## L1 matrix norms, gauges and factorizations

## Radu Balan

University of Maryland
Department of Mathematics and the Norbert Wiener Center College Park, Maryland rvbalan@umd.edu

April 25, 2024
MFO workshop "Applied Harmonic Analysis and Data Science" Oberwolfach, Germany, April 22-26, 2024.

Norbert Wiener Center
for Harmonic Analysis and Applications


## Acknowledgments

This material is based upon work partially supported by the National Science Foundation under grant no. DMS-2108900 and by Simons Foundation. "Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation."

## Collaborators:



Fushuai (Black) Jiang (UMD), Kasso Okoudjou (Tufts), Anirudha Poria(Bar-Ilan U.), Michael Rawson (UMD/PNNL), Yang Wang (HKUST), Rui Zhang (HKUST), Felix Krahmer (TUM).

## Works:

(1) R. Balan, K. Okoudjou, A. Poria, On a Feichtinger Problem, Operators and Matrices vol. 12(3), 881-891 (2018)
http://dx.doi.org/10.7153/oam-2018-12-53
(2) R. Balan, K.A. Okoudjou, M. Rawson, Y. Wang, R. Zhang, Optimal I1 Rank One Matrix Decomposition, in "Harmonic Analysis and Applications", Rassias M., Ed. Springer (2021)

## Warm-Up Exercise

Let $A \in \mathbb{R}^{n \times n}$ be a matrix and consider the following optimization problem:

$$
\gamma(A):=\inf _{A=\sum_{k \geq 1} x_{k} y_{k}^{\top}} \sum_{k}\left\|x_{k}\right\|_{1}\left\|y_{k}\right\|_{1}
$$

## Warm-Up Exercise

Let $A \in \mathbb{R}^{n \times n}$ be a matrix and consider the following optimization problem:

$$
\gamma(A):=\inf _{A=\sum_{k \geq 1} x_{k} y_{k}^{\top}} \sum_{k}\left\|x_{k}\right\|_{1}\left\|y_{k}\right\|_{1}
$$

Note:

$$
A=\left[A_{i, j}\right]_{i, j \in[n]}=\left[\begin{array}{c}
A_{11} \\
A_{21} \\
\vdots \\
A_{n 1}
\end{array}\right] \cdot[1,0, \cdots, 0]+\cdots+\left[\begin{array}{c}
A_{1 n} \\
A_{2 n} \\
\vdots \\
A_{n n}
\end{array}\right] \cdot[0,0, \cdots, 1]
$$

From where: $\gamma(A) \leq \sum_{i, j}\left|A_{i, j}\right|=:\|A\|_{1}$.

## Warm-Up Exercise

Let $A \in \mathbb{R}^{n \times n}$ be a matrix and consider the following optimization problem:

$$
\gamma(A):=\inf _{A=\sum_{k \geq 1} x_{k} y_{k}^{\top}} \sum_{k}\left\|x_{k}\right\|_{1}\left\|y_{k}\right\|_{1}
$$

Note:

$$
A=\left[A_{i, j}\right]_{i, j \in[n]}=\left[\begin{array}{c}
A_{11} \\
A_{21} \\
\vdots \\
A_{n 1}
\end{array}\right] \cdot[1,0, \cdots, 0]+\cdots+\left[\begin{array}{c}
A_{1 n} \\
A_{2 n} \\
\vdots \\
A_{n n}
\end{array}\right] \cdot[0,0, \cdots, 1]
$$

From where: $\gamma(A) \leq \sum_{i, j}\left|A_{i, j}\right|=:\|A\|_{1}$.
For converse: Let $A=\sum_{k} x_{k} y_{k}^{T}$ be the optimal decomposition. Then:

$$
\|A\|_{1}=\left\|\sum_{k} x_{k} y_{k}^{\top}\right\| \leq \sum_{k}\left\|x_{k} y_{k}^{T}\right\|_{1}=\sum_{k}\left\|x_{k}\right\|_{1}\left\|y_{k}\right\|_{1}=\gamma(A) .
$$

## Projective norm

We obtained:

$$
\gamma(A):=\inf _{A=\sum_{k \geq 1} x_{k} y_{k}^{\top}} \sum_{k}\left\|x_{k}\right\|_{1}\left\|y_{k}\right\|_{1}=\sum_{i, j}\left|A_{i, j}\right|=:\|A\|_{1}
$$

folowing Grothendieck, the last norm is sometime referred to as projective norm, $\|A\|_{\wedge}$.

## Projective norm

We obtained:

$$
\gamma(A):=\inf _{A=\sum_{k \geq 1}^{x_{k} y_{k}^{\top}}} \sum_{k}\left\|x_{k}\right\|_{1}\left\|y_{k}\right\|_{1}=\sum_{i, j}\left|A_{i, j}\right|=:\|A\|_{1}
$$

folowing Grothendieck, the last norm is sometime referred to as projective norm, $\|A\|_{\wedge}$.
Assume now that $A=A^{T}$. Considered a more constrained optimization problem:

$$
\gamma_{0}(A):=\inf _{\substack{A=\sum_{k \geq 1} \varepsilon_{k} x_{k} x_{k}^{T} \\ \varepsilon_{k} \in\{+1,-1\}}} \sum_{k}\left\|x_{k}\right\|_{1}^{2}
$$

## Projective norm

We obtained:

$$
\gamma(A):=\inf _{A=\sum_{k \geq 1}^{x_{k} y_{k}^{\top}}} \sum_{k}\left\|x_{k}\right\|_{1}\left\|y_{k}\right\|_{1}=\sum_{i, j}\left|A_{i, j}\right|=:\|A\|_{1}
$$

folowing Grothendieck, the last norm is sometime referred to as projective norm, $\|A\|_{\wedge}$.
Assume now that $A=A^{T}$. Considered a more constrained optimization problem:

$$
\gamma_{0}(A):=\inf _{\substack{ \\\varepsilon_{k} \in \sum_{k} \in 1 \\\{+1,-1\}}} \varepsilon_{k} x_{k} x_{k}^{T} \sum_{k}\left\|x_{k}\right\|_{1}^{2}
$$

It is not hard to show that $\gamma_{0}$ is a norm on $\operatorname{Sym}\left(\mathbb{R}^{n}\right)\left(\right.$ or $\left.\operatorname{Sym}\left(\mathbb{C}^{n}\right)\right)$, and $\|A\|_{1} \leq \gamma_{0}(A)$.

