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Problem Setup

Problem: Construct bi-Lipschitz embeddings of the metric space
V̂ = V / ∼ of orbits, α : V̂ → Rm, where d([x ], [y ]) = infu∈[x ],v∈[y ] ‖u − v‖

a0d([x ], [y ]) ≤ ‖α([x ])− α([y ])‖2 ≤ b0d([x ], [y ]).

Today we focus on the case V = Rn×d , X ∼ Y ⇔ Y = PX for some
P ∈ Sn. Motivation: Graph deep learning, Assignment Problems.
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A sorting based embedding [BHS22]

Consider: βA : Rn×d → Rn×D,

βA(X) :=

 | |
↓(Xa1) . . . ↓(XaD)
| |

 , X ∈ Rn×d ,

↓ : Rn → Rn denotes sorting vectors in nondecreasing order,
(ak)D

k=1 ∈ Rd are the columns of A ∈ Rd×D.

Note: βA descends through the quotient to βA : Rn×d/Sn → Rn×D

[BHS22] Radu Balan, Naveed Haghani, and Maneesh Singh. Permutation invariant representations with applications to graph
deep learning. March 2022. ACHA 2025.
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Geometric Interpretation
Consider the case: d = 3. Construct the 2-dim simplex:
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Geometric Interpretation
d = 3. Rotate the simplex and place the columns of X (here n = 2):
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Geometric Interpretation
Place the columns of a non-equivalent matrix Y :
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Geometric Interpretation
Construct the d − 1 = 2-dim hyperplanes generated by each row of X :
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Geometric Interpretation
Sample the hyperplanes at a = (a1, a2, a3) and sort the values.:
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Geometric Interpretation
Can you recover the two (hyper)planes just from the uncolored n(d + 1) = 8
points? Generically, yes. But D ≥ 2d − 1 = 5, i.e., another column, for every [X ].
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Overview of our results
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Main results on injectivity

Theorem A: ⌈ D
d − 1

⌉
≤ log2 n + 1 =⇒ βA not injective

(independent of the choice of A).
Theorem B:

D
d − 1 > n =⇒ βA injective.

(A full spark).
Remark: If n = 2, βA is injective ⇐⇒ (ak)D

k=1 form a phase retrievable
frame for Rd [BT23]. Hence D ≥ 2d − 1 is a necessary (and generically
sufficient) condition.
[BT23] Radu Balan and Efstratios Tsoukanis. Relationships between the phase retrieval problem and permutation invariant
embeddings. In 2023 International Conference on Sampling Theory and Applications (SampTA), New Haven, CT, USA, July
2023.
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Upper Lipschitz constant

The upper Lipschitz constant of βA is equal to the largest singular value of
A: b0 = σ1(A):

‖βA([x ])− βA([y ])‖2 ≤ σ1(A)d([x ], [y ]).

For Gaussian random matrices, with standard i.i.d. entries,
b0 = σ1(A) ≤

√
D +
√

d + t with probability greater than or equal to
1− 2exp(−c1t2).
Hence, we high probability we have b0 ∼

√
D +
√

d .
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A singular value-based lower Lipschitz bound

Theorem 1
If D ≥ kd((n− 1)2 + 1) for some k ∈ N, then the lower Lipschitz constant
of βA is greater than or equal to

a0 ≥ min
I⊂[D]
|I|=kd

σd (A(I)).

Note: k is an integer that can be optimized by user. For Gaussian
matrices, using Gordon’s theorem we obtained that, for n large enough

E[a0] ≥
√
π

8

√
D

((n − 1)2 + 1)3/2 −
√

d , E[b0] ≤
√

D +
√

d

For D � n4, the
√

d term is neglected and distortion is bounded by
E[b0]
E[a0] ≤

√
π

8 n3
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Lower Lipschitz constant based on projective uniformity
Definition Matrix A ∈ Rd×D satisfies (m, δ)-projective uniformity [CIMP24] if
∀x ∈ Sd−1, ↓(|A>x|)D−m+1 ≥ δ, where m ∈ [D] and δ > 0; i.e., for every unit
vector x , the m-th smallest entry of AT x exceeds δ.

Theorem 2
Let A ∈ Rd×D satisfy (m, δ)-projective uniformity with δ > 0 and m ∈ [D] such
that n2(m − 1) ≤ D. Then, the lower Lipschitz constant of βA is greater or equal
than δ

√
D − n2(m − 1).

Theorem 3
Let A ∈ Rd×D be a matrix with independent standard normal entries. Then, the
lower Lipschitz constant a0 ≥

√
2π

9
√

3

√
D

n2 and the distortion of βA is in O(n2) with
probability greater or equal than 1− 2 exp(−c1D)− exp(−c2n−4D), where
c1, c2 > 0 are universal constants, provided that D & n4d.

