$.

Current state-of-the-art (Wikipedia): Babai (2015,2017) presented a quasi-polynomial algorithm with running time $2^{O((\log n)^c)}$, for some fixed c>0. Helfgott (2017) claims that one can take c=3.

Similar problem can be stated for weighted graphs: $A, \tilde{A} \in \text{Sym}(n)$ with nonnegative entries, isomorphic if and only if $\tilde{A} = \Pi A \Pi^T$ for some $\Pi \in \mathcal{S}_n$.

|ロト 4回ト 4 差ト 4 差ト | 差 | 幻Q(

Graph Alignment Problems

Intro

Consider two $n \times n$ symmetric matrices A, B. The "vanilla" alignment problem for quadratic forms asks for the orthogonal matrix $U \in O(n)$ that minimizes

$$||UAU^T - B||_F^2 := trace((UAU^T - B)^2) = ||A||_F^2 + ||B||_F^2 - 2trace(UAU^T B).$$

The solution is well-known and depends on the eigendecomposition of matrices A, B: if $A = U_1D_1U_1^T$, $B = U_2D_2U_2^T$ then

$$U_{opt} = U_2 U_1^T$$
, $||U_{opt}AU_{opt}^T - B||_F^2 = \sum_{k=1}^n |\lambda_k - \mu_k|^2$,

where $D_1 = diag(\lambda_k)$ and $D_2 = diag(\mu_k)$ are diagonal matrices with eigenvalues ordered monotonically.

Quadratic Assignment Problem (QAP)

Intro

The challenging case is when U is constrained to the permutation group as is the case in the *graph matching problem*. In this case, the optimization problem becomes

$$\min_{U \in \mathcal{S}_n} \|UAU^T - B\|_F$$

which turns into a QAP: $\max_{U \in \mathcal{S}_n} trace(UAU^T B)$.

This is equivalent to computing the natural distance

 $d(\hat{A}, \hat{B}) = \min_{P,Q \in \mathcal{S}_n} \|PAP^T - QBQ^T\|_F$ between the equivalence classes

$$\hat{A}, \hat{B} \in \operatorname{Sym}(n)$$
 induced by action $(\Pi, A) \mapsto \Pi A \Pi^T$.

How is this connected to the embedding problem? If one can design an efficient nearly isometric map $\Phi: \mathit{Sym}(n) \to \mathbb{R}^m$ so that

(1)
$$\Phi(PAP^T) = \Phi(A)$$
 for all $P \in \mathcal{S}_n$ and $A \in Sym(n)$, and

$$(2) \ \ (1-\delta) \min_{P \in \mathcal{S}_n} \|PAP^T - B\| \leq \|\Phi(A) - \Phi(B)\| \leq (1+\delta) \min_{P \in \mathcal{S}_n} \|PAP^T - B\|,$$

then the QAP solved efficiently up to a multiplicative factor.

Table of Contents

- Problem Formulation
- 2 Motivation

Intro

- 3 Approach
- 4 Main Results
- 6 Planar Rotations
- 6 Numerical Examples in Graph Deep Learning
- Extra

Problem Setup

Intro

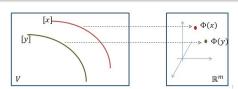
Consider a group $G \subset O(d)$ acting on the Euclidean space $V = \mathbb{R}^d$.

General problem

Construct an embedding map $\Phi: V \to \mathbb{R}^m$

- Invariance: $\Phi(U_g x) = \phi(x) \ \forall g \in G, x \in V$
- ② Injectivity: if $\Phi(x) = \Phi(y)$ then there exists $g \in G$ so that $y = U_g x$.
- **3** Φ is bi-Lipschitz on $(\hat{V} = V/G, \mathbf{d})$:

$$a_0 \inf_{u \in [x], v \in [y]} \|u - v\| \le \|\Phi(x) - \Phi(y)\| \le b_0 \inf_{u \in [x], v \in [y]} \|u - v\|.$$



Approaches

Intro

Over the past many years, several constructions have been proposed:

- Invariant Polynomials: Hilbert, Noether, ..., Cahill⁴, Bandeira⁵
- **2** Kernels: replace monomials by other kernels, e.g. $e^{i\omega x}$, e^{-x^2} , $\sigma(\langle x, a \rangle)^6$
- **3** Sorting: extends the 1-D sorting, $x \mapsto \downarrow x^{7}$, 8
- 1+2: sum pooling layer; 3: max pooling layer deep nets⁹, 10.
- ⁴J. Cahill, A. Contreras, A.C. Hip, Complete Set of translation Invariant Measurements with Lipschitz Bounds, Appl. Comput. Harm. Anal. 49 (2020), 521–539.
- 5 A. Bandeira, B. Blum-Smith, J. Kileel, J. Niles-Weed, A. Perry, A.S. Wein, Estimation under group actions: Recovering orbits from invariants, ACHA 66 (2023)
- ⁶D. Yarotsky, Universal approximations of invariant maps by neural networks, Constructive Approximation (2021)
- $^7\text{R.}$ Balan, N. Haghani, M.Singh, Permutation-Invariant Representations with Applications to Graph Deep Learning, arXiv:2203.07546
- ⁸ J. Cahill, J.W. Iverson, D.G. Mixon, D. Packer, Group-invariant max filtering, arXiv:2205.14039.
- ⁹O. Vinyals, S. Bengio, M. Kudlur, Order Matters: Sequence to sequence for sets, ICLR 2016
- ¹⁰H. Maron, H. Ben-Hamu, N. Shamir, Y. Lipman, Invariant and equivariant graph networks,

Idea

Consider the special case $G = S_n$ is the symmetric group acting by permutation matrices on $V = \mathbb{R}^n$.

The ring of invariant polynomials is generated by the elementary symmetric polynomials $e_1, ..., e_n$, $\mathbb{R}[X_1, \cdots, X_n]^{S_n} \simeq \mathbb{R}[e_1, \cdots, e_n]$. There is a natural embedding $\mathbb{R}^n/S_n \hookrightarrow \mathbb{R}^n$, $x \mapsto (e_1(x), \cdots, e_n(x))$. Drawback: it is not bi-Lipschitz.

Idea

Consider the special case $G = S_n$ is the symmetric group acting by permutation matrices on $V = \mathbb{R}^n$.

The ring of invariant polynomials is generated by the elementary symmetric polynomials $e_1,...,e_n$, $\mathbb{R}[X_1,\cdots,X_n]^{S_n}\simeq \mathbb{R}[e_1,\cdots,e_n]$. There is a natural embedding $\mathbb{R}^n/S_n\hookrightarrow \mathbb{R}^n$, $x\mapsto (e_1(x),\cdots,e_n(x))$. Drawback: it is not bi-Lipschitz.

Alternatively: Consider the embedding \downarrow : $\mathbb{R}^n/S_n \hookrightarrow \mathbb{R}^n$, $x \mapsto \downarrow (x)$, that sorts monotone decreasing the vector x.

Key obervation: $\min_{P \in S_n} ||x - Py||_2 = ||\downarrow x - \downarrow y||_2$. Hence: \downarrow is an *isometric* embedding of \mathbb{R}^n / S_n into \mathbb{R}^n ,

Sorting based Representations and G-invariance

Assume V is a real d-dimensional Hilbert space and G a finite orthogonal group of size N = |G|, acting on V, $\{U_g, g \in G\}$.

