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Problem Setup

Problem: Construct bi-Lipschitz embeddings of the metric space
V = V/ ~ of orbits, v : V — R™, where d([x],[y]) = infuciqvep |4 — V]|

aod([x], [y]) < lla(x]) — e[yDll2 < bod([x]; [¥])-

Today we focus on the case V = R™4 X ~Y < Y = PX for some
P € S,. Motivation: Graph deep learning, Assignment Problems.
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A sorting based embedding [BHS22]

Consider: fp : R"d — RM<D,

| |
ﬁA(X) = i(Xal) - \l/(an) , X e IRnXd7

o | :R" — R" denotes sorting vectors in nondecreasing order,
o (ax)P_, € RY are the columns of A € R9*D.

Note: Ba descends through the quotient to 3 : R™<9/S, — R"*PD

[BHS22] Radu Balan, Naveed Haghani, and Maneesh Singh. Permutation invariant representations with applications to graph
deep learning. March 2022. ACHA 2025.
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Geometric Interpretation

Consider the case: d = 3. Construct the 2-dim simplex:

(0,0,1)

(0,1,0)

7 (1,0,0)
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Geometric Interpretation

d = 3. Rotate the simplex and place the columns of X (here n = 2):
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Geometric Interpretation

Place the columns of a non-equivalent matrix Y
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Geometric Interpretation

Construct the d — 1 = 2-dim hyperplanes generated by each row of X:
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Geometric Interpretation

Sample the hyperplanes at a = (a1, a2, a3) and sort the values.:
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Geometric Interpretation

Can you recover the two (hyper)planes just from the uncolored n(d + 1) =8
points? Generically, yes. But D > 2d — 1 =5, i.e., another column, for every [X].
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Overview of our results

logon+1

2 3 4 5 6 7 8 9 10
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Main results on injectivity

Theorem A:
D ) . . .
Lf—l—‘ <logyn+1 = [ not injective

(independent of the choice of A).

Theorem B:

D - ..
-1 > n = [, injective.
(A full spark).

Remark: If n =2, Bp is injective <= (ax)P_; form a phase retrievable
frame for RY [BT23]. Hence D > 2d — 1 is a necessary (and generically
sufficient) condition.

[BT23] Radu Balan and Efstratios Tsoukanis. Relationships between the phase retrieval problem and permutation invariant

embeddings. In 2023 International Conference on Sampling Theory and Applications (SampTA), New Haven, CT, USA, July
2023.
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Upper Lipschitz constant

The upper Lipschitz constant of 3, is equal to the largest singular value of
A: bo = O'1(A)Z

1Ba(X]) = BallyDll2 < o1 (A)d([x], [y])-

For Gaussian random matrices, with standard i.i.d. entries,

by = o1(A) < VD + V/d + t with probability greater than or equal to
1 — 2exp(—ci t?).

Hence, we high probability we have by ~ \/5—1— Vd.
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A singular value-based lower Lipschitz bound

Theorem 1

If D > kd((n — 1)? + 1) for some k € N, then the lower Lipschitz constant
of Bp is greater than or equal to
> mi A(])).
2w 2 iy e ()
|l|=kd

Note: k is an integer that can be optimized by user. For Gaussian
matrices, using Gordon's theorem we obtained that, for n large enough

a3 vD
RV —Vd , Elb] <VD+Vd

For D > n*, the v/d term is neglected and distortion is bounded by

E[bo] T
Efao] = \/g "
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Lower Lipschitz constant based on projective uniformity

Definition Matrix A € RY*P satisfies (m, §)-projective uniformity [CIMP24] if
Vx € S, [(|ATx|)p—my1 > J, where m € [D] and 6 > 0; i.e., for every unit
vector x, the m-th smallest entry of A7x exceeds 4.

Theorem 2

Let A € R*P satisfy (m, 6)-projective uniformity with 6 >0 and m € [D] such
that n>(m — 1) < D. Then, the lower Lipschitz constant of (3, is greater or equal

than 6/D — n?(m —1).

Theorem 3

Let A € R?*P be a matrix with independent standard normal entries. Then, the

lower Lipschitz constant ag > %Q and the distortion of B, is in O(n?) with

probability greater or equal than 1 — 2 exp(—c1 D) — exp(—con~*D), where
c1, ¢ > 0 are universal constants, provided that D 2 n*d.

[CIMP24] Cahill, lverson, Mixon, Packer. Group-invariant max filtering. FoCM 2024
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Overview of our distortion bounds

Distortion
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Upper and lower bounds for distortion

Theorem A: A with independent standard normal entries:
diSt(ﬁA) S n?

with overwhelming probability if D > n*d.
Theorem B: A with columns drawn independently from the uniform
distribution on S91:

log n
d

dist(Ba) < %1+

with overwhelming probability if D > n?dlog(n(d + log n)).
Theorem C:

dist(Ba) = v/n
(independent of the choice of A).
Radu Balan (UMD) Permutation invariant embeddings
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.