## Projective norm

We obtained:

$$
\gamma(A):=\inf _{A=\sum_{k \geq 1}^{x_{k} y_{k}^{\top}}} \sum_{k}\left\|x_{k}\right\|_{1}\left\|y_{k}\right\|_{1}=\sum_{i, j}\left|A_{i, j}\right|=:\|A\|_{1}
$$

folowing Grothendieck, the last norm is sometime referred to as projective norm, $\|A\|_{\wedge}$.
Assume now that $A=A^{T}$. Considered a more constrained optimization problem:

$$
\gamma_{0}(A):=\inf _{\substack{A=\sum_{k \geq 1} \varepsilon_{k} x_{k} x_{k}^{T} \\ \varepsilon_{k} \in\{+1,-1\}}} \sum_{k}\left\|x_{k}\right\|_{1}^{2}
$$

It is not hard to show that $\gamma_{0}$ is a norm on $\operatorname{Sym}\left(\mathbb{R}^{n}\right)\left(\right.$ or $\left.\operatorname{Sym}\left(\mathbb{C}^{n}\right)\right)$, and $\|A\|_{1} \leq \gamma_{0}(A)$. Leveraging the fact that $\frac{1}{2}\left(x y^{\top}+y x^{T}\right)=\frac{1}{4}\left((x+y)(x+y)^{T}-(x-y)(x-y)^{T}\right)$ one obtains:

$$
\|A\|_{1} \leq \gamma_{0}(A):=\inf _{\substack{ \\A=\sum_{k} \in 1 \\ \varepsilon_{k} \in\{+1,-1\}}} \sum_{k} x_{k} x_{k}^{T}\left\|x_{k}\right\|_{1}^{2} \leq 2\|A\|_{1}
$$

## Problem Formulation

Let Sym $^{+}\left(\mathbb{C}^{n}\right)=\left\{A \in \mathbb{C}^{n \times n}, A^{*}=A \geq 0\right\}$. For $A \in \operatorname{Sym}^{+}\left(\mathbb{C}^{n}\right)$, denote

$$
\gamma_{+}(A):=\inf _{A=\sum_{k \geq 1} x_{x} x_{k}^{*}} \sum_{k}\left\|x_{k}\right\|_{1}^{2}
$$

It is obvious that $\|A\|_{1} \leq \gamma_{0}(A) \leq \gamma_{+}(A)$.

## Problem Formulation

Let $\operatorname{Sym}^{+}\left(\mathbb{C}^{n}\right)=\left\{A \in \mathbb{C}^{n \times n}, A^{*}=A \geq 0\right\}$. For $A \in \operatorname{Sym}^{+}\left(\mathbb{C}^{n}\right)$, denote

$$
\gamma_{+}(A):=\inf _{A=\sum_{k \geq 1} x_{x} x_{k}^{*}} \sum_{k}\left\|x_{k}\right\|_{1}^{2}
$$

It is obvious that $\|A\|_{1} \leq \gamma_{0}(A) \leq \gamma_{+}(A)$.
The matrix conjecture problem: For every $n \geq 1$ find the best constant $C_{n}$ such that, for every $A \in \operatorname{Sym}^{+}\left(\mathbb{C}^{n}\right)$,

$$
\gamma_{+}(A) \leq C_{n}\|A\|_{1}:=C_{n} \sum_{k, l=1}^{n}\left|A_{k, l}\right|
$$

That is, we are interested in finding:

$$
C_{n}=\sup _{A \geq 0} \frac{\gamma_{+}(A)}{\|A\|_{1}}
$$

## Properties of $\gamma_{+}(A)$

The infimum is achieved:
$\gamma_{+}(A):=\inf _{A=\sum_{k \geq 1} x_{x} x_{k}^{*}} \sum_{k}\left\|x_{k}\right\|_{1}^{2}=\min _{A=\sum_{k=1}^{n^{2} x_{x} x_{k}^{*}}} \sum_{k}\left\|x_{k}\right\|_{1}^{2}$.
Upper bounds:

$$
\begin{gathered}
\gamma_{+}(A) \leq n \operatorname{trace}(A) \leq n\|A\|_{1}=n \sum_{k, j}\left|A_{k, j}\right| \\
\gamma_{+}(A) \leq n \operatorname{trace}(A) \leq n^{2}\|A\|_{O p}
\end{gathered}
$$

Lower bounds:

$$
\|A\|_{1}=\min _{A=\sum_{k \geq 1} x_{x} y_{k}^{*}} \sum_{k}\left\|x_{k}\right\|_{1}\left\|y_{k}\right\|_{1} \leq \gamma_{+}(A)
$$

Convexity: for $A, B \in \operatorname{Sym}^{+}\left(\mathbb{C}^{n}\right)$ and $t \geq 0$,

$$
\gamma_{+}(A+B) \leq \gamma_{+}(A)+\gamma_{+}(B), \quad \gamma_{+}(t A)=t \gamma_{+}(A)
$$



Maximum of $\sum_{k}\left\|x_{k}\right\|_{1}^{2} /\|A\|_{1}$ over 30 random noise realizations, where $x_{k}^{\prime} s$ are obtained from the eigendecomposition, or the LDL factorization.

