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Motivation
o

Feichtinger-Heil-Larson Framework

Consider an infinite matrix A = (Am,n)m,n>0 S0 that ||All; ==, 150 |Am.al < 0.
This implies that A acts on /?(N) as a trace-class compact operator.
Assume additionally A = A* > 0 as a quadratic form.

Question: Is there a factorization A= )", fkfy" so that 3, 1ill? < o0 ?

Sources:
@ H. Feichtinger, Oberwolfach Reports 2004.

@ C. Heil and D. Larson, Operator theory and modulation spaces. In Frames
and Operator Theory in Analysis and Signal Processing, Contemporary
Mathematics. American Mathematical Society, 2006.
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Primal problem
o

Optimal Decompositions

Let Sym™(C") ={Ae C"™", A*=A>0}. For A€ Sym*(C"), denote

(A = inf > xllf
k

_ p
A—Zk21 XX

It is easy to show that ||Al|; := 3, |Aj| < v4(A).
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Primal problem
o

Optimal Decompositions

Let Sym™(C") ={Ae C"™", A*=A>0}. For A€ Sym*(C"), denote

(A = inf > xllf
k

_ p
A—Zk21 XX

It is easy to show that ||Al|; := 3", |Aj| < v4(A).
The matrix problem: For every n > 1 find the best constant C, such that, for
every A € Sym*(C"),

7+(A) < GllAlL = G D Al
k,1=1

That is, we are interested in finding:

7+(A)
C, = sup
a>o [IAlly
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Duality Results

®00000000

Properties of v, (A)

The infimum is achieved:

v (A) = _inf Yl = Z||Xk||1

:Zk21 Xx X P —Zk 1 XX

via sampling random marices

Upper bounds:

7+(A) < ntrace(A) < nl|All, = n ) |Ax,]

k.Jj
Co<n
Lower bounds: /;::"f“ - -
Al = _min Z||Xk|| llyell; <~+(A) Max'm“m Of Zk HXkH /||A||1 over
Al 30 random noise realizations, where

x,s are obtained from the eigende-
composition, or the LDL factoriza-

Convexity: for A, B € Sym™(C") and t > 0,
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Duality Results
0O@0000000

Properties of v, (A)

Lower bound is achieved, v, (A) = ||A||; in the following cases:
@ If A= xx" is of rank one.
Q If A> 0 is a diagonally dominant matrix, Ai > >_, ; [Aik

@ If A> 0 admits a Non Negative Matrix Factorization (NNMF), A= BB” with
B; > 0.
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Duality Results
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Properties of v, (A)

Lower bound is achieved, v, (A) = ||A||; in the following cases:
@ If A= xx" is of rank one.
@ If A> 0 is a diagonally dominant matrix, A; > Z,#,. |Ai k
@ If A> 0 admits a Non Negative Matrix Factorization (NNMF), A= BB” with

B; > 0.

Continuity, Lipschitz and linear program reformulation:
Q . : Sym*(C") — R is continuous.
Q If A, B > 41 and trace(A), trace(B) < 1 then

[74(A) = 11 (B)] < (55 + 1) A= Bllg,:

Q Let Sy ={x e C", |[x]|; =1} denote the compact unit sphere with respect to the
I norm, and let B(S1) denote the set of Borel measures over S;. Then:

7+(A) = inf L 1S () =D M(x — &)

- HEB(Sl):fSI xx*dp(x)=

where v (A) =30 Ac and A= 3"7  Mgrgy is the optimal factorization.
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Duality Results

[e]e] lele]ele]ele]

Primal and dual problems for .

The linear program is a convex optimization problem (which is great), but it is defined
on an infinite dimensional space (not so great!).

Its dual problem enjoys strong duality (this may not be obvious due to infinite
dimensional technical issues):

Assume A > 0. Its associated primal (min) & dual (max) problems are:

max trace( TA) = min S1) = A
rerer 2, vz o) HEB(SI):fSIXX*dN(X)ZA‘u( 1) =7(4)
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Duality Results

[e]e] lele]ele]ele]

Primal and dual problems for .

The linear program is a convex optimization problem (which is great), but it is defined

on an infinite dimensional space (not so great!).