Fix a generator $w \in V$ (call it, window, or template, or wavelet) and consider the nonlinear map induced by sorting its coorbit:

$$\phi_{w}: V \to \mathbb{R}^{N} \ , \ \phi_{w}(x) = \downarrow ((\langle x, U_{g}w \rangle)_{g \in G}).$$

where $\downarrow (y) = (y_{\pi(i)})_{i \in [N]}$ is the non-increasing sorting operator:

$$y_{\pi(1)} \geq \cdots \geq y_{\pi(N)}$$
.

Key observations:

Intro

- ② ϕ_w is piecewise linear (in fact, $\phi_w(x) = \phi_x(w)$, and $(w, x) \mapsto \phi_w(x)$ is piecewise bilinear).

Intro

Motivation

Approach 0000000

Main Results

G-Invariant Coorbit Representations

For a collection $\mathbf{w} = (w_1, \dots, w_p) \in V^p$ the sorted coorbit representation:

$$\Phi_{\mathbf{w}}: V \to \mathbb{R}^{N \times p}$$
, $\Phi_{\mathbf{w}}(x) = \left[\phi_{w_1}(x) | \cdots | \phi_{w_p}(x)\right]$.

Apply a dimension-reduction linear map $\mathcal{L}: \mathbb{R}^{N \times p} \to \mathbb{R}^m$, the G-invariant coorbit representation:

$$\Psi_{\mathbf{w},\mathcal{L}}: V \to \mathbb{R}^m$$
, $\Psi_{\mathbf{w},\mathcal{L}}(x) = \mathcal{L}(\Phi_{\mathbf{w}}(x))$

$$x\mapsto Y\colon=\left(\left\langle x,U_gw\right\rangle\right)_{g\in G}\times p\qquad Y\mapsto Z\colon=\downarrow\left(\left\langle x,U_gw\right\rangle\right)_{g\in G}\times p\qquad Z\mapsto \mathcal{L}(Z)$$

In particular, if $S \subset [N] \times [p]$, $\Phi_{\mathbf{w},S} := \Psi_{\mathbf{w},1_S} = \Phi_{\mathbf{w}}|_{S}$.

Radu Balan (UMD) G-Invariant Embeddings 12/5/2025

G-Invariant Coorbit Representations

Special cases:

Intro

- 1. For $G = S_n$ and $V = \mathbb{R}^{n \times d}$ with action $(P, X) \mapsto PX^{-11}$ introduced the embedding $\beta_A(X) = \downarrow (XA)$, for $key \ A \in \mathbb{R}^{d \times D}$ and sorting operator acting independently in each column. This is of the type $\Psi_{\mathbf{w},\mathcal{L}}$ for $w_1 = \delta_1 \cdot a_1^T, \ldots, w_D = \delta_1 \cdot a_D^T$, where $\delta_1 = (1,0,\cdots,0)^T$ and $A = [a_1|\cdots|a_D]$, and \mathcal{L} a restriction operator to an appropriate subset $S \subset [n!] \times [D]$ of size nD.
- 2. The max filter introduced in 12 for some template $w \in V$ is defined by $\langle \langle \cdot, w \rangle \rangle : V \to \mathbb{R}$, $\langle \langle x, w \rangle \rangle = \max_{g \in G} \langle x, U_g w \rangle$. Equivalent recasting: $\langle \langle x, w \rangle \rangle = \mathcal{L}(\Phi_w(X))$, for a restriction operator \mathcal{L} to the subset $S = \{1\}$.
- 3. The operator $\Psi_{\mathbf{w},\mathcal{L}}$, $\Psi_{\mathbf{w},\mathcal{L}}(X) = \mathcal{L}(\Phi_{\mathbf{w}}(X))$ has been introduced in ¹³
- ¹¹R. Balan, N. Haghani, M.Singh, Permutation Invariant Representations with Applications to Graph Deep Learning, arXiv:2203.07546 (2022)
- ¹² J. Cahill, J. W. Iverson, D. G. Mixon, D. Packer, Group-invariant max filtering, arXiv:2205.14039 (2022)
- ¹³R.B, Efstratios Tsoukanis, Matthias Wellershoff, "Stability of sorting based embeddings", arXiv:2410.05446 (2024)

Radu Balan (UMD) G-Invariant Embeddings 12/5/2025

Table of Contents

- Problem Formulation
- 2 Motivation

Intro

- 3 Approach
- Main Results
- Planar Rotations
- 6 Numerical Examples in Graph Deep Learning
- Extra

Main Results

Injectivity

Intro

Let
$$V_G = \{x \in V : U_g x = x , \forall g \in G\}$$
, $d_G = dim(V_G)$, $q \ge 0$ and for $g = (g_1, \dots, g_n)$, $h = (h_1, \dots, h_n) \in H_n \subset G^n$ distinct, $\rho_n(q) = \max_{g,h} \gamma_{g,h}^q$ where $\gamma_{g,h}^q = semi.alg.dim. \{(x,y) \in V \times V : dim(span\{U_{g_k}x - U_{h_k}y, k \in [n]\}) = q\}$

Theorem (R.B., E.Tsoukanis '23-'25)

In any of the following cases

- **1** Assume $p \ge 2 \dim(V) d_G$ and set $\mathbf{n} = (k_1, \dots, k_p) \in [N]^p$.
- ② Fix $n \in [N]$ and choose $p > \max_{q \in [n]} \frac{1}{q} (\rho_n(q) d_G 1)$. Set $\mathbf{n} = (n, \dots, n) \in [N]^p$.
- **3** Choose $p \ge 1$ and $\mathbf{n} = (n_1, \dots, n_p) \in [N]^p$ so that $\max_{q_1 \in [n_1], \dots, q_p \in [n_p]} (\min_{i \in [p]} \rho_{n_i}(q_i) (q_1 + \dots + q_p)) \le d_G$.

For a generic (w.r.t. Zariski topology) **w** and for any $S \subset [N] \times [p]$ with $|\{k : (k,i) \in S\}| \ge n_i$, the map $\Phi_{\mathbf{w},S} : (\widehat{V},\mathbf{d}) \to (\mathbb{R}^{|S|},\|\cdot\|_2)$ is injective.

Main Results (2)

Intro

Theorem (R.B, E.T., M. Wellershoff '24)

Consider the same setup as before. Assume $\mathbf{w} \in V^p$ and $\mathcal{L} : \mathbb{R}^{N \times p} \to \mathbb{R}^m$ so that $\Psi_{\mathbf{w},\mathcal{L}} : (\widehat{V},\mathbf{d}) \to (\mathbb{R}^m,\|\cdot\|_2)$ is injective.