Thank you!
Questions?
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A Universal Embedding

Measure Space Embedding

Consider the map

e Rnxd PRY) , w(X)(x) = % Zn: d(x — xk)
k=1

where P(RY) denotes the convex set of probability measures over R9, and
5 denotes the Dirac measure. x is the k' row of X.

Clearly pu(X') = p(X) iff X’ = PX for some P € S,,.

The Wasserstein-2 distance is equivalent to the natural metric:

Wa(u(X), (Y))? = inf  Eglllx — y[3] = min [|Y — PX]]*
: q 2

g€ (u(X),n(Y)) PeSn
By Kantorovich-Rubinstein theorem, the Wasserstein-1 distance (the Earth moving distance)
extends to a norm on the space of signed Borel measures.
Main drawback: P(R9) is infinite dimensional!
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Finite Dimensional Embeddings

Idea: “Project” the measure onto a finite dimensional space. This is
accomplished by kernel methods:

Fix a family of functions fi,-- -, f;, and consider:

»—>/ fi(x)du(X) = fok , J€[m]

Radu Balan (UMD)
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Finite Dimensional Embeddings

Idea: “Project” the measure onto a finite dimensional space. This is
accomplished by kernel methods:

Fix a family of functions fi,-- -, f;, and consider:

»—>/ fi(x)du(X fok , J€[m]

Possible choices:

@ Polynomial embeddings: R[X]®", ring of invariant polynomials;
[Lipman&al.],[Peyré&al.],[Sanay&al.],[Kemper book] ...
@ Gaussian kernels: fi(x) = exp(—||x — aj||2/aj2) ;
[Gilmer&al.],[Zaheer&al.], [Vinyals&al.],...
© Fourier kernels (cmplx embd): f;(x) = exp(27i(x,w;)); related to
Prony method; [Li&Liao] for bi-Lipschitz estimates.
Main drawback: No global bi-Lipschitz embeddings [Cahill&al.]. Ok on
(some) compacts.
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The Embedding Problem

Notations (2)

Definition 5.1

Fix X € R"™9 A matrix A € RY*P js called admissible for X if
Bat(Ba(X)) = X. In other words, if Y € R"™9 so that | (XA) =| (YA)
then there is [1 € S, sot that Y = [1X.

We denote by A4 p(X) (or A(X)) the set of admissible keys for X.

Definition 5.2

Fix A € R¥*P A data matrix X € R"9 js said separated by A if
A e A(X).

We let S(A) denote the set of data matrices separated by A.
The key A is universal iff S(A) = R4
The Problem: Design universal keys.

Radu Balan (UMD) Permutation invariant embeddings 1/4/26
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Genericity Results for d > 2
Admissible keys

Theorem 5.3

Let X € R™9. Forany D > d + 1 the set Ay p(X) of admissible keys for
X is dense in RI*P with respect to Euclidean topology, and it is generic
with respect to Zariski topology. In particular, RI*P \ Ag,p(X) has
Lebesgue measure 0, i.e., almost every key is admissible for X.

Proof

It is sufficient to consider the case D = d + 1. Also, it is sufficient to
analyze the case A = [ly b] and to show that a generic b € RY defines an
admissible key. The vector b € R? does not define an admissible key if
there are =, Ty, ---, My € S, so that for Y = [M1xy, -+, MNgx4],

Yb==Xb but Y-TIX#0, VleS,

Define the linear operator

Radu Balan (UMD) Permutation invariant embeddings 1/4/26
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Genericity Results for d > 2
Admissible keys

Proof - cont’'d
Let

P = {(ﬂ1, o Ny) € (Sn)d VN e Sy, Tk € [d] s.t. (M — Ty )xi # 0}
Then
{b € RY: [Iy b] not admissible for X} = U ker(B(=; My,---,T
(E;I‘I1,~~-,I'Id)68,,><73

It is now sufficient to show that each null space has dimension less than d.
Indeed, the alternative would mean B(=; Iy, -+, My) = 0 but this would
imply (My,---,Mg) ¢ P. O

Radu Balan (UMD) Permutation invariant embeddings 1/4/26
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Non-Universality of vector keys

Insufficiency of a single vector key

The following is a no-go result, which shows that there is no universal
single vector key for data matrices tall enough.

Proposition 5.4

Ifd >2 andn >3,

U {beR?: A=][ly b] not admissible forX} = RY.
XeRnxd

Consequently,
ﬂ Ad d+1(X) = 0.