Its dual problem enjoys strong duality (this may not be obvious due to infinite

dimensional technical issues):

Assume A > 0. Its associated primal (min) & dual (max) problems are:

trace(TA) = min w(S1) = v+(A)

max
T=T*{(Tx)<1 , ¥ |xll;<1 HEB(S1): [, 0 dpa(x)=A

Note the quantity (quadratic bound):

p1(T) = max (Tx,x)

x:|Ix]ly <1
The dual problem and C, turn into:
A) = max trace(TA
1A= ma ., race(TA)
Co= max v (A= max max trace(TA) = max  max
AZ0:[|A]l <1 A>0: T=T%*: A>0: T=T*:
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Duality Results
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The bound p;

Recall the definition of quadratic bound for a hermitian T = T*:

p(T)= max (Tx,x).

x:l|xfly <1
How to compute it?
Easy cases:
Q If T <O0then p1(T)=0
Q If T >0 then
p1(T) = max Tiee = max | T j| =: || Tl

This resembles the numerical radius of a matrix, r(T) = max) =1 |(Tx, x)|,
which for hermitian matrices equals the largest singular value (operator norm).
Note differences: (i) || - ||, = || - |I;; (ii) no absolute value |.|.
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Duality Results
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The bound p; - cont'd

Assume Apax(T) >0, i.e. T is NOT negative definite. Then:

p1(T)= max (Tx,x) = max trace(TA) = max trace(TA)
x:[xll, =1 A>0: A>0:
rank(A) =1 rank(A) =1
1Al =1 1Al <1
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Duality Results
[e]e]e]e] lelelele]

The bound p; - cont'd

Assume Apax(T) >0, i.e. T is NOT negative definite. Then:

p1(T)= max (Tx,x) = max trace(TA) = max trace(TA)
x:[xll, =1 A>0: A>0:
rank(A) =1 rank(A) =1
1Al =1 1Al <1

Note the convex relaxation:
7 (T) = max  trace( TA)
A>0:
Al <1
which defines a semi-definite program (SDP). Thus:

pi(T) <7 (T).
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Duality Results
[e]e]e]e]e] lelele]

Primal and dual problems for p;

The SDP enjoys strong duality:

Assume T = T*. The primal-dual programs have strong duality:

7T+(T) = max trace(TA) = min ||T + y”
A>0: Y>0 o
1All, <1

where || Z|| . = max;;|Z|.

The proof of this theorem is based on the Von Neumann's min-max theorem.
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Duality Results
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Closing the loop

C, = max 7+(4) = max WJF(T).
A>o0 lAl T=1* »r(T)
A#0 p1(T) #0

Consequently, for T = T* that are not negative definite:

max (Tx,x) < max  trace(TA) < C, max (Tx,x).
xi[lxll,=1 A>0: x|l =1

Al <1

Remark. Compare this double inequality to Grothendieck related max-cut
inequality: For T=T* >0, 0or T = T* and diag(T) = 0,
max  (Tx,x) < max trace(TA) <2Ks max (Tx,x).
xe{+1,—1}" A>0 xe{+1,—1}"
Ai=1
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Duality Results
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The BMS Result and its Consequence

Theorem (Afonso Bandeira, Dustin Mixon, Stefan Steinerberger -
Oberwolfach 2024; ACHA 2024)

There are o > 0, Ny > 1 so that for any n > N,

Co > avn

Consequence: No-go result for the Feichtinger-Heil-Larson Problem:

There exists A= A* > 0 and infinite hermitian matrix A = (A; )i jen So that
ZijeN |Aj j| < oo and yet, for any factorization A=, <1 XkX;,

A >
Ek21 [1xk|7 = 0.
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Duality Results
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Thank you for listening! ... QUESTIONS?

Radu Balan (U
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EXTRA: Motivation and Proofs
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Motivation
A Feichtinger Problem

At a 2004 Oberwolfach meeting, Hans Feichtinger asked the following question:
(Q1) Given a positive semi-definite trace-class operator T : L2(R9) — L2(R),
Tf(x) = [ K(x,y)f(y)dy, with K € M}(R? x RY), and its spectral factorization,
T =3 (-, b he, must it be 37 [[Al3 < oo ?

A modified version of the question is:
(Q2) Given T as before, i.e., T=T* >0, K € M}(R? x RY) , is there a
factorization T =3, (-, gk)&k such that ), Hngi,,l <oo?
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EXTRA: Motivation and Proofs
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Problem Reformulation
Matrix Language

Consider an infinite matrix A = (Apm n)m.n>0 SO that

IAllA = [[Ally 7= 2Zm 50 [Am,nl < o0

This implies that A acts on /?(N) as a trace-class compact operator.
Assume additionally A = A* > 0 as a quadratic form.