## Properties of $\gamma_{+}(A)$

Lower bound is achieved, $\gamma_{+}(A)=\|A\|_{1}$ in the following cases:
(1) If $A=x x^{*}$ is of rank one.
(2) If $A \geq 0$ is a diagonally dominant matrix, $A_{i i} \geq \sum_{k \neq i}\left|A_{i, k}\right|$.
(3) If $A \geq 0$ admits a Non Negative Matrix Factorization (NNMF), $A=B B^{T}$ with $B_{i j} \geq 0$.
Continuity, Lipschitz and linear program reformulation:
(1) $\gamma_{+}: \operatorname{Sym}^{+}\left(\mathbb{C}^{n}\right) \rightarrow \mathbb{R}$ is continuous.
(2) If $A, B \geq \delta I$ and $\operatorname{trace}(A), \operatorname{trace}(B) \leq 1$ then

$$
\left|\gamma_{+}(A)-\gamma_{+}(B)\right| \leq\left(\frac{n}{\delta^{2}}+n^{2}\right)\|A-B\|_{O p}
$$

(3) Let $S_{1}=\left\{x \in \mathbb{C}^{n},\|x\|_{1}=1\right\}$ denote the compact unit sphere with respect to the $I^{1}$ norm, and let $\mathcal{B}\left(S_{1}\right)$ denote the set of Borel measures over $S_{1}$. Then:

$$
\gamma_{+}(A)=\inf _{\mu \in \mathcal{B}\left(S_{1}\right): \int_{S_{1}} x x^{*} d \mu(x)=A} \mu\left(S_{1}\right), \mu^{*}(x)=\sum_{k=1}^{m} \lambda_{k} \delta\left(x-g_{k}\right)
$$

where $\gamma_{+}(A)=\sum_{k=1}^{m} \lambda_{k}$ and $A=\sum_{k=1}^{m} g_{k} g_{k}^{*}$ is the optimal factorization.

## Primal and dual problems for $\gamma_{+}$

The linear program is convex optimization problem (which is great), but it is defined in an infinite dimensional space (not so great!). Its dual program enjoys strong duality (this may not be obvious due to infinite dimensional technical issues):

## Theorem

Assume $A \geq 0$. Its associated primal (min) - dual (max) problems are:

$$
\left.T=T^{*}:\langle T x, x\rangle \leq 1, \forall\|x\|_{1} \leq 1\right] \max _{\mu \in \mathcal{B}\left(S_{1}\right): \int_{S_{1}} x x^{*} d \mu(x)=A} \mu\left(S_{1}\right)=\gamma_{+}(A)
$$

## Primal and dual problems for $\gamma_{+}$

The linear program is convex optimization problem (which is great), but it is defined in an infinite dimensional space (not so great!). Its dual program enjoys strong duality (this may not be obvious due to infinite dimensional technical issues):

## Theorem

Assume $A \geq 0$. Its associated primal (min) - dual (max) problems are:

$$
T=T^{*}:\langle T x, x\rangle \leq 1, \forall\|x\|_{1} \leq 1 . \operatorname{trace}(T A)=\min _{\mu \in \mathcal{B}\left(S_{1}\right): \int_{S_{1}} x x^{*} d \mu(x)=A} \mu\left(S_{1}\right)=\gamma_{+}(A)
$$

Note the quantity:

$$
\rho_{1}(T)=\max _{x:\|x\|_{1} \leq 1}\langle T x, x\rangle
$$

The dual problem and $C_{n}$ turn into:

$$
C_{n}=\max _{A \geq 0:\|A\|_{1} \leq 1} \gamma_{+}(A)=\max _{\substack{ \\A \geq T^{*}: \rho_{1}(T) \leq 1 \\\|A\|_{1} \leq 1}} \operatorname{trace}(T A) \quad \max _{\substack{T=T^{*}: \\ \rho_{1}(T) \leq 1}} \operatorname{trace}(T A)=\max _{\substack{A \geq 0:}} \max _{\substack{ \\\| A=T^{*}:}} \frac{\operatorname{trace}(T A)}{\|A\|_{1} \rho_{1}(T)}
$$

## The bound $\rho_{1}$

Recall, for $T=T^{*}$ :

$$
\rho_{1}(T)=\max _{x:\|x\|_{1} \leq 1}\langle T x, x\rangle
$$

How to compute it?
Easy cases:
(1) If $T \leq 0$ then $\rho_{1}(T)=0$
(2) If $T \geq 0$ then

$$
\rho_{1}(T)=\max _{k} T_{k, k}=\max _{i, j}\left|T_{i, j}\right|=:\|T\|_{\infty}
$$

This resembles the numerical radius of a matrix, $r(T)=\max _{\|x\|_{2}=1}|\langle T x, x\rangle|$, which for hermitian matrices equals the largest singular value (operator norm). Note differences: (i) $\|\cdot\|_{2} \rightarrow\|\cdot\|_{1}$; (ii) no absolute value |.|.

## The bound $\rho_{1}(2)$

Assume $\lambda_{\max }(T)>0$, i.e. $T$ is NOT negative semi-definite. Then:

$$
\begin{gathered}
\rho_{1}(T)=\max _{x:\|x\|_{1}=1}\langle T x, x\rangle=\max _{A \geq 0:} \quad \operatorname{trace}(T A) \\
\operatorname{rank}(A)=1 \\
\|A\|_{1}=1
\end{gathered}
$$

## The bound $\rho_{1}(2)$

Assume $\lambda_{\max }(T)>0$, i.e. $T$ is NOT negative semi-definite. Then:

$$
\begin{gathered}
\rho_{1}(T)=\max _{x:\|x\|_{1}=1}\langle T x, x\rangle=\max _{A \geq 0:} \quad \operatorname{trace}(T A) \\
\operatorname{rank}(A)=1 \\
\|A\|_{1}=1
\end{gathered}
$$

Convex relaxation:

$$
\begin{gathered}
\pi_{+}(T):=\max _{A \geq 0:} \quad \operatorname{trace}(T A) \\
\|A\|_{1}=1
\end{gathered}
$$

which is a semi-definite program (SDP). Thus:

$$
\rho_{1}(T) \leq \pi_{+}(T) .
$$

## Primal and dual problems for $\rho_{1}$

The SDP enjoys strong duality:

## Theorem

Assume $T=T^{*}$. The primal-dual programs have strong duality:

$$
\pi_{+}(T)=\max _{A \geq 0:} \quad \operatorname{trace}(T A)=\min _{Y \geq 0}\|T+Y\|_{\infty}
$$

where $\|Z\|_{\infty}=\max _{i, j}\left|Z_{i, j}\right|$.
The proof of this theorem is based on the Von Neumann's min-max theorem:

$$
\begin{gathered}
\min _{Y \geq 0}\|T+Y\|_{\infty}=\min _{Y \geq 0} \max _{A:\|A\|_{1}=1} \operatorname{trace}((T+Y) A) \stackrel{v N}{=} \max _{A:\|A\|_{1}=1} \min _{Y \geq 0} \operatorname{trace}((T+Y) A)= \\
=\max _{A:\|A\|_{1}=1}\left(\operatorname{trace}(T A)+\min _{Y \geq 0} \operatorname{trace}(Y A)\right)=\max _{A \geq 0:\|A\|_{1}=1}\left(\operatorname{trace}(T A)+\min _{Y \geq 0} \operatorname{trace}(Y A)\right)= \\
=\max _{A \geq 0:\|A\|_{1}=1} \operatorname{trace}(T A)=\pi_{+}(T)
\end{gathered}
$$

## Connexion result

The final result: the connection between $\gamma_{+}(A)$ and $C_{n}$ on one hand, and $\rho_{1}(T)$ and $\pi_{+}(T)$ on the other hand:

## Theorem

$$
\begin{aligned}
& C_{n}:=\max _{A \geq 0} \frac{\gamma_{+}(A)}{\|A\|_{1}}=\max _{T=T^{*}} \frac{\pi_{+}(T)}{\rho_{1}(T)} \\
& A \neq 0 \quad \rho_{1}(T) \neq 0
\end{aligned}
$$

The proof is based on an earlier derivation:

$$
\begin{aligned}
& A \neq 0 \quad \rho_{1}(T)>0 \quad \rho_{1}(T)>0 \quad A \neq 0 \\
& =\max _{T=T^{*}:} \quad \frac{1}{\rho_{1}(T)} \frac{\pi_{+}(T)}{\rho_{1}(T)} \quad \max _{A \geq 0:} \quad \operatorname{trace}(T A)=\max _{T=T^{*}:} \frac{\pi_{+}(T)}{\rho_{1}(T)} \\
& \rho_{1}(T)>0 \quad\|A\|_{1}=1 \quad \rho_{1}(T)>0
\end{aligned}
$$

## Latest Result

Theorem (Afonso \& co - Oberwolfach 2024)
There are $\alpha>0, N_{0}>1$ so that for any $n \geq N_{0}$,

$$
C_{n} \geq \alpha \sqrt{n}
$$

## Thank you!

Thank you for listening! QUESTIONS?

## Motivation

A Feichtinger Problem

At a 2004 Oberwolfach meeting, Hans Feichtinger asked the following question: (Q1) Given a positive semi-definite trace-class operator $T: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\mathbb{R}^{d}\right)$, $T f(x)=\int K(x, y) f(y) d y$, with $K \in M^{1}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$, and its spectral factorization, $T=\sum_{k}\left\langle\cdot, h_{k}\right\rangle h_{k}$, must it be $\sum_{k}\left\|h_{k}\right\|_{M^{1}}^{2}<\infty$ ?

A modified version of the question is:
(Q2) Given $T$ as before, i.e., $T=T^{*} \geq 0, K \in M^{1}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$, is there a factorization $T=\sum_{k}\left\langle\cdot, g_{k}\right\rangle g_{k}$ such that $\sum_{k}\left\|g_{k}\right\|_{M^{1}}^{2}<\infty$ ?

## Problem Reformulation

## Matrix Language

Consider an infinite matrix $A=\left(A_{m, n}\right)_{m, n \geq 0}$ so that $\|A\|_{\wedge}:=\|A\|_{1}:=\sum_{m, n \geq 0}\left|A_{m, n}\right|<\infty$.
This implies that $A$ acts on $I^{2}(\mathbb{N})$ as a trace-class compact operator.
Assume additionally $A=A^{*} \geq 0$ as a quadratic form.
Let $\left(e_{k}\right)_{k \geq 0}$ denote an orthogonal set of eigenvectors normalized so that $A=\sum_{k \geq 0} e_{k} e_{k}^{*}$. It is easy to check that $e_{k} \in I^{1}(\mathbb{N})$, for each $k$.
Equivalent reformulations of the two problems (Heil, Larson '08):

## Problem Reformulation

## Matrix Language

Consider an infinite matrix $A=\left(A_{m, n}\right)_{m, n \geq 0}$ so that $\|A\|_{\wedge}:=\|A\|_{1}:=\sum_{m, n \geq 0}\left|A_{m, n}\right|<\infty$.
This implies that $A$ acts on $I^{2}(\mathbb{N})$ as a trace-class compact operator.
Assume additionally $A=A^{*} \geq 0$ as a quadratic form.
Let $\left(e_{k}\right)_{k \geq 0}$ denote an orthogonal set of eigenvectors normalized so that $A=\sum_{k \geq 0} e_{k} e_{k}^{*}$. It is easy to check that $e_{k} \in I^{1}(\mathbb{N})$, for each $k$.
Equivalent reformulations of the two problems (Heil, Larson '08):
Q1: Does it hold $\sum_{k \geq 0}\left\|e_{k}\right\|_{1}^{2}<\infty$ ?