XEeRnxd

On the other hand, for n =2, d = 2, any vector b € R? with b1by # 0
defines a universal key A = [l b].

Radu Balan (UMD) Permutation invariant embeddings 1/4/26
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Non-Universality of vector keys

Insufficiency of a single vector key - cont'd

Proof
To show the result, it is sufficient to consider a counterexample for n = 3,
d =2, with key b = [1,1] .

Then Xb =[0,-1,1]" and Yb=[1,0,-1]", yet X £ Y. Thus [k b] is
not admissible for X.

Then note if a € RY so that [ly a] is admissible for X then for any P € S,
and L an invertible d x d diagonal matrix, L"1PT A € Aq1(XPL). This
shows how for any b € R?, one can construct X € R3*2 so that

b As1(X).

For n > 3 or d > 2, proof follows by embedding this example.

Radu Balan (UMD) Permutation invariant embeddings 1/4/26
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Genericity Results for d > 2

Admissible Data Matrices

Theorem 5.5

Assume a € RY s a vector with non-vanishing entries, i.e., ajas - --aq # 0.
Then for any n > 1, S([ly a]) is dense in R"*? and includes an open dense
set with respect to Zariski topology. In particular, R"™9\ S([l4 a]) has

Lebesgue measure 0, i.e., almost every data matrix X is separated by the
vector key a.

Radu Balan (UMD)
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Genericity Results for d > 2

Admissible Data Matrices

Theorem 5.5

Assume a € R? is a vector with non-vanishing entries, i.e., ajas - --aq # 0.
Then for any n > 1, S([ly a]) is dense in R"*? and includes an open dense
set with respect to Zariski topology. In particular, R"™9\ S([l4 a]) has
Lebesgue measure 0, i.e., almost every data matrix X is separated by the
vector key a.

Corollary 5.6

Assume A € RI*(P=d) js 3 matrix such that at least one column has
non-vanishing entries. Then for any n > 1, S([ly A]) is dense in R™9 and
is generic with respect to Zariski topology. In particular, R"™ 9\ S([ly A])
has Lebesgue measure 0, i.e., almost every data matrix X is separated by
the matrix key [lg Al.
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Proof that S([ls A]) is generic

The case D > d

Assume A € RI*(D=d) gatisfies A1 kA2 - Ad ik 7# 0 for some
k € [D — d]. The set of non-separated data matrices X € R™4 (i.e., the
complement of S([/4 A])) factors as follows:

RnXd\S([/d A]) = U (kerL(El,---,ED_d;I'Il,---,I'Id;/
(Z1,Zp—diM1,+,Ng)e(Sn)P

\ | ker /\/I(I'I,I'Il,---,l'ld)) (%)

rlESn

where, with A = [31, UK aD_d], X = [Xl, S ,Xd]:
L(Z1,+,Zp—giMi,, Mg A R™XIRXP=d (L (LX), =[(Ek—M1)x1,+(Zk—Tg)xd]ak , kE[D—

MMy Mg RYG—RYE ML, Mg ) X =[(M=1)xa, -, (M=) xg]

Radu Balan (UMD) Permutation invariant embeddings 1/4/26
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Proof that S(A) is generic

cont'd

1. The outer union can be reduced by noting that on the "diagonal” A,

A={(Z1, . Zp_g;M1,---,N) €(SHP , Mi=Ny=--- =Ny}
M(My, Ny, -+, My) =0 — U ker M(”?”L"',nd):R"Xd
nes,
2. 1f (21, -+, Zp_q; M1, ---,Ny) € (S4)P \ A then for every k € [D — d]

there is j € [d] such that =, — I; # 0. In particular choose the k column
of A that is non-vanishing. Let x; € R" so that (=4 — I1j)x; # 0. Consider
the matrix X =[0,---,0,x;,0,---,0] where x; is the only non identically 0
column. Claim: X & ker L(Z3,...,Mg; A). Indeed, the resulting k column
of L()X is Aj k(Zk — Nj)x; 75 0. It follows that

dim ker L( 1y s=p—d; M1, -, I'Id'A)<nd

Hence R™<9\ S([la A]) is a finite union of subsets of closed linear spaces
properly included in R"%9 This proves the theorem. [J

Radu Balan (UMD) Permutation invariant embeddings 1/4/26
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Additional Relations

Note the following relationship and matrix representation of X when
matrices are column-stacked:

M(n7n17"'7nd):L(na"'an;nl7"'and;l)

A11(Z1— M) Az 1(=1 — M) Adg1(Z1—MNg)
| A12(=2 — ) Az o(=p — M) e Ad2(Z2 —Mg)
A1p-d(Ep-d — M) Asp-d(Z=p-d—T2) -+ Adp—d(Zp—ad—MNg

n(D — d) x nd matrix.
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