Let (ex)k>0 denote an orthogonal set of eigenvectors normalized so that
A=3",ooexe;. Itis easy to check that e, € I*(N), for each k.
Equivalent reformulations of the two problems (Heil, Larson ‘08):
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Problem Reformulation
Matrix Language

Consider an infinite matrix A = (Apm n)m.n>0 SO that

IAllA = [[Ally 7= 2Zm 50 [Am,nl < o0

This implies that A acts on /?(N) as a trace-class compact operator.
Assume additionally A = A* > 0 as a quadratic form.

Let (ex)k>0 denote an orthogonal set of eigenvectors normalized so that
A=3",ooexe;. Itis easy to check that e, € I*(N), for each k.
Equivalent reformulations of the two problems (Heil, Larson ‘08):

Q1: Does it hold >, ||ek||i <o0?
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Problem Reformulation
Matrix Language

Consider an infinite matrix A = (Apm n)m.n>0 SO that

IAllA = [[Ally 7= 2Zm 50 [Am,nl < o0

This implies that A acts on /?(N) as a trace-class compact operator.
Assume additionally A = A* > 0 as a quadratic form.

Let (ex)k>0 denote an orthogonal set of eigenvectors normalized so that
A=3",ooexe;. Itis easy to check that e, € I*(N), for each k.

Equivalent reformulations of the two problems (Heil, Larson ‘08):

Q1: Does it hold ), -, ||ek||i < 0o ? Answer: Negative in general! (see [1])
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Problem Reformulation
Matrix Language

Consider an infinite matrix A = (Apm n)m.n>0 SO that

IAllA = [[Ally 7= 2Zm 50 [Am,nl < o0

This implies that A acts on /?(N) as a trace-class compact operator.
Assume additionally A = A* > 0 as a quadratic form.

Let (ex)k>0 denote an orthogonal set of eigenvectors normalized so that
A=3",ooexe;. Itis easy to check that e, € I*(N), for each k.

Equivalent reformulations of the two problems (Heil, Larson ‘08):

Q1: Does it hold ), -, ||ek||i < 0o ? Answer: Negative in general! (see [1])

Q2: Is there a factorization A= 3", ., fify" so that 3, ||fk||f <o0?
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Problem Reformulation
Matrix Language

Consider an infinite matrix A = (Apm n)m.n>0 SO that

IAllA = [[Ally 7= 2Zm 50 [Am,nl < o0

This implies that A acts on /?(N) as a trace-class compact operator.
Assume additionally A = A* > 0 as a quadratic form.

Let (ex)k>0 denote an orthogonal set of eigenvectors normalized so that
A=3",ooexe;. Itis easy to check that e, € I*(N), for each k.

Equivalent reformulations of the two problems (Heil, Larson ‘08):

Q1: Does it hold ), -, ||ek||i < 0o ? Answer: Negative in general! (see [1])

Q2: Is there a factorization A=}, -, fif, so that >, -, ||fk||f <o0?

Using previous equivalence and Bandeira et all’s result: The answer to Q2 is
negative in general!
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Linear program result

Optimal Factorization from a Measure Theory Perspective

Let S; = {x € C", ||x||; = 1} denote the compact unit sphere with respect to
the /* norm, and let B(S;) denote the set of Borel measures over S;. For
A € Sym(C")*(C") consider the optimization problem:

(P",1") = infuep(s,): g, socrduy=a W(S1) (M)

Theorem (Optimal Measure)

For any A € Sym™(C™) the optimization problem (M) is convex and its global
optimum (minimum) is achieved by

pr=7:(A) L () =D Med(x — gx)

where A =Y (v Akgk)(V/Akgk)* is an optimal decomposition that achieves
Y+(A) = 2kl M-

Radu Balan (UMD) Optimal Factorizations January 4, 2026
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EXTRA: Motivation and Proofs
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Super-resolution and Convex Optimizations

7+(A) = ZHXkHl , m=n* (P)

X1y.ee _ka KX pat

p* = inf du(x) (M)
HEB(SL) : A:f51 xx*du(x) J g

@ The optimization problem (P) is non-convex, but finite-dimensional. The
optimization problem (M) is convex, but infinite-dimensional.