## Problem Reformulation

## Matrix Language

Consider an infinite matrix $A=\left(A_{m, n}\right)_{m, n \geq 0}$ so that
$\|A\|_{\wedge}:=\|A\|_{1}:=\sum_{m, n \geq 0}\left|A_{m, n}\right|<\infty$.
This implies that $A$ acts on $I^{2}(\mathbb{N})$ as a trace-class compact operator.
Assume additionally $A=A^{*} \geq 0$ as a quadratic form.
Let $\left(e_{k}\right)_{k>0}$ denote an orthogonal set of eigenvectors normalized so that $A=\sum_{k \geq 0} e_{k} e_{k}^{*}$. It is easy to check that $e_{k} \in I^{1}(\mathbb{N})$, for each $k$.
Equivalent reformulations of the two problems (Heil, Larson '08):
Q1: Does it hold $\sum_{k \geq 0}\left\|e_{k}\right\|_{1}^{2}<\infty$ ? Answer: Negative in general! (see [1])

## Problem Reformulation

## Matrix Language

Consider an infinite matrix $A=\left(A_{m, n}\right)_{m, n \geq 0}$ so that
$\|A\|_{\wedge}:=\|A\|_{1}:=\sum_{m, n \geq 0}\left|A_{m, n}\right|<\infty$.
This implies that $A$ acts on $I^{2}(\mathbb{N})$ as a trace-class compact operator.
Assume additionally $A=A^{*} \geq 0$ as a quadratic form.
Let $\left(e_{k}\right)_{k \geq 0}$ denote an orthogonal set of eigenvectors normalized so that $A=\sum_{k \geq 0} e_{k} e_{k}^{*}$. It is easy to check that $e_{k} \in I^{1}(\mathbb{N})$, for each $k$.
Equivalent reformulations of the two problems (Heil, Larson '08):
Q1: Does it hold $\sum_{k \geq 0}\left\|e_{k}\right\|_{1}^{2}<\infty$ ? Answer: Negative in general! (see [1])
Q2: Is there a factorization $A=\sum_{k \geq 0} f_{k} f_{k}^{*}$ so that $\sum_{k \geq 0}\left\|f_{k}\right\|_{1}^{2}<\infty$ ?

## Problem Reformulation

## Matrix Language

Consider an infinite matrix $A=\left(A_{m, n}\right)_{m, n \geq 0}$ so that
$\|A\|_{\wedge}:=\|A\|_{1}:=\sum_{m, n \geq 0}\left|A_{m, n}\right|<\infty$.
This implies that $A$ acts on $I^{2}(\mathbb{N})$ as a trace-class compact operator.
Assume additionally $A=A^{*} \geq 0$ as a quadratic form.
Let $\left(e_{k}\right)_{k \geq 0}$ denote an orthogonal set of eigenvectors normalized so that
$A=\sum_{k \geq 0} e_{k} e_{k}^{*}$. It is easy to check that $e_{k} \in I^{1}(\mathbb{N})$, for each $k$.
Equivalent reformulations of the two problems (Heil, Larson '08):
Q1: Does it hold $\sum_{k \geq 0}\left\|e_{k}\right\|_{1}^{2}<\infty$ ? Answer: Negative in general! (see [1])
Q2: Is there a factorization $A=\sum_{k \geq 0} f_{k} f_{k}^{*}$ so that $\sum_{k \geq 0}\left\|f_{k}\right\|_{1}^{2}<\infty$ ?
Using previous equivalence and some functional analysis arguments:

## Proposition

If (Q2) is answered affirmatively, then the matrix conjecture must be true.

## Linear program result

Optimal Factorization from a Measure Theory Perspective
Let $S_{1}=\left\{x \in \mathbb{C}^{n},\|x\|_{1}=1\right\}$ denote the compact unit sphere with respect to the $I^{1}$ norm, and let $\mathcal{B}\left(S_{1}\right)$ denote the set of Borel measures over $S_{1}$. For $A \in \operatorname{Sym}\left(\mathbb{C}^{n}\right)^{+}\left(\mathbb{C}^{n}\right)$ consider the optimization problem:

$$
\begin{equation*}
\left(p^{*}, \mu^{*}\right)=\inf _{\mu \in \mathcal{B}\left(S_{1}\right): \int_{S_{1}} x x^{*} d \mu(x)=A \quad \mu\left(S_{1}\right)} \tag{M}
\end{equation*}
$$

## Theorem (Optimal Measure)

For any $A \in \operatorname{Sym}^{+}\left(\mathbb{C}^{n}\right)$ the optimization problem $(M)$ is convex and its global optimum (minimum) is achieved by

$$
p^{*}=\gamma_{+}(A), \quad \mu^{*}(x)=\sum_{k=1}^{m} \lambda_{k} \delta\left(x-g_{k}\right)
$$

where $A=\sum_{k=1}^{m}\left(\sqrt{\lambda_{k}} g_{k}\right)\left(\sqrt{\lambda_{k}} g_{k}\right)^{*}$ is an optimal decomposition that achieves $\gamma_{+}(A)=\sum_{k=1}^{m} \lambda_{k}$.

## Super-resolution and Convex Optimizations

$$
\begin{aligned}
\gamma_{+}(A) & =\min _{x_{1}, \ldots, x_{m}: A=\sum_{k} x_{k} x_{k}^{*}} \sum_{k=1}^{m}\left\|x_{k}\right\|_{1}^{2}, m=n^{2} \\
p^{*} & =\inf _{\mu \in \mathcal{B}\left(S_{1}\right):} \inf _{A=S_{S_{1}} x x^{*} d \mu(x)} \int_{S_{1}} d \mu(x) \quad(M)
\end{aligned}
$$

## Remarks

(1) The optimization problem $(P)$ is non-convex, but finite-dimensional. The optimization problem $(M)$ is convex, but infinite-dimensional.
(2) If $g_{1}, \ldots, g_{m} \in S_{1}$ in the support of $\mu^{*}$ are known so that $\mu^{*}=\sum_{k=1}^{m} \lambda_{k} \delta\left(x-g_{k}\right)$, then the optimal $\lambda_{1}, \ldots, \lambda_{m} \geq 0$ are determined by a linear program. More general, $(M)$ is an infinite-dimensional linear program.
(3) Finding the support of $\mu^{*}$ is an example of a super-resolution problem. One possible approach is to choose a redundant dictionary (frame) that includes the support of $\mu^{*}$, and then solve the induced linear program.