- ① Themap $\Psi_{\mathbf{w},\mathcal{L}}:(\widehat{V},\mathbf{d})\to (\mathbb{R}^m,\|\cdot\|_2)$ is bi-Lipschitz. Let a_0,b_0 denote its bi-Lipschitz constants.
- ② If $f: V \to H$ is a Lipschitz continuous function so that $f(U_g x) = f(x)$ for all g, x, where H is a Hilbert space, then there exists a Lipschitz continuous function $g: \mathbb{R}^m \to H$ so that $f = g \circ \Psi_{\mathbf{w}, \mathcal{L}}$, i.e. $f(x) = g(\Psi_{\mathbf{w}, \mathcal{L}}(x))$. Furthermore, $Lip(g) \leq Lip(f)/a_0$.
- **③** Assume $g : \mathbb{R}^m \to H$ is a Lipschitz function with Lipschitz constant Lip(g). Then $f = g \circ \Psi_{\mathbf{w},\mathcal{L}} : V \to H$ is G-invariant and Lipschitz, with Lipschitz constant Lip $(f) \leq b_0$ Lip(g).

Its proof is based on Kirszbraun's extension theorem.

12/5/2025

Radu Balan (UMD) G-Invariant Embeddings

Existing Results

Intro

Injectivity problem

Over the past 15 years or so, there have been works that recognized the difference between generating polynomials and separating invariants¹⁴ A seminal paper that resurfaces results on semi-algebraic sets is ¹⁵. The method goes back to earlier works in phase retrieval 16.

More recently, in the context of G-invariance, ¹⁷, ¹⁸, or permutation invariance¹⁹

⁴Emilie Dufresne, Separating invariants and

finite reflection groups, Advances in Mathematics 221 (2009), no. 6, 1979–1989.

¹⁵Dym Nadav, Steven J. Gortler. "Low dimensional invariant embeddings for universal geometric learning." arXiv preprint arXiv:2205.02956.

¹⁶R. Balan, P. Casazza, D. Edidin, On signal reconstruction without phase, ACHA 20(2006)

¹⁷D. G. Mixon, D. Packer, Max filtering with reflection groups, arXiv:2212.05104

¹⁸R. Balan, E. Tsoukanis, G-invariant representations using coorbits: Injectivity properties, arXiv:2310.16365

 $^{19}\mathrm{On}$ the equivalence between graph isomorphism testing and function approximation with GNNs 7. Chen S. Villar L. Chen J. Bruna NeurIPS 2019 Radu Balan (UMD) G-Invariant Embeddings

Existing Results (2)

Intro

Lipschitz and Bi-Lipschitz properties

Earlier results obtain Lipschitz/bi-Lipschitz properties on compacts, or certain classes of functions.

Global L/bi-L are harder to establish and typically rule out polynomial based embeddings.

So far only sorting based embeddings showed such global properties 20 , 21 , 22

Radu Balan (UMD) G-Invariant Embeddings 12/5/2025

²⁰R. Balan, E. Tsoukanis, G-invariant representations using coorbits: Bi-lipschitz properties, arXiv:2308.11784

²¹ J. Cahill, J. W. Iverson, D. G. Mixon, Bilipschigz group invariants, arXiv:2305.17241

²²D. G. Mixon, Y. Qaddura, Injectivity, stability, and positive definiteness of max filtering, arXiv:2212.11156

Sketch of Proof: Injectivity Result

Intro

Define the "bad" set of w's that fail to separate all distinct classes:

$$\mathcal{F} = \{ \mathbf{w} \in V^p , \exists x \not\sim y \ \Phi_{\mathbf{w}}(x) = \Phi_{\mathbf{w}}(y) \ \}.$$

The work is to embed \mathcal{F} into a semi-algebraic set of semi-algebraic dimension strictly less than $pd = p \dim(V)$.

This technique is called "lift-and-project'²³: we construct a semi-algebraic vector bundle embedded into a certain Grassmanian vector bundle $\gamma_{n,k}^{\perp}$. The bad set \mathcal{F} is then indentified with a subset of the projection of this

vector bundle into its second component.

The full result for $\Psi_{\mathbf{w},\mathcal{L}}$ follows from analyzing the semi-algebraic dimension of the difference-set $\{\Phi_{\mathbf{w}}(x) - \Phi_{\mathbf{w}}(y)\}$.

Radu Balan (UMD) G-Invariant Embeddings 12/5/2025

²³R. Balan, P. Casazza, D. Edidin, On signal reconstruction without phase, ACHA 20(2006)

Sketch of Proof: Lower Lipschitz bound

The proof is by contradiction. Consider the simpler case when \mathcal{L} is given by restriction to a subset $S \subset [N] \times [p]$.

1. If lower Lipschitz constant vanishes, then it must vanish locally: there are $(x_n)_n, (y_n)_n$ such that

$$\lim_{n\to\infty}\frac{\|\Phi_{\mathbf{w},S}(x_n)-\Phi_{\mathbf{w},S}(y_n)\|^2}{\mathbf{d}([x_n],[y_n])^2}=0$$

and

Intro

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = z_1, \ \|x_n\| = 1, \ \|y_n\| \le 1, \ \|z_1\| = 1$$

and they are aligned with one another:

$$||x_n - y_n|| = \min_{\sigma \in G} ||x_n - U_g y_n||$$
 (4.1)

$$||x_n - z_1|| = \min_{g \in G} ||x_n - U_g z_1||$$
 (4.2)

$$||y_n - z_1|| = \min_{g \in G} ||y_n - U_g z_1|| \tag{4.3}$$

Intro

Lower Lipschitz bound

2. We construct inductively $z_2, z_3, ..., z_d$ such that for all $1 \le k \le d-1$:

$$||z_{k+1}|| \ll ||z_k||$$
, dim(span(z_1, \ldots, z_k)) = k

and the local lower Lipschitz constant vanishes in a convex set $\{\sum_{r=1}^{k} a_r z_r, |a_r - 1| < \epsilon\}.$

- 3. For k = d this construction defines a non-empty open set $\{\sum_{r=1}^k a_r z_r, |a_r-1| < \epsilon\}$ where the local lower Lipschitz constant vanishes.
- 4. Finally, we can construct $u, v \neq 0$, so that $x = u + \sum_{r=1}^{d} z_r$ and $y = v + \sum_{r=1}^{d} z_r$ satisfy $x \neq y$ and yet

$$\Phi_{\mathbf{w},S}(x) = \Phi_{\mathbf{w},S}(y).$$

This contradicts the injectivity hypothesis.

Table of Contents

- Problem Formulation
- 2 Motivation

Intro

- Approach
- 4 Main Results
- 6 Planar Rotations
- 6 Numerical Examples in Graph Deep Learning
- Extra

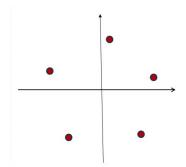
Planar Rotations

Intro

Consider the group $G=< U_{2\pi/N}>\simeq \mathbb{Z}_N$ acting on $V=\mathbb{R}^2$ by planar rotations

$$U_{2\pi/N}^k = U_{2\pi k/N} = \left[egin{array}{cc} \cos(rac{2\pi k}{N}) & -\sin(rac{2\pi k}{N}) \ \sin(rac{2\pi k}{N}) & \cos(rac{2\pi k}{N}) \end{array}
ight]$$

N=5. A generic orbit for rotations by $\frac{2\pi}{5}$.