[CIMP24] Cahill, Iverson, Mixon, Packer. Group-invariant max filtering. FoCM 2024
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Overview of our distortion bounds

n

Distortion

Ω(
√

n)

O(n2)
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Upper and lower bounds for distortion
Theorem A: A with independent standard normal entries:

dist(βA) . n2

with overwhelming probability if D & n4d .
Theorem B: A with columns drawn independently from the uniform
distribution on Sd−1:

dist(βA) . n2 ·

√
1 + log n

d

with overwhelming probability if D & n2d log(n(d + log n)).
Theorem C:

dist(βA) &
√

n

(independent of the choice of A).
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Thank you!
Questions?
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A Universal Embedding
Measure Space Embedding

Consider the map

µ : R̂n×d → P(Rd ) , µ(X )(x) = 1
n

n∑
k=1

δ(x − xk)

where P(Rd ) denotes the convex set of probability measures over Rd , and
δ denotes the Dirac measure. xk is the kth row of X .
Clearly µ(X ′) = µ(X ) iff X ′ = PX for some P ∈ Sn.
The Wasserstein-2 distance is equivalent to the natural metric:

W2(µ(X ), µ(Y ))2 := inf
q∈J(µ(X),µ(Y ))

Eq[‖x − y‖2
2] = min

P∈Sn
‖Y − PX‖2

By Kantorovich-Rubinstein theorem, the Wasserstein-1 distance (the Earth moving distance)
extends to a norm on the space of signed Borel measures.
Main drawback: P(Rd ) is infinite dimensional!
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Finite Dimensional Embeddings
Idea: “Project” the measure onto a finite dimensional space. This is
accomplished by kernel methods:
Fix a family of functions f1, · · · , fm and consider:

µ(X ) 7→
∫
Rd

fj(x)dµ(X ) = 1
n

n∑
k=1

fj(xk) , j ∈ [m]

Possible choices:
1 Polynomial embeddings: R[X ]Sn , ring of invariant polynomials;

[Lipman&al.],[Peyré&al.],[Sanay&al.],[Kemper book] ...
2 Gaussian kernels: fj(x) = exp(−‖x − aj‖2/σ2

j ) ;
[Gilmer&al.],[Zaheer&al.], [Vinyals&al.],...

3 Fourier kernels (cmplx embd): fj(x) = exp(2πi〈x , ωj〉); related to
Prony method; [Li&Liao] for bi-Lipschitz estimates.

Main drawback: No global bi-Lipschitz embeddings [Cahill&al.]. Ok on
(some) compacts.
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The Embedding Problem
Notations (2)

Definition 5.1
Fix X ∈ Rn×d . A matrix A ∈ Rd×D is called admissible for X if
β−1

A (βA(X )) = X̂ . In other words, if Y ∈ Rn×d so that ↓ (XA) =↓ (YA)
then there is Π ∈ Sn sot that Y = ΠX.

We denote by Ad ,D(X ) (or A(X )) the set of admissible keys for X .

Definition 5.2
Fix A ∈ Rd×D. A data matrix X ∈ Rn×d is said separated by A if
A ∈ A(X ).

We let S(A) denote the set of data matrices separated by A.
The key A is universal iff S(A) = Rn×d .
The Problem: Design universal keys.
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Genericity Results for d ≥ 2
Admissible keys

Theorem 5.3
Let X ∈ Rn×d . For any D ≥ d + 1 the set Ad ,D(X ) of admissible keys for
X is dense in Rd×D with respect to Euclidean topology, and it is generic
with respect to Zariski topology. In particular, Rd×D \ Ad ,D(X ) has
Lebesgue measure 0, i.e., almost every key is admissible for X.

Proof
It is sufficient to consider the case D = d + 1. Also, it is sufficient to
analyze the case A = [Id b] and to show that a generic b ∈ Rd defines an
admissible key. The vector b ∈ Rd does not define an admissible key if
there are Ξ,Π1, · · · ,Πd ∈ Sn so that for Y = [Π1x1, · · · ,Πd xd ],

Yb = ΞXb but Y − ΠX 6= 0 , ∀Π ∈ Sn

Define the linear operator
B(Ξ; Π1, · · · ,Πd ) : Rd → Rn , B(Ξ; Π1, · · · ,Πd )b = ΞXb−[Π1x1, · · · ,Πd xd ]bRadu Balan (UMD) Permutation invariant embeddings 1/4/26
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Genericity Results for d ≥ 2
Admissible keys

Proof - cont’d
Let

P =
{

(Π1, · · · ,Πd ) ∈ (Sn)d ∀Π ∈ Sn, ∃k ∈ [d ] s.t. (Π− Πk)xk 6= 0
}

Then

{b ∈ Rd : [Id b] not admissible for X} =
⋃

(Ξ;Π1,···,Πd )∈Sn×P
ker(B(Ξ; Π1, · · · ,Πd ))

It is now sufficient to show that each null space has dimension less than d .
Indeed, the alternative would mean B(Ξ; Π1, · · · ,Πd ) = 0 but this would
imply (Π1, · · · ,Πd ) 6∈ P. �
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Non-Universality of vector keys
Insufficiency of a single vector key

The following is a no-go result, which shows that there is no universal
single vector key for data matrices tall enough.

Proposition 5.4
If d ≥ 2 and n ≥ 3,⋃

X∈Rn×d

{b ∈ Rd : A = [Id b] not admissible forX} = Rd .

