G-Invariant Representations and their Lipschitz **Properties**

Radu Balan

Department of Mathematics and Norbert Wiener Center for Harmonic Analysis and Applications University of Maryland, College Park, MD

Joint work with: Efstratios Tsoukanis. Matthias Wellershoff

June 14, 2024 More on Harmonic Analysis, Strobl, Austria, June 9-15 2024

Injectivity

Introduction

Intro

- G-Invariant Coorbit Representations
- Injectivity
- Stability

Table of Contents

Introduction

Intro

00000

- Injectivity
- 4 Stability

Intro

000000

Certain phenomena and systems enjoy invariance to group actions.

In physics: the celebrated Noether theorem asserts that a conservation law exists for any symmetry (i.e., group invariance) of the Hamiltonian.

Intro

000000

Problem Formulation

Consider a group $G \subset O(d)$ acting on the Euclidean space $V = \mathbb{R}^d$.

General problem

Construct an embedding map $\Phi: V \to \mathbb{R}^m$

- **1** Invariance: $\Phi(U_g x) = \phi(x) \ \forall g \in G, x \in V$
- ② Injectivity: if $\Phi(x) = \Phi(y)$ then there exists $g \in G$ so that $y = U_g x$.
- Φ is bi-Lipschitz on $(\hat{V} = V/G, \mathbf{d})$, where $\mathbf{d}([x], [y]) = \inf_{u \in [x], v \in [y]} ||u v||$.

Approaches

Over the past years, several constructions have been proposed:

- 1 Invariant Polynomials: Hilbert, Noether, ..., Cahill¹, Bandeira²
- ② Kernels: replace monomials by other kernels, e.g. $e^{i\omega x}$. e^{-x^2} . $\sigma(\langle x, a \rangle)^3$
- Sorting: extends the 1-D sorting, $x \mapsto \downarrow x^{4,5}$
- 1+2: sum pooling layer; 3: extension of max pooling layer in deep nets⁶, ⁷.
- ¹ J. Cahill, A. Contreras, A.C. Hip, Complete Set of translation Invariant Measurements with Lipschitz Bounds, Appl. Comput. Harm. Anal. 49 (2020), 521-539.
- ²A. Bandeira, B. Blum-Smith, J. Kileel, J. Niles-Weed, A. Perry, A.S. Wein,
- Estimation under group actions: Recovering orbits from invariants, ACHA 66 (2023)
- ³D. Yarotsky, Universal approximations of invariant maps by neural networks, Constructive Approximation (2021)
- ⁴R. Balan, N. Haghani, M.Singh, Permutation Invariant Representations with Applications to Graph Deep Learning, arXiv:2203.07546
- ⁵J. Cahill, J.W. Iverson, D.G. Mixon, D. Packer, Group-invariant max filtering, arXiv:2205.14039.
 - ⁶O. Vinyals, S. Bengio, M. Kudlur, Order Matters: Sequence to sequence for sets,

Existing Results

Intro

000000

Injectivity problem

Over the past 15 years or so, there have been works that recognized the difference between generating polynomials and separating invariants⁸ A seminal paper that resurfaces results on semi-algebraic sets is ⁹. The method goes back to earlier works in phase retrieval¹⁰.

More recently, in the context of G-invariance, ¹¹, ¹², or permutation invariance¹³

⁸Emilie Dufresne, Separating invariants and

finite reflection groups, Advances in Mathematics 221 (2009), no. 6, 1979-1989.

⁹Dym Nadav, Steven J. Gortler. "Low dimensional invariant embeddings for universal geometric learning." arXiv preprint arXiv:2205.02956.

¹⁰R. Balan, P. Casazza, D. Edidin, On signal reconstruction without phase, ACHA 20(2006)

¹¹D. G. Mixon, D. Packer, Max filtering with reflection groups, arXiv:2212.05104

¹²R. Balan, E. Tsoukanis, G-invariant representations using coorbits: Injectivity properties, arXiv:2310.16365

¹³On the equivalence between graph isomorphism testing and function approximation with GNNs 7 Chen S Villar I Chen I Bruna NeurIPS 2019 Radu Balan (UMD) G-Invariant Representations

Existing Results (2)

Lipschitz and Bi-Lipschitz properties

Earlier results obtain Lipschitz/bi-Lipschitz properties on compacts, or certain classes of functions.