Q Ifgi,...,8m € S1 in the support of p* are known so that
= >, Md(x — gk), then the optimal Ay, ..., A\m > 0 are determined by a
linear program. More general, (M) is an infinite-dimensional linear program.

© Finding the support of 1* is an example of a super-resolution problem. One
possible approach is to choose a redundant dictionary (frame) that includes
the support of u*, and then solve the induced linear program.

= =T = = =

v
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Proof of the Optimal Measure Result

Recall: we want to show the following problems admit same solution:

W= min Sl m—a (P)

gt

p' = inf / du(x M
nEB(SL) - A:f51 xx*dp(x) S u( ) ( )

a. Assume A = ZT L Xkxj; is a global minimum for (P). Then

w(x) =30, ||xk|| o(x — EA T ) is a feasible solution for (M). This shows

p* < 7+(A).

b. For reverse: Let u* be an optimal measure in (M). Fix e > 0. Construct a

disjoint partition (U))1</<1 of S1 so that each U is included in some ball B.(z) of

radius € with ||z/||; = 1. Thus U; C B.(z) N S;.

For each /I, compute x; = m fulxd,u*(x) € B:(z)). Let g =/ (U)x
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Proof: The Optimal Measure Result (cont)

Key inequality:

0<R = /U(x —x)(x = x)" du*(x) = / xx*dp*(x) — p* (U)xixf

U
Sum over [ and with R = Zle R get

L

L
A:Z/XX dp*(x Z/g,*—i-R
=1

By sub-additivity and homogeneity:

L

L
< ZH&H?*"H(R Z (| \x,H1+ntrace(R)
— —

But || x; — z||; < e and ||x — x||; < 2¢ for every x € U;. Hence ||x||; <1+¢ and
trace(Ry) < 4p*(U))e?. ( <1 by triangle inequality)
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Proof: The Optimal Measure Result (end)

Thus:

T+(A) < p*(51) + (26 + &2 + 4n®)u* (S1)
Since € > 0 is arbitrary, it follows
Y+(A) < p*(S1) = p*

This ends the proof of the measure result. [J
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Second New Result: The Continuity Property

Theorem (The Continuity Property)
The map 4 : (Sym™(C"), || - ||) — R is continuous.

Remarks
@ This statement extends the continuity result from
Sym*tH(C") = {A= A* >0} to Sym™(C") = {A=A* > 0}.
@ Proof is based on a (new?) comparison result between non-negative
operators.

© Global Lipschitz is still open.
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The Continuity Property

The proof is based on the following two lemmas:

Lemma (L1)

Let A€ Sym™(C") of rank r > 0. Let A, > 0 denote the r* eigenvalue of A, and
let Pa,, denote the orthogonal projection onto the range of A. For any 0 < e <1
and B € Sym™(C") such that ||A— Bl|o, < £2=, the following holds true:

l1—¢’

A*(].*E)PAJBPA,, ZO (1)
Let A€ Sym*(C") of rank r > 0. Let )\, > 0 denote the r*" eigenvalue of A. For

any 0 < e < % and B € Sym*(C") such that ||A — Bllop < €A, the following
holds true:

B — (1 — E)PBJAPB,,— > 0 (2)

where Pg . denotes the orthogonal projection onto the top r eigenspace of B.

v
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Proof of Continuity of v

Fix A € Sym™(C"). Let (B))j>1, Bj € Sym™(C"), be a convergent sequence to A.
We need to show v, (B;j) = 7+ (A).

2
Let A=Y"7_, xkx; be the optimal decomposition of A such that

n2
7+ (A) = Cics It
If A=0 then v4(A) =0 and

0 < ~4(B;j) < ntrace(B;) < "2||Bj||0p'

Hence lim;y4(B;j) = 0.
Assume rank(A) = r > 0 and let A, > 0 denote the smallest strictly positive
eigenvalue of A. Let € € (0, 1) be arbitrary. Let J = J(¢) be so that

|A— Bjllg, < €A, forall j > J. Let B; = 222:1 Yj.kYix be the optimal
decomposition of B; such that v, (B;) = 222:1 yjkll3.
Let Aj=A—(1—¢)Pa,BjPa,. By Lemma L1, for any j > J,

n2

74+(A) < (1= )71 (ParBiPas) +74(8)) < (L =€) D [ Paryiulls + ntrace(4))
k=1
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Proof of Continuity of v, (cont)