Consequently, ⋂
X∈Rn×d

Ad ,d+1(X ) = ∅.

On the other hand, for n = 2, d = 2, any vector b ∈ R2 with b1b2 6= 0
defines a universal key A = [I2 b].
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Non-Universality of vector keys
Insufficiency of a single vector key - cont’d

Proof
To show the result, it is sufficient to consider a counterexample for n = 3,
d = 2, with key b = [1, 1]T .

X =

 1 −1
−1 0
0 1

 , Y =

 1 0
−1 1
0 −1


Then Xb = [0,−1, 1]T and Yb = [1, 0,−1]T , yet X 6∼ Y . Thus [I2 b] is
not admissible for X .
Then note if a ∈ Rd so that [Id a] is admissible for X then for any P ∈ Sd
and L an invertible d × d diagonal matrix, L−1PT A ∈ Ad ,1(XPL). This
shows how for any b ∈ R2, one can construct X ∈ R3×2 so that
b 6∈ A2,1(X ).
For n > 3 or d > 2, proof follows by embedding this example.
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Genericity Results for d ≥ 2
Admissible Data Matrices

Theorem 5.5
Assume a ∈ Rd is a vector with non-vanishing entries, i.e., a1a2 · · · ad 6= 0.
Then for any n ≥ 1, S([Id a]) is dense in Rn×d and includes an open dense
set with respect to Zariski topology. In particular, Rn×d \ S([Id a]) has
Lebesgue measure 0, i.e., almost every data matrix X is separated by the
vector key a.

Corollary 5.6
Assume A ∈ Rd×(D−d) is a matrix such that at least one column has
non-vanishing entries. Then for any n ≥ 1, S([Id A]) is dense in Rn×d and
is generic with respect to Zariski topology. In particular, Rn×d \ S([Id A])
has Lebesgue measure 0, i.e., almost every data matrix X is separated by
the matrix key [Id A].
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Proof that S([Id A]) is generic
The case D > d

Assume A ∈ Rd×(D−d) satisfies A1,kA2,k · · ·Ad ,k 6= 0 for some
k ∈ [D − d ]. The set of non-separated data matrices X ∈ Rn×d (i.e., the
complement of S([Id A])) factors as follows:

Rn×d\S([Id A]) =
⋃

(Ξ1,···,ΞD−d ;Π1,···,Πd )∈(Sn)D

(ker L(Ξ1, · · · ,ΞD−d ; Π1, · · · ,Πd ; A)\

\
⋃

Π∈Sn

ker M(Π,Π1, · · · ,Πd )

 (∗)

where, with A = [a1, · · · , aD−d ], X = [x1, · · · , xd ]:

L(Ξ1,···,ΞD−d ;Π1,···,Πd ;A):Rn×d→Rn×D−d , (L((...)X)k =[(Ξk−Π1)x1,···,(Ξk−Πd )xd ]ak , k∈[D−d]

M(Π,Π1,···,Πd ):Rn×d→Rn×d , M(Π,Π1,···,Πd )X=[(Π−Π1)x1,···,(Π−Πd )xd ]
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Proof that S(A) is generic
cont’d

1. The outer union can be reduced by noting that on the ”diagonal” ∆,

∆ = {(Ξ1, · · · ,ΞD−d ; Π1, · · · ,Πd ) ∈ (Sn)D , Π1 = Π2 = · · · = Πd}

M(Π1,Π1, · · · ,Πd ) = 0→
⋃

Π∈Sn

ker M(Π,Π1, · · · ,Πd ) = Rn×d

2. If (Ξ1, · · · ,ΞD−d ; Π1, · · · ,Πd ) ∈ (Sn)D \∆ then for every k ∈ [D − d ]
there is j ∈ [d ] such that Ξk − Πj 6= 0. In particular choose the k column
of A that is non-vanishing. Let xj ∈ Rn so that (Ξk − Πj)xj 6= 0. Consider
the matrix X = [0, · · · , 0, xj , 0, · · · , 0] where xj is the only non identically 0
column. Claim: X 6∈ ker L(Ξ1, ...,Πd ; A). Indeed, the resulting k column
of L()X is Aj,k(Ξk − Πj)xj 6= 0. It follows that

dim ker L(Ξ1, · · · ,ΞD−d ; Π1, · · · ,Πd ; A) < nd

Hence Rn×d \ S([Id A]) is a finite union of subsets of closed linear spaces
properly included in Rn×d . This proves the theorem. �
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Additional Relations

Note the following relationship and matrix representation of X when
matrices are column-stacked:

M(Π,Π1, · · · ,Πd ) = L(Π, · · · ,Π; Π1, · · · ,Πd ; I)

L ≡


A1,1(Ξ1 − Π1) A2,1(Ξ1 − Π2) · · · Ad ,1(Ξ1 − Πd )
A1,2(Ξ2 − Π1) A2,2(Ξ2 − Π2) · · · Ad ,2(Ξ2 − Πd )

...
... . . . ...

A1,D−d (ΞD−d − Π1) A2,D−d (ΞD−d − Π2) · · · Ad ,D−d (ΞD−d − Πd )


a n(D − d)× nd matrix.
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