## Proof of the Optimal Measure Result

Recall: we want to show the following problems admit same solution:

$$
\begin{align*}
\gamma_{+}(A) & =\min _{x_{1}, \ldots, x_{m}} \min _{A=\sum_{k} x_{k} x_{k}^{*}} \sum_{k=1}^{m}\left\|x_{k}\right\|_{1}^{2}, m=n^{2}  \tag{P}\\
p^{*} & ={ }_{\mu \in \mathcal{B}\left(S_{1}\right)} \inf _{A=S_{S_{1}} \times x^{*} d \mu(x)} \int_{S_{1}} d \mu(x) \quad(M)
\end{align*}
$$

a. Assume $A=\sum_{k=1}^{m} x_{k} x_{k}^{*}$ is a global minimum for $(\mathrm{P})$. Then $\mu(x)=\sum_{k=1}^{m}\left\|x_{k}\right\|_{1}^{2} \delta\left(x-\frac{x_{k}}{\left\|x_{k}\right\|_{1}}\right)$ is a feasible solution for $(M)$. This shows $p^{*} \leq \gamma_{+}(A)$.
b. For reverse: Let $\mu^{*}$ be an optimal measure in (M). Fix $\varepsilon>0$. Construct a disjoint partition $\left(U_{l}\right)_{1 \leq I \leq L}$ of $S_{1}$ so that each $U_{l}$ is included in some ball $B_{\varepsilon}\left(z_{l}\right)$ of radius $\varepsilon$ with $\left\|z_{l}\right\|_{1}=1$. Thus $U_{l} \subset B_{\varepsilon}\left(z_{l}\right) \cap S_{1}$.
For each $I$, compute $x_{l}=\frac{1}{\mu^{*}\left(U_{l}\right)} \int_{U_{l}} x d \mu^{*}(x) \in B_{\varepsilon}\left(z_{l}\right)$. Let $g_{l}=\sqrt{\mu^{*}\left(U_{l}\right)} x_{l}$.

## Proof: The Optimal Measure Result (cont)

Key inequality:

$$
0 \leq R_{l}:=\int_{U_{l}}\left(x-x_{l}\right)\left(x-x_{l}\right)^{*} d \mu^{*}(x)=\int_{U_{l}} x x^{*} d \mu^{*}(x)-\mu^{*}\left(U_{l}\right) x_{l} x_{l}^{*}
$$

Sum over $I$ and with $R=\sum_{l=1}^{L} R_{l}$ get

$$
A=\sum_{l=1}^{L} \int_{U_{l}} x x^{*} d \mu^{*}(x) \leq \sum_{l=1}^{L} g_{l} g_{l}^{*}+R
$$

By sub-additivity and homogeneity:

$$
\gamma_{+}(A) \leq \sum_{l=1}^{L}\left\|g_{l}\right\|_{1}^{2}+\gamma_{+}(R) \leq \sum_{l=1}^{L} \mu^{*}\left(U_{l}\right)\left\|x_{l}\right\|_{1}^{2}+n \operatorname{trace}(R)
$$

But $\left\|x_{l}-z_{l}\right\|_{1} \leq \varepsilon$ and $\left\|x-x_{l}\right\|_{1} \leq 2 \varepsilon$ for every $x \in U_{l}$. Hence $\left\|x_{l}\right\|_{1} \leq 1+\varepsilon$ and $\operatorname{trace}\left(R_{l}\right) \leq 4 \mu^{*}\left(U_{l}\right) \varepsilon^{2}$. (In fact, $\left\|x_{l}\right\|_{1} \leq 1$ by triangle inequality)

## Proof: The Optimal Measure Result (end)

Thus:

$$
\gamma_{+}(A) \leq \mu^{*}\left(S_{1}\right)+\left(2 \varepsilon+\varepsilon^{2}+4 n \varepsilon^{2}\right) \mu^{*}\left(S_{1}\right)
$$

Since $\varepsilon>0$ is arbitrary, it follows

$$
\gamma_{+}(A) \leq \mu^{*}\left(S_{1}\right)=p^{*}
$$

This ends the proof of the measure result. $\square$

## Second New Result: The Continuity Property

## Theorem (The Continuity Property)

The map $\gamma_{+}:\left(\operatorname{Sym}^{+}\left(\mathbb{C}^{n}\right),\|\cdot\|\right) \rightarrow \mathbb{R}$ is continuous.

## Remarks

(1) This statement extends the continuity result from

$$
\operatorname{Sym}^{++}\left(\mathbb{C}^{n}\right)=\left\{A=A^{*}>0\right\} \text { to } \operatorname{Sym}^{+}\left(\mathbb{C}^{n}\right)=\left\{A=A^{*} \geq 0\right\} .
$$

(2) Proof is based on a (new?) comparison result between non-negative operators.
(0) Global Lipschitz is still open.

## The Continuity Property

The proof is based on the following two lemmas:

## Lemma (L1)

Let $A \in \operatorname{Sym}^{+}\left(\mathbb{C}^{n}\right)$ of rank $r>0$. Let $\lambda_{r}>0$ denote the $r^{\text {th }}$ eigenvalue of $A$, and let $P_{A, r}$ denote the orthogonal projection onto the range of $A$. For any $0<\varepsilon<1$ and $B \in \operatorname{Sym}^{+}\left(\mathbb{C}^{n}\right)$ such that $\|A-B\|_{O_{p}} \leq \frac{\varepsilon \lambda_{r}}{1-\varepsilon}$, the following holds true:

$$
\begin{equation*}
A-(1-\varepsilon) P_{A, r} B P_{A, r} \geq 0 \tag{1}
\end{equation*}
$$

## Lemma (L2)

Let $A \in \operatorname{Sym}^{+}\left(\mathbb{C}^{n}\right)$ of rank $r>0$. Let $\lambda_{r}>0$ denote the $r^{\text {th }}$ eigenvalue of $A$. For any $0<\varepsilon<\frac{1}{2}$ and $B \in \operatorname{Sym}^{+}\left(\mathbb{C}^{n}\right)$ such that $\|A-B\|_{O_{p}} \leq \varepsilon \lambda_{r}$, the following holds true:

$$
\begin{equation*}
B-(1-\varepsilon) P_{B, r} A P_{B, r} \geq 0 \tag{2}
\end{equation*}
$$

where $P_{B, r}$ denotes the orthogonal projection onto the top $r$ eigenspace of $B$.