Pass to a subsequence j’ of j so that yj: x — y«, for every k € [n?], and
Y+(Bjr) = liminfj v, (B;). Then limjs Pa,yj x = Paryx = yx and

n? n?

lim > " 1Paryikllf =1im >yl = lim inf v, (B))
I = = J

On the other hand, limj trace(A;) = ¢ trace(A). Hence:
Y+(A) < (1 — &) liminf v (B)) + € trace(A)
j

Since € > 0 is arbitrary, it follows vy, (A) < liminf; v, (B;).
The inequality limsup; v, (B;) < 74 (A) follows from Lemma L2 similarly: with
Aj=B; —(1—¢)Ps AP, and A= Y0 x.x; optimal,

n2

v+(Bj) £ (1—¢)v1(Ps, rAPB, ) +ntrace(A;) = (1—¢) Z ||PBJ,,xk||i+n trace(4\}).
k=1

Next take limsup of |hs by noticing Pg, , — Pa,, and limsup; [[A)][o, = [[Allo:
limsup; 74 (B;) < (1 — &)y4(A) + n’¢||Al| o, Take e— > 0 and result follows. []
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Proof of Lemmas

Proof of Lemma L1

Let P=Pa,. and A=A—(1—¢€)Pa,BPa,. Forany x € C"

(Ax, x) = (APx, Px) — (1 — &)(BPx, Px) = ((A— (1 — ) B)Px, Px) =
= c(APx, Px)+(1—€){(A — B)Px, Px) > e)||Px|* = (1—¢)[|A — Bl o, || Px||* > 0

because [|A — B, < fi‘s

Proof of Lemma L2

Let P=Pg,and A =B — (1 —¢)Ps,APg,. Let C = B — Pg,BPg, > 0. Let
fir be the r' eigenvalue of B. Note |i1, — A,[ < ||A— Bllo, <A, Thus

wr > (1 —¢e)A,. For any x € C™

(Ax, x) = (Cx,x) + (BPx, Px) — (1 — €){APx, Px) = (Cx, x) + e(BPx, Px)+

+(1 = €)((B — A)Px, Px) > (Cx, x) + (eptr — (1 = €)[|A = Bllo,)IPx]|* > 0
because ||A — BHOp el <
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Third new result: Strong duality for v

For every A > 0,

max trace( TA) = min w(S1) = v+ (A)
T=T"* w € B(51)
(Tx,x) <1, V|x|; <1 ISIXX*d“(X):A

Proof [Fushuai “Black” Jiang]

The second equality was established earlier as a “super-resolution” result.

For the first equality:

1. Let A=Y | xkx; be its optimal decomposition such that

(A =7 I3, and Iet T = T* be a generic matrix so that (Ty,y) <1 for
all |ly]l; < 1. Denote y, = Then

- I\Xklh

m m m

2

trace(TA) = > (T, x) = > Ixll3 (T i) < D Iyalls = 74(A)
k=1 k=1 k=1
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Proof of strong duality for v, (2)

2. For the reverse inequality, let H C Sym™(C") x R denote the set

H:{(/Slzz*du(z),r+/51du) , 1€ B(S), r>0}

Claim 1: H is closed.

Use Banach-Alaoglou theorem that the set of unit Borel measures is weak-*
compact.

Claim 2: H is convex. — immediate

Let g = maxy—7+ trace( TA) subject to (Tx,x) <1 for all ||x|; < 1.

Claim 3: (A, q) € H, which establishes the theorem.

Assume the contrary: (A, q) € H. Then it is separated by a hyperplane from H:

trace (R/ xx* du(z)> +a(r+ | dup) > co > trace(AR)+aq , Vu € B(51),r >0
51 51

Deduce: a >0, ¢ < 0. If a= 0 then contradiction for ;x = p*. Rescale by
dividing through a. Denote To = —R/a.
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Proof of strong duality for v (3)

We obtained:

(1 —(Tox,x))du > co > q — trace(ATp)
S
for every Borel measure p € B(S1). This means (Tox, x) <1 for all ||x|| = 1. This
also implies (Tox,x) <1 for all ||x|; < 1. On the other hand
q < trace(ATy) + co < trace(ATp) which contradicts the optimality of g. Q.E.D.

Radu Balan (UMD) Optimal Factorizations January 4, 2026



	Motivation
	Primal problem
	Duality Results
	EXTRA: Motivation and Proofs