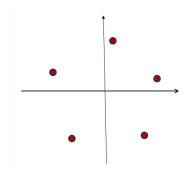
Planar Rotations: Metric Space

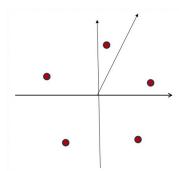
Intro

Motivation

Consider the group $G=< U_{2\pi/N}>\simeq \mathbb{Z}_N$ acting on $V=\mathbb{R}^2$ by planar rotations

$$U_{2\pi/N}^k = U_{2\pi k/N} = \left[egin{array}{cc} \cos(rac{2\pi k}{N}) & -\sin(rac{2\pi k}{N}) \ \sin(rac{2\pi k}{N}) & \cos(rac{2\pi k}{N}) \end{array}
ight]$$



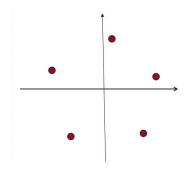


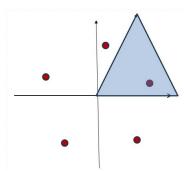
Planar Rotations: Metric Space

Intro

Consider the group $G=< U_{2\pi/N}>\simeq \mathbb{Z}_N$ acting on $V=\mathbb{R}^2$ by planar rotations

$$U_{2\pi/N}^k = U_{2\pi k/N} = \left[egin{array}{cc} \cos(rac{2\pi k}{N}) & -\sin(rac{2\pi k}{N}) \ \sin(rac{2\pi k}{N}) & \cos(rac{2\pi k}{N}) \end{array}
ight]$$



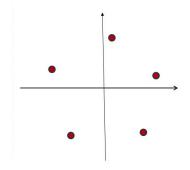


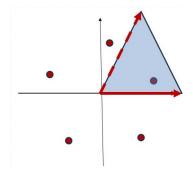
Planar Rotations: Metric Space

Intro

Consider the group $G=< U_{2\pi/N}>\simeq \mathbb{Z}_N$ acting on $V=\mathbb{R}^2$ by planar rotations

$$U_{2\pi/N}^k = U_{2\pi k/N} = \left[egin{array}{cc} \cos(rac{2\pi k}{N}) & -\sin(rac{2\pi k}{N}) \ \sin(rac{2\pi k}{N}) & \cos(rac{2\pi k}{N}) \end{array}
ight]$$



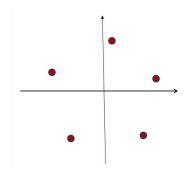


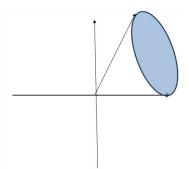
Planar Rotations: Metric Space

Intro

Consider the group $G=< U_{2\pi/N}>\simeq \mathbb{Z}_N$ acting on $V=\mathbb{R}^2$ by planar rotations

$$U_{2\pi/N}^k = U_{2\pi k/N} = \left[egin{array}{cc} \cos(rac{2\pi k}{N}) & -\sin(rac{2\pi k}{N}) \ \sin(rac{2\pi k}{N}) & \cos(rac{2\pi k}{N}) \end{array}
ight]$$

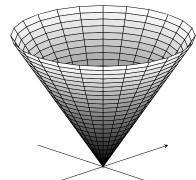




Planar Rotations: Geometric Embedding

Explicit embedding with $r = |x + iy| = \sqrt{x^2 + y^2}$ and $\theta = Arg(x + iy)$:

$$\begin{split} \Psi : \mathbb{R}^2 &\to \mathbb{R}^3 \,\,, \,\, (x,y) \mapsto \Psi(x,y) = \left(\frac{r}{N} cos(N\theta), \frac{r}{N} sin(N\theta), r\sqrt{1 - \frac{1}{N^2}}\right). \\ &\frac{1}{N sin(\frac{\pi}{2N})} \mathbf{d}((x_1, y_1), (x_2, y_2)) \leq \|\Psi(x_1, y_1) - \Psi(x_2, y_2)\|_2 \leq \mathbf{d}((x_1, y_1), (x_2, y_2)) \end{split}$$



3D embedding has distortion:

$$\frac{b_0}{a_0} = N \sin(\frac{\pi}{2N}) \stackrel{N \to \infty}{\longrightarrow} \frac{\pi}{2} \approx 1.57.$$

The 2D projection:

$$(x,y)\mapsto \Psi_0(x,y)=\left(rac{r}{N}cos(N heta),rac{r}{N}sin(N heta)
ight)$$

is bi-Lipschitz with distortion N.

Planar Rotations: Sorted Coorbit Embedding (1)

The following result is proved by a careful analysis of this specific case $(G = \langle U_a \rangle \simeq \mathbb{Z}_N, \ a = \frac{2\pi}{N}, \ V = \mathbb{R}^2).$

Theorem (R.B, E.Tsoukanis'25)

Intro

- For any $w \in \mathbb{R}^2$, the map $\Phi_w : \widehat{\mathbb{R}^2} \to \mathbb{R}^N$ is never injective.
- For any $w_1, w_2 \in \mathbb{R}^2$ and $S = \{(q_1, 1), (q_2, 2)\}$ the map $\Phi_{\mathbf{w}, S} : \widehat{\mathbb{R}^2} \to \mathbb{R}^2$ is never injective.
- **3** Assume either one of the following holds:
 - **•** $\mathbf{w} = (w_1, w_2, w_3) \in (\mathbb{R}^2)^3$ so that $\{U_a^{k_1}w_1, U_a^{k_2}w_2, U_a^{k_3}w_3\}$ is a full spark frame for all integers k_1, k_2, k_3 , and $S = \{(1, 1), (1, 2), (1, 3)\}$ (the max filter);
 - **2** $\mathbf{w} = (w_1, w_2) \in (\mathbb{R}^2)^2$ so that $\{U_{a/2}^{k_1}w_1, U_{a/2}^{k_2}w_2\}$ is linearly independent for all k_1, k_2 integers, and $S = \{(i, 1), (j, 1), (k, 2)\}$ (a $\mathbf{n} = (2, 1)$ configuration) with $i \neq j$ and, if N is even then $i + j \neq N + 1$.

Then generically, the map $\Phi_{\mathbf{w},S}: \mathbb{R}^2 \to \mathbb{R}^3$ is injective and hence

Planar Rotations: Semi-algebraic indices

Cyclic group $< U_a > \simeq \mathbb{Z}_N$ generated by the planar rotation by $a = \frac{2\pi}{N}$. Recall for $g, h \in G^n$,

$$\gamma_{g,h}^q = semi.alg.dim. \{(x,y) \in V \times V : dim(span\{U_{g_k}x - U_{h_k}y, k \in [n]\}) = q\}$$

$$\rho_n(q) = \max_{g,h \in H_n} \gamma_{g,h}^q$$

where
$$H_n=\{(g_1,\cdots,g_n)\in G^n\;,\;g_i\neq g_j,\forall i\neq j\}.$$

Explicit computations:

$$ho_1(q) = egin{cases} 2, & q = 0, \ 4, & q = 1, &
ho_2(q) = \ -1, & q \geq 2. \end{cases} egin{cases} 2, & q = 0, \ 3, & q = 1 \& N ext{ odd}, \ 4, & q = 1 \& N ext{ even}, \ 4, & q = 2 \ -1, & q \geq 3. \end{cases}$$

◆ロト ◆団ト ◆恵ト ◆恵ト 恵 めの○

Intro

Motivation

Planar Rotations: Sorted Coorbit Embedding (2)

The expressions of semi-algebraic indices imply the following result:

Theorem (R.B, E.Tsoukanis'25)

Approach

Motivation

Intro

Assume N is odd. For generic $w_1, w_2, w_3 \in \mathbb{R}^2$ and every $S = \{(k_1, 1), (k_2, 1), (k_3, 2), (k_4, 3)\}$ with $k_1 \neq k_2$, the map $\Phi_{\mathbf{w}, S} : \widehat{\mathbb{R}^2} \to \mathbb{R}^4$ is injective and hence bi-Lipschitz.