## Proof of Continuity of $\gamma_{+}$

Fix $A \in \operatorname{Sym}^{+}\left(\mathbb{C}^{n}\right)$. Let $\left(B_{j}\right)_{j \geq 1}, B_{j} \in \operatorname{Sym}^{+}\left(\mathbb{C}^{n}\right)$, be a convergent sequence to $A$. We need to show $\gamma_{+}\left(B_{j}\right) \rightarrow \gamma_{+}(A)$.
Let $A=\sum_{k=1}^{n^{2}} x_{k} x_{k}^{*}$ be the optimal decomposition of $A$ such that
$\gamma_{+}(A)=\sum_{k=1}^{n^{2}}\left\|x_{k}\right\|_{1}^{2}$.
If $A=0$ then $\gamma_{+}(A)=0$ and

$$
0 \leq \gamma_{+}\left(B_{j}\right) \leq n \operatorname{trace}\left(B_{j}\right) \leq n^{2}\left\|B_{j}\right\|_{O_{p}} .
$$

Hence $\lim _{j} \gamma_{+}\left(B_{j}\right)=0$.
Assume $\operatorname{rank}(A)=r>0$ and let $\lambda_{r}>0$ denote the smallest strictly positive eigenvalue of $A$. Let $\varepsilon \in\left(0, \frac{1}{2}\right)$ be arbitrary. Let $J=J(\varepsilon)$ be so that $\left\|A-B_{j}\right\|_{O_{p}}<\varepsilon \lambda_{r}$ for all $j>J$. Let $B_{j}=\sum_{k=1}^{n^{2}} y_{j, k} y_{j, k}^{*}$ be the optimal decomposition of $B_{j}$ such that $\gamma_{+}\left(B_{j}\right)=\sum_{k=1}^{n^{2}}\left\|y_{j, k}\right\|_{1}^{2}$.
Let $\Delta_{j}=A-(1-\varepsilon) P_{A, r} B_{j} P_{A, r}$. By Lemma L1, for any $j>J$,

$$
\gamma_{+}(A) \leq(1-\varepsilon) \gamma_{+}\left(P_{A, r} B_{j} P_{A, r}\right)+\gamma_{+}\left(\Delta_{j}\right) \leq(1-\varepsilon) \sum_{k=1}^{n^{2}}\left\|P_{A, r} y_{j, k}\right\|_{1}^{2}+n \operatorname{trace}\left(\Delta_{j}\right)
$$

## Proof of Continuity of $\gamma_{+}$(cont)

Pass to a subsequence $j^{\prime}$ of $j$ so that $y_{j^{\prime}, k} \rightarrow y_{k}$, for every $k \in\left[n^{2}\right]$, and $\gamma_{+}\left(B_{j^{\prime}}\right) \rightarrow \lim \inf _{j} \gamma_{+}\left(B_{j}\right)$. Then $\lim _{j^{\prime}} P_{A, r} y_{j^{\prime}, k}=P_{A, r} y_{k}=y_{k}$ and

$$
\lim _{j^{\prime}} \sum_{k=1}^{n^{2}}\left\|P_{A, r} y_{j^{\prime}, k}\right\|_{1}^{2}=\lim _{j^{\prime}} \sum_{k=1}^{n^{2}}\left\|y_{j^{\prime}, k}\right\|_{1}^{2}=\lim _{j} \inf \gamma_{+}\left(B_{j}\right)
$$

On the other hand, $\lim _{j} \operatorname{trace}\left(\Delta_{j}\right)=\varepsilon \operatorname{trace}(A)$. Hence:

$$
\gamma_{+}(A) \leq(1-\varepsilon) \liminf _{j} \gamma_{+}\left(B_{j}\right)+\varepsilon \operatorname{trace}(A)
$$

Since $\varepsilon>0$ is arbitrary, it follows $\gamma_{+}(A) \leq \liminf _{j} \gamma_{+}\left(B_{j}\right)$.
The inequality lim $\sup _{j} \gamma_{+}\left(B_{j}\right) \leq \gamma_{+}(A)$ follows from Lemma L 2 similarly: with $\Delta_{j}=B_{j}-(1-\varepsilon) P_{B_{j}, r} A P_{B_{j}, r}$ and $A=\sum_{k=1}^{n^{2}} x_{k} x_{k}^{*}$ optimal,
$\gamma_{+}\left(B_{j}\right) \leq(1-\varepsilon) \gamma_{+}\left(P_{B_{j}, r} A P_{B_{j}, r}\right)+n \operatorname{trace}\left(\Delta_{j}\right)=(1-\varepsilon) \sum_{k=1}^{n^{2}}\left\|P_{B_{j}, r} x_{k}\right\|_{1}^{2}+n \operatorname{trace}\left(\Delta_{j}\right)$.
Next take limsup of Ihs by noticing $P_{B_{j}, r} \rightarrow P_{A, r}$ and $\lim \sup _{j}\left\|\Delta_{j}\right\|_{O_{p}}=\varepsilon\|A\|_{O_{p}}$ : $\lim \sup _{j} \gamma_{+}\left(B_{j}\right) \leq(1-\varepsilon) \gamma_{+}(A)+n^{2} \varepsilon\|A\|_{O_{p}}$. Take $\varepsilon-\geq 0$ and result follows.