With additional work (replacing $H_n = \{(g_1, \cdots, g_n) \in G^n , g_i \neq g_j, \forall i \neq j\}$ with $\tilde{H}_n = \{h = (h_1, \cdots, h_n) \in H_n , \exists x \in V, \downarrow (\langle x, U_g w \rangle)_{g \in G} = (\langle x, U_{h_i} w \rangle)_{i \in [n]}\}$), it is possible to show the following result:

Theorem (R.B, E.Tsoukanis'25)

Assume N is even. For generic $w_1, w_2, w_3 \in \mathbb{R}^2$ and every $S = \{(k_1, 1), (k_2, 1), (k_3, 2), (k_4, 3)\}$ with $k_1 \neq k_2$ and $k + 1 + k_2 \neq N + 1$, the map $\Phi_{\mathbf{w}, S} : \widehat{\mathbb{R}^2} \to \mathbb{R}^4$ is injective and hence bi-Lipschitz.

Thank you! Questions?

Table of Contents

- 6 Numerical Examples in Graph Deep Learning

The Protein Dataset

Intro

Protein Dataset: PROTEINS_FULL²⁴ consists of 1113 proteins: 663 non-enzymes and 450 enzymes. Each graph associated to one protein: nodes represent amino acids and edges represent the bonds between them. Number of nodes (aminoacids): varying between 20 and 620 with average of 39. Input feature vectors of size r=29.

Task: the task is classification of each protein into enzyme or non-enzyme.

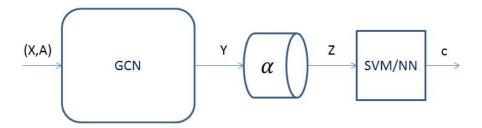
²⁴P.D. Dobson, A.J. Doig, "Distinguishing Enzyme Structures from Non-enzymes without Alignments", J. Mol. Biol. 330, 771-783, 2003.

The Deep Network Architecture

Architecture: ReLU activation and

Intro

- GCN with L=3 layers and 29 input feature vectors, and 50 hidden nodes in each layer; no dropouts, no batch normalization. output of GCN: d=1,10,50,100.
- Mid-layer component: α
- Fully connected NN with dense 3-layers and 150 internal units; no dropouts, with batch normalization.



The Network

Intro

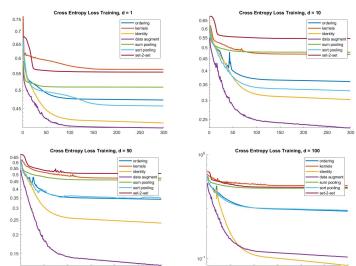
Training has been done over 300 epochs with a batch size of 128. Loss function: binary cross-entropy.

The following 7 α modules have been tested:

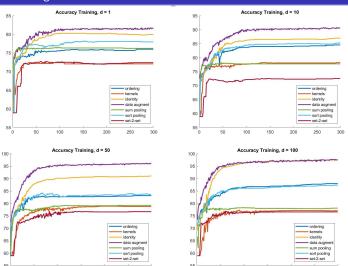
- **1** identity: $\alpha(X) = X$; no permutation invariance.
- 2 data augmentation: $\alpha(X) = X$ BUT the training data set has been augmented with 4 random permutations of each graph.
- **3** ordering: $\alpha(X) = \downarrow (XA)$, $A = [I \ 1]$
- kernels: $\alpha(X) = (\sum_{k=1}^{n} \exp(-\|x_k a_j\|^2))_{1 \le j \le m = 5nd}$
- **3** sumpooling: $\alpha(X) = 1^T X$
- sort-pooling: sorted by last column
- set-to-set: introduced in [Vinyals&al.]²⁵

²⁵Vinyals, O., Bengio, S. Kudlur, M., Order Matters: Sequence to sequence for sets, ICLR 2016.

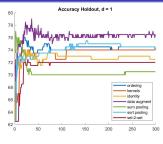
Training Loss: X Entropy

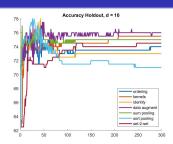


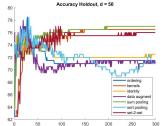
Accuracy on Training set

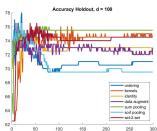


Accuracy on Holdout data



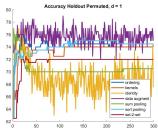


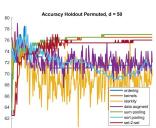




Intro

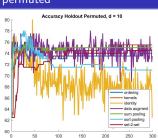
Accuracy on Holdout data with nodes randomly permuted

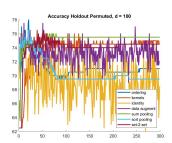




200 250

100





Radu Balan (UMD)

Performance Results: Accuracy

Intro

d = 50	ordering	kernels	identity	data	sum-	sort-	set-2-
				augment	pooling	pooling	set
Training	83.1	78.8	91	96	79.2	83.7	76.7
Holdout	71.5	76.5	72.5	71	77	71	76
Holdout Perm	71.5	76.5	69.5	72	77	71	76

Table: Accuracy ACC(%) for enzyme/non-enzyme classification of the seven algorithms on PROTEINS_FULL dataset after 300 epochs for embedding dimension d=50

For comparison: $[Dobson\&al.]^{26}$ obtains an accuracy of 77-80% using an SVM based classifier.

²⁶P.D. Dobson, A.J. Doig, "Distinguishing Enzyme Structures from Non-enzymes without Alignments", J. Mol. Biol. 330, 771-783, 2003.

The QM9 Dataset

Intro

Dataset: QM9²⁷ consists of about 134,000 isomers of organic molecules made up of CHONF, each containing 10-29 atoms. see http://quantum-machine.org/datasets/ Nodes corresponds to atoms; each feature vector containins geometry (x,y,z coordinates), partial charge per atom (Mulliken charge), and atom type.

Task: the task is regression: predict a physical feature (electron energy gap $\Delta \varepsilon$) computed for each molecule.

Architecture: ReLU activation and

- GCN with L=3 layers and 50 hidden nodes in each layer; no dropouts, no batch normalization; zero padding to m=29 number of rows. output of GCN: d=1,10,50,100.
- ullet Mid-layer component: lpha
- Fully connected NN with dense 3-layers and 150 internal units in each of the two hidden layers; no dropouts, with batch normalization.

27 R. Ramakrishnan, P.O. Dral, M. Rupp, and OA. von Lilienfeld. Quantum chemistry structures and properties of 134 kilo molecules. Scientific data. 1(1):1-7. 2014.

The Network

Intro

Training has been done over 300 epochs with a batch size of 128. Loss function: Mean-Square Error (MSE).

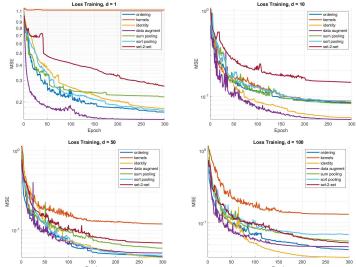
The same 7 α modules have been tested:

- **1** identity: $\alpha(X) = X$; no permutation invariance.
- 2 data augmentation: $\alpha(X) = X$ BUT the training data set has been augmented with 4 random permutations of each graph.
- **3** ordering: $\alpha(X) = \downarrow (XA)$, $A = [I \ 1]$
- kernels: $\alpha(X) = (\sum_{k=1}^{n} \exp(-\|x_k a_j\|^2))_{1 \le j \le m = 5nd}$
- **3** sumpooling: $\alpha(X) = 1^T X$
- sort-pooling: sorted by last column
- set-to-set: introduced in [Vinyals&al.]²⁸

²⁸Vinyals, O., Bengio, S. Kudlur, M., Order Matters: Sequence to sequence for sets, ICLR 2016

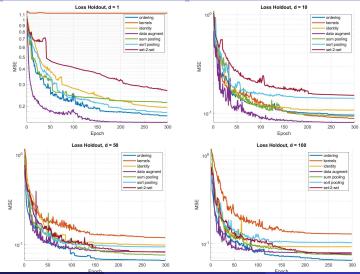
QM9 Regression Example

Training MSE



QM9 Regression Example

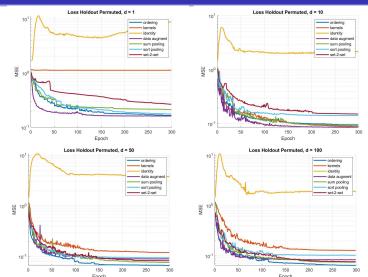
Validation MSE



QM9 Regression Example

Intro

Validation MSE with Random Permutations



Performance Results: MAE

d = 100	ordering	kernels	identity	data	sum-	sort-	set-2-
				augment	pooling	pooling	set
Training	0.155	0.269	0.139	0.164	0.178	0.199	0.173
Holdout	0.187	0.267	0.227	0.206	0.201	0.239	0.201
Holdout Perm	0.187	0.267	1.086	0.213	0.201	0.239	0.201

Table: Mean Absolute Error (MAE) for regression of the electron energy gap $\Delta \varepsilon = LUMO - HOMO$ (eV) of the seven algorithms on QM9 dataset after 300 epochs for embedding dimension d=100

For comparison:

- chemical accuracy is 0.043eV
- the best ML method [Gilmer&al.] achieves MAE of 0.053eV
- Coulomb method [Rupp&al.] achieves MAE of 0.229eV

Table of Contents

- Problem Formulation
- 2 Motivation

- Approach
- 4 Main Results
- 6 Planar Rotations
- 6 Numerical Examples in Graph Deep Learning
- Extra

A Universal Embedding

Consider the map

Motivation

Intro

$$\mu: \widehat{\mathbb{R}^{n \times d}} \to \mathcal{P}(\mathbb{R}^d) \ , \ \mu(X)(x) = \frac{1}{n} \sum_{k=1}^n \delta(x - x_k)$$

where $\mathcal{P}(\mathbb{R}^d)$ denotes the convex set of probability measures over \mathbb{R}^d , and δ denotes the Dirac measure. x_k is the k^{th} row of X.

Clearly $\mu(X') = \mu(X)$ iff X' = PX for some $P \in \mathcal{S}_n$.

The Wasserstein-2 distance is equivalent to the natural metric:

$$W_2(\mu(X), \mu(Y))^2 := \inf_{q \in J(\mu(X), \mu(Y))} \mathbb{E}_q[\|x - y\|_2^2] = \min_{P \in \mathcal{S}_n} \|Y - PX\|^2$$

By Kantorovich-Rubinstein theorem, the Wasserstein-1 distance (the Earth moving distance) extends to a norm on the space of signed Borel measures.

Main drawback: $\mathcal{P}(\mathbb{R}^d)$ is infinite dimensional!

Radu Balan (UMD)

Finite Dimensional Embeddings

Intro

Idea: "Project" the measure onto a finite dimensional space. This is accomplished by *kernel methods*:

Fix a family of functions f_1, \dots, f_m and consider:

$$\mu(X) \mapsto \int_{\mathbb{R}^d} f_j(x) d\mu(X) = \frac{1}{n} \sum_{k=1}^n f_j(x_k) \quad , \quad j \in [m]$$

Finite Dimensional Embeddings

Idea: "Project" the measure onto a finite dimensional space. This is accomplished by *kernel methods*:

Fix a family of functions f_1, \dots, f_m and consider:

$$\mu(X) \mapsto \int_{\mathbb{R}^d} f_j(x) d\mu(X) = \frac{1}{n} \sum_{k=1}^n f_j(x_k) , \quad j \in [m]$$

Possible choices:

Intro

- Polynomial embeddings: $\mathbb{R}[X]^{S_n}$, ring of invariant polynomials; [Lipman&al.],[Peyré&al.],[Sanay&al.],[Kemper book] ...
- ② Gaussian kernels: $f_j(x) = exp(-\|x a_j\|^2/\sigma_j^2)$; [Gilmer&al.],[Zaheer&al.], [Vinyals&al.],...
- **3** Fourier kernels (cmplx embd): $f_j(x) = exp(2\pi i \langle x, \omega_j \rangle)$; related to Prony method; [Li&Liao] for bi-Lipschitz estimates.

Main drawback: No global bi-Lipschitz embeddings [Cahill&al.]. Ok on (some) compacts.

The Embedding Problem

Notations (2)

Intro

Definition

Fix $X \in \mathbb{R}^{n \times d}$. A matrix $A \in \mathbb{R}^{d \times D}$ is called admissible for X if $\beta_A^{-1}(\beta_A(X)) = \hat{X}$. In other words, if $Y \in \mathbb{R}^{n \times d}$ so that $\downarrow (XA) = \downarrow (YA)$ then there is $\Pi \in \mathcal{S}_n$ sot that $Y = \Pi X$.

We denote by $A_{d,D}(X)$ (or A(X)) the set of admissible keys for X.

Definition

Fix $A \in \mathbb{R}^{d \times D}$. A data matrix $X \in \mathbb{R}^{n \times d}$ is said separated by A if $A \in \mathcal{A}(X)$.

We let S(A) denote the set of data matrices separated by A. The key A is universal iff $S(A) = \mathbb{R}^{n \times d}$.

Genericity Results for $d \ge 2$

Admissible keys

Theorem

Intro

Let $X \in \mathbb{R}^{n \times d}$. For any $D \geq d+1$ the set $\mathcal{A}_{d,D}(X)$ of admissible keys for X is dense in $\mathbb{R}^{d \times D}$ with respect to Euclidean topology, and it is generic with respect to Zariski topology. In particular, $\mathbb{R}^{d \times D} \setminus \mathcal{A}_{d,D}(X)$ has Lebesgue measure 0, i.e., almost every key is admissible for X.