## Proof of Lemmas

## Proof of Lemma L1

Let $P=P_{A, r}$. and $\Delta=A-(1-\varepsilon) P_{A, r} B P_{A, r}$. For any $x \in \mathbb{C}^{n}$ :

$$
\begin{gathered}
\langle\Delta x, x\rangle=\left\langle A P_{x}, P_{x}\right\rangle-(1-\varepsilon)\left\langle B P_{x}, P_{x}\right\rangle=\left\langle(A-(1-\varepsilon) B) P_{x}, P_{x}\right\rangle= \\
=\varepsilon\left\langle A P_{x}, P_{x}\right\rangle+(1-\varepsilon)\left\langle(A-B) P_{x}, P_{x}\right\rangle \geq \varepsilon \lambda_{r}\left\|P_{x}\right\|^{2}-(1-\varepsilon)\|A-B\|_{O_{p}}\left\|P_{x}\right\|^{2} \geq 0
\end{gathered}
$$

$$
\text { because }\|A-B\|_{O_{p}} \leq \frac{\varepsilon \lambda_{r}}{1-\varepsilon} \text {. }
$$

## Proof of Lemma L2

Let $P=P_{B, r}$ and $\Delta=B-(1-\varepsilon) P_{B, r} A P_{B, r}$. Let $C=B-P_{B, r} B P_{B, r} \geq 0$. Let $\mu_{r}$ be the $r^{\text {th }}$ eigenvalue of $B$. Note $\left|\mu_{r}-\lambda_{r}\right| \leq\|A-B\|_{O_{p}} \leq \varepsilon \lambda_{r}$. Thus $\mu_{r} \geq(1-\varepsilon) \lambda_{r}$. For any $x \in \mathbb{C}^{n}$ :

$$
\begin{aligned}
& \langle\Delta x, x\rangle=\langle C x, x\rangle+\langle B P x, P x\rangle-(1-\varepsilon)\langle A P x, P x\rangle=\langle C x, x\rangle+\varepsilon\langle B P x, P x\rangle+ \\
& +(1-\varepsilon)\langle(B-A) P x, P x\rangle \geq\left\langle C_{x}, x\right\rangle+\left(\varepsilon \mu_{r}-(1-\varepsilon)\|A-B\|_{O_{P}}\right)\|P x\|^{2} \geq 0
\end{aligned}
$$

because $\|A-B\|_{O_{p}} \leq \varepsilon \lambda_{r} \leq \frac{\varepsilon \mu_{r}}{1-\varepsilon}$.

## Third new result: Strong duality for $\gamma_{+}$

## Theorem

For every $A \geq 0$,

$$
\begin{array}{cc}
\max _{T=T^{*}}^{\langle } \quad & \operatorname{trace}(T A)=
\end{array} \min _{\mu \in \mathcal{B}\left(S_{1}\right)} \begin{gathered}
\\
\langle T x, x\rangle \leq 1, \forall\|x\|_{1} \leq 1
\end{gathered}
$$

## Proof [Fushuai "Black" Jiang]

The second equality was established earlier as a "super-resolution" result.
For the first equality:

1. Let $A=\sum_{k=1}^{m} x_{k} x_{k}^{*}$ be its optimal decomposition such that
$\gamma_{+}(A)=\sum_{k=1}^{m}\left\|x_{k}\right\|_{1}^{2}$, and let $T=T^{*}$ be a generic matrix so that $\langle T y, y\rangle \leq 1$ for all $\|y\|_{1} \leq 1$. Denote $y_{k}=\frac{x_{k}}{\left\|x_{k}\right\|_{1}}$. Then

$$
\operatorname{trace}(T A)=\sum_{k=1}^{m}\left\langle T x_{k}, x_{k}\right\rangle=\sum_{k=1}^{m}\left\|x_{k}\right\|_{1}^{2}\left\langle T y_{k}, y_{k}\right\rangle \leq \sum_{k=1}^{m}\left\|y_{k}\right\|_{1}^{2}=\gamma_{+}(A)
$$

## Proof of strong duality for $\gamma_{+}$(2)

2. For the reverse inequality, let $H \subset \operatorname{Sym}^{+}\left(\mathbb{C}^{n}\right) \times \mathbb{R}$ denote the set

$$
H=\left\{\left(\int_{S_{1}} z z^{*} d \mu(z), r+\int_{S_{1}} d \mu\right), \quad \mu \in \mathcal{B}\left(S_{1}\right), r \geq 0\right\}
$$

Claim 1: $H$ is closed.
Use Banach-Alaoglou theorem that the set of unit Borel measures is weak-* compact.
Claim 2: $H$ is convex. - immediate
Let $q=\max _{T=T^{*}} \operatorname{trace}(T A)$ subject to $\langle T x, x\rangle \leq 1$ for all $\|x\|_{1} \leq 1$.
Claim 3: $(A, q) \in H$, which establishes the theorem.
Assume the contrary: $(A, q) \notin H$. Then it is separated by a hyperplane from $H$ :
$\operatorname{trace}\left(R \int_{S_{1}} x x^{*} d \mu(z)\right)+a\left(r+\int_{S_{1}} d \mu\right) \geq c_{0}>\operatorname{trace}(A R)+a q, \forall \mu \in \mathcal{B}\left(S_{1}\right), r \geq 0$
Deduce: $a \geq 0, c_{0} \leq 0$. If $a=0$ then contradiction for $\mu=\mu^{*}$. Rescale by dividing through $a$. Denote $T_{0}=-R / a$.

## Proof of strong duality for $\gamma_{+}$(3)

We obtained:

$$
\int_{S_{1}}\left(1-\left\langle T_{0} x, x\right\rangle\right) d \mu \geq c_{0}>q-\operatorname{trace}\left(A T_{0}\right)
$$

for every Borel measure $\mu \in \mathcal{B}\left(S_{1}\right)$. This means $\left\langle T_{0} x, x\right\rangle \leq 1$ for all $\|x\|=1$. This also implies $\left\langle T_{0} x, x\right\rangle \leq 1$ for all $\|x\|_{1} \leq 1$. On the other hand $q<\operatorname{trace}\left(A T_{0}\right)+c_{0} \leq \operatorname{trace}\left(A T_{0}\right)$ which contradicts the optimality of $q$. Q.E.D.