Proof

It is sufficient to consider the case D=d+1. Also, it is sufficient to analyze the case $A=[I_d\ b]$ and to show that a generic $b\in\mathbb{R}^d$ defines an admissible key. The vector $b\in\mathbb{R}^d$ does **not** define an admissible key if there are $\Xi,\Pi_1,\cdots,\Pi_d\in S_n$ so that for $Y=[\Pi_1x_1,\cdots,\Pi_dx_d]$,

$$Yb = \Xi Xb$$
 but $Y - \Pi X \neq 0$, $\forall \Pi \in S_n$

Define the linear operator

4 D D A A B D A B D B 9 9 9 9

Genericity Results for $d \ge 2$

Admissible keys

Proof - cont'd

Let

Intro

$$\mathcal{P} = \left\{ (\Pi_1, \cdots, \Pi_d) \in (\mathcal{S}_n)^d \ \forall \Pi \in \mathcal{S}_n, \exists k \in [d] \ s.t. \ (\Pi - \Pi_k) x_k \neq 0 \right\}$$

Then

$$\{b \in \mathbb{R}^d : [I_d \ b] \text{ not admissible for } X\} = \bigcup_{(\Xi; \Pi_1, \cdots, \Pi_d) \in \mathcal{S}_n \times \mathcal{P}} \ker(B(\Xi; \Pi_1, \cdots, \Pi_d)) \in \mathcal{S}_n \times \mathcal{P}$$

It is now sufficient to show that each null space has dimension less than d. Indeed, the alternative would mean $B(\Xi; \Pi_1, \dots, \Pi_d) = 0$ but this would imply $(\Pi_1, \dots, \Pi_d) \notin \mathcal{P}$. \square

Non-Universality of vector keys

Insufficiency of a single vector key

The following is a no-go result, which shows that there is no universal single vector key for data matrices tall enough.

Proposition

Intro

If $d \ge 2$ and $n \ge 3$,

$$\bigcup_{X \in \mathbb{R}^{n \times d}} \{b \in \mathbb{R}^d: \ A = [I_d \ b] \ \text{not admissible for} X\} = \mathbb{R}^d.$$

Consequently,

$$\bigcap_{X\in\mathbb{R}^{n\times d}}\mathcal{A}_{d,d+1}(X)=\emptyset.$$

On the other hand, for n = 2, d = 2, any vector $b \in \mathbb{R}^2$ with $b_1b_2 \neq 0$ defines a universal key $A = \begin{bmatrix} I_2 & b \end{bmatrix}$.

Non-Universality of vector keys

Insufficiency of a single vector key - cont'd

Proof

Intro

To show the result, it is sufficient to consider a counterexample for n = 3, d = 2, with key $b = [1, 1]^T$.

$$X = \begin{bmatrix} 1 & -1 \\ -1 & 0 \\ 0 & 1 \end{bmatrix} , Y = \begin{bmatrix} 1 & 0 \\ -1 & 1 \\ 0 & -1 \end{bmatrix}$$

Then $Xb = [0, -1, 1]^T$ and $Yb = [1, 0, -1]^T$, yet $X \not\sim Y$. Thus $[I_2 \ b]$ is not admissible for X.

Then note if $a \in \mathbb{R}^d$ so that $[I_d \ a]$ is admissible for X then for any $P \in S_d$ and L an invertible $d \times d$ diagonal matrix, $L^{-1}P^TA \in \mathcal{A}_{d,1}(XPL)$. This shows how for any $b \in \mathbb{R}^2$, one can construct $X \in \mathbb{R}^{3 \times 2}$ so that $b \notin \mathcal{A}_{2,1}(X)$.

For n > 3 or d > 2, proof follows by embedding this example.

Genericity Results for $d \ge 2$

Admissible Data Matrices

Theorem

Intro

Assume $a \in \mathbb{R}^d$ is a vector with non-vanishing entries, i.e., $a_1a_2\cdots a_d \neq 0$. Then for any $n \geq 1$, $\mathcal{S}([I_d\ a])$ is dense in $\mathbb{R}^{n\times d}$ and includes an open dense set with respect to Zariski topology. In particular, $\mathbb{R}^{n\times d}\setminus\mathcal{S}([I_d\ a])$ has Lebesgue measure 0, i.e., almost every data matrix X is separated by the vector key a.

Genericity Results for d > 2

Admissible Data Matrices

Theorem

Intro

Assume $a \in \mathbb{R}^d$ is a vector with non-vanishing entries, i.e., $a_1 a_2 \cdots a_d \neq 0$. Then for any n > 1, $S([I_d \ a])$ is dense in $\mathbb{R}^{n \times d}$ and includes an open dense set with respect to Zariski topology. In particular, $\mathbb{R}^{n\times d}\setminus\mathcal{S}([I_d\ a])$ has Lebesgue measure 0, i.e., almost every data matrix X is separated by the vector key a.

Corollary

Assume $A \in \mathbb{R}^{d \times (D-d)}$ is a matrix such that at least one column has non-vanishing entries. Then for any $n \geq 1$, $\mathcal{S}([I_d \ A])$ is dense in $\mathbb{R}^{n \times d}$ and is generic with respect to Zariski topology. In particular, $\mathbb{R}^{n\times d}\setminus\mathcal{S}([I_d,A])$ has Lebesgue measure 0, i.e., almost every data matrix X is separated by the matrix key $[I_d A]$.

Proof that $S([I_d A])$ is generic

Approach

The case D > d

Motivation

Intro

Assume $A \in \mathbb{R}^{d \times (D-d)}$ satisfies $A_{1,k}A_{2,k}\cdots A_{d,k} \neq 0$ for some $k \in [D-d]$. The set of non-separated data matrices $X \in \mathbb{R}^{n \times d}$ (i.e., the complement of $\mathcal{S}([I_d \ A])$) factors as follows:

$$\mathbb{R}^{n\times d}\setminus\mathcal{S}([I_d\ A])=\bigcup_{(\Xi_1,\cdots,\Xi_{D-d};\Pi_1,\cdots,\Pi_d)\in(\mathcal{S}_n)^D}(\ker L(\Xi_1,\cdots,\Xi_{D-d};\Pi_1,\cdots,\Pi_d;A))$$

$$\setminus \bigcup_{\Pi \in \mathcal{S}_n} \ker M(\Pi, \Pi_1, \cdots, \Pi_d)$$
 (*)

where, with $A = [a_1, \dots, a_{D-d}]$, $X = [x_1, \dots, x_d]$:

$$L(\Xi_1,\cdots,\Xi_{D-d};\Pi_1,\cdots,\Pi_d;A):\mathbb{R}^{n\times d}\to\mathbb{R}^{n\times D-d}\ ,\ (L((\ldots)X)_k=[(\Xi_k-\Pi_1)x_1,\cdots,(\Xi_k-\Pi_d)x_d]a_k\ ,\ k\in[D-d]$$

$$M(\Pi,\Pi_1,\cdots,\Pi_d):\mathbb{R}^{n\times d}\to\mathbb{R}^{n\times d}\quad,\quad M(\Pi,\Pi_1,\cdots,\Pi_d)X=[(\Pi-\Pi_1)x_1,\cdots,(\Pi-\Pi_d)x_d]$$

Proof that S(A) is generic

cont'd

Intro

1. The outer union can be reduced by noting that on the "diagonal" Δ ,

$$\Delta = \{ (\Xi_1, \cdots, \Xi_{D-d}; \Pi_1, \cdots, \Pi_d) \in (\mathcal{S}_n)^D , \Pi_1 = \Pi_2 = \cdots = \Pi_d \}$$

$$M(\Pi_1, \Pi_1, \cdots, \Pi_d) = 0 \to \bigcup_{\Pi \in \mathcal{S}_n} \ker M(\Pi, \Pi_1, \cdots, \Pi_d) = \mathbb{R}^{n \times d}$$

2. If $(\Xi_1, \dots, \Xi_{D-d}; \Pi_1, \dots, \Pi_d) \in (S_n)^D \setminus \Delta$ then for every $k \in [D-d]$ there is $j \in [d]$ such that $\Xi_k - \Pi_i \neq 0$. In particular choose the k column of A that is non-vanishing. Let $x_i \in \mathbb{R}^n$ so that $(\Xi_k - \Pi_i)x_i \neq 0$. Consider the matrix $X = [0, \dots, 0, x_i, 0, \dots, 0]$ where x_i is the only non identically 0 column. Claim: $X \notin \ker L(\Xi_1, ..., \Pi_d; A)$. Indeed, the resulting k column of L(X) is $A_{i,k}(\Xi_k - \Pi_i)x_i \neq 0$. It follows that dim ker $L(\Xi_1, \dots, \Xi_{D-d}; \Pi_1, \dots, \Pi_d; A) < nd$

Hence $\mathbb{R}^{n\times d}\setminus \mathcal{S}([I_d\ A])$ is a finite union of subsets of closed linear spaces properly included in $\mathbb{R}^{n \times d}$. This proves the theorem.

Additional Relations

Motivation

Intro

Note the following relationship and matrix representation of X when matrices are column-stacked:

$$M(\Pi, \Pi_1, \cdots, \Pi_d) = L(\Pi, \cdots, \Pi; \Pi_1, \cdots, \Pi_d; I)$$

$$L \equiv \begin{bmatrix} A_{1,1}(\Xi_1 - \Pi_1) & A_{2,1}(\Xi_1 - \Pi_2) & \cdots & A_{d,1}(\Xi_1 - \Pi_d) \\ A_{1,2}(\Xi_2 - \Pi_1) & A_{2,2}(\Xi_2 - \Pi_2) & \cdots & A_{d,2}(\Xi_2 - \Pi_d) \\ \vdots & \vdots & \ddots & \vdots \\ A_{1,D-d}(\Xi_{D-d} - \Pi_1) & A_{2,D-d}(\Xi_{D-d} - \Pi_2) & \cdots & A_{d,D-d}(\Xi_{D-d} - \Pi_d) \end{bmatrix}$$

a $n(D-d) \times nd$ matrix.

4日ト 4周ト 4 三ト 4 三 り 900

Towards universal keys

Intro

The arXiv preprint provides necessary and sufficient conditions for a key to be universal.

Open Problem: Given (n, d) find the smallest dimension D so that there exists a universal key $A \in \mathbb{R}^{d \times D}$ for $\mathbb{R}^{n \times d}$.

So far we obtained (joint with Daniel Levy (UMD)):

n	d	D-d
2	2	1
3	2	2
4	2	2
5	2	3
6	2	≥ 4

Open Problem: If a universal key exists for a triple (n, d, D) then is it true that universal keys are generic in $\mathbb{R}^{d \times D}$?

Intro

- [1] Vinyals, O., Bengio, S. Kudlur, M., Order Matters: Sequence to sequence for sets, ICLR 2016.
- [2] Sutskever, I., Vinyals, O., and Le, Q. V., Sequence to Sequence Learning with Neural Networks, arXiv e-prints, arXiv:1409.3215 (Sep 2014).
- [3] Bello, I., Pham, H., Le, Q. V., Norouzi, M., and Bengio, S., Neural Combinatorial Optimization with Reinforcement Learning, arXiv e-prints, arXiv:1611.09940 (Nov 2016).
- [4] Williams, R. J., Simple statistical gradient-following algorithms for connectionist reinforcement learning, Machine learning 8(3-4), 229-256 (1992).
- [5] Kool, W., van Hoof, H., and Welling, M., Attention, Learn to Solve Routing Problems, arXiv e-prints, arXiv:1803.08475 (Mar 2018).

←□▶◆□▶◆臺▶◆臺▶ 臺 ∽9<</p>

- [6] Dai, H., Khalil, E. B., Zhang, Y., Dilkina, B., and Song, L., Learning Combinatorial Optimization Algorithms over Graphs, arXiv e-prints, arXiv:1704.01665 (Apr 2017).
- [7] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al., Human-level control through deep reinforcement learning, Nature 518(7540), 529 (2015).
- [8] Dai, H., Dai, B., and Song, L., Discriminative embeddings of latent variable models for structured data, in International conference on machine learning, 2702-2711 (2016).
- [9] Nowak, A., Villar, S., Bandeira, A. S., and Bruna, J., Revised Note on Learning Algorithms for Quadratic Assignment with Graph Neural Networks, arXiv e-prints, arXiv:1706.07450 (Jun 2017).

- [10] Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G., The graph neural network model, IEEE Transactions on Neural Networks 20(1), 61-80 (2008).
- [11] Li, Z., Chen, Q., and Koltun, V., Combinatorial Optimization with Graph Convolutional Networks and Guided Tree Search, arXiv e-prints, arXiv:1810.10659 (Oct 2018).
- [12] Kipf, T. N. and Welling, M., Semi-Supervised Classification with Graph Convolutional Networks, arXiv e-prints, arXiv:1609.02907 (Sep 2016).
- [13] Kingma, D. P. and Ba, J., Adam: A Method for Stochastic Optimization, arXiv e-prints, arXiv:1412.6980 (Dec 2014).
- [14] H. Derksen, G. Kemper, Computational Invariant Theory, Springer 2002.

- [15] J. Cahill, A. Contreras, A.C. Hip, Complete Set of translation Invariant Measurements with Lipschitz Bounds, arXiv:1903.02811 (2019).
- [16] M. Zaheer, S. Kottur, S. Ravanbhakhsh, B. Poczos, R. Salakhutdinov, A.J. Smola, Deep Sets, arXiv:1703.06114
- [17] H. Maron, E. Fetaya, N. Segol, Y. Lipman, On the Universality of Invariant Networks, arXiv:1901.09342 [cs.LG] (May 2019).
- [18] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam and P.
- Vandergheynst, "Geometric Deep Learning: Going beyond Euclidean data," in IEEE Signal Processing Magazine, vol. 34, no. 4, pp. 18-42, July 2017, doi: 10.1109/MSP.2017.2693418.
- [19] S. Ravanbaksh, J. Schneider, B. Poczos, Equivariance through parameter sharing, ICML 2017.

- W. Li, W. Liao, "Stable super-resolution limit and smallest singular value of restricted Fourier matrices", Applied and Computational Harmonic Analysis, vol. 51, 118-156, 2021.
- [21] P.D. Dobson, A.J. Doig, "Distinguishing Enzyme Structures from Non-enzymes without Alignments", J. Mol. Biol. 330, 771-783, 2003.