Global L/bi-L are harder to establish and typically rule out polynomial based embeddings.

So far only sorting based embeddings showed such global properties ¹⁴. ¹⁵. 16

¹⁴R. Balan, E. Tsoukanis, G-invariant representations using coorbits: Bi-lipschitz properties, arXiv:2308.11784

¹⁵J. Cahill, J. W. Iverson, D. G. Mixon, Bilipschitz group invariants, arXiv:2305.17241

¹⁶D. G. Mixon, Y. Qaddura, Injectivity, stability, and positive definiteness of max filtering, arXiv:2212.11156

Table of Contents

Introduction

Intro

- 2 G-Invariant Coorbit Representations
- Injectivity
- 4 Stability

Coorbit Representations

Let V be a d-dimensional Hilbert space and G a finite group of size N = |G| acting unitarily on V, $\{U_g, g \in G\}$.

The quotient space $\hat{V} = V/G$ is the set of orbits $[x] = \{U_g x, g \in G\}$ induced by the group action, where for $x, y \in V$, $x \sim y$ iff $y = U_g x$ for some $g \in G$. (\hat{V}, \mathbf{d}) becomes a metric space with the natural distance

$$\mathbf{d}([x],[y]) = \min_{g \in G} \|x - U_g y\|$$

Fix a generator $w \in V$ (call it, window or template) and consider the nonlinear map induced by sorting its coorbit:

$$\phi_{\mathsf{w}}: \mathsf{V} \to \mathbb{R}^{\mathsf{N}} \ , \ \phi_{\mathsf{w}}(\mathsf{x}) = \downarrow ((\langle \mathsf{x}, \mathsf{U}_{\mathsf{g}} \mathsf{w} \rangle)_{\mathsf{g} \in \mathsf{G}}).$$

where $\downarrow (y) = (y_{\pi(i)})_{i \in [N]}$ is the non-increasing sorting operator: $y_{\pi(1)} \geq \cdots \geq y_{\pi(N)}$

Invariant Coorbit Representations

For a collection $\mathbf{w} = (w_1, \dots, w_p) \in V^p$ let

$$\Phi_{\mathbf{w}}: V \to \mathbb{R}^{N \times p}$$
, $\Phi_{\mathbf{w}}(x) = [\phi_{w_1}(x)| \cdots |\phi_{w_p}(x)]$.

For a subset $S \subset [N] \times [p]$ of cardinal m = |S|, let

$$\Phi_{\mathbf{w},S}: V \to I^2(S) \sim \mathbb{R}^m \ , \ \Phi_{\mathbf{w},S}(x) = (\Phi_{\mathbf{w}}(x))|_S$$

be the restriction of $\Phi_{\mathbf{w}}$ to S. For a linear operator $\mathcal{L}: \mathit{l}^{2}(S) \to \mathbb{R}^{m}$, let

$$\Psi_{\mathbf{w},S,\mathcal{L}}:V \to \mathbb{R}^m$$
 , $\Psi_{\mathbf{w},\mathcal{L}}(x) = \mathcal{L}(\Phi_{\mathbf{w},S}(x))$

be the "projection" of $\Phi_{\mathbf{w},S}$ through $\mathcal L$ into $\mathbb R^m$.

Problems: Construct (\mathbf{w}, S) so that $\Phi_{\mathbf{w}, S}$ is a bi-Lipschitz embedding of \widehat{V} . Construct $(\mathbf{w}, S, \mathcal{L})$ so that $\Psi_{\mathbf{w}, S, \mathcal{L}}$ is bi-Lipschitz.

Invariant Coorbit Representations (2)

Special cases:

1. If $G = S_n$ and $V = \mathbb{R}^{n \times d}$ with action $(P, X) \mapsto PX$, then ¹⁷ introduced the embedding $\beta_A(X) = \downarrow (XA)$, for $key \ A \in \mathbb{R}^{d \times D}$ and sorting operator acting independently in each column.

Equivalent recasting: Let $w_1 = \delta_1 \cdot a_1^T, ..., \ w_D = \delta_1 \cdot a_D^T$, where $\delta_1 = (1,0,\ldots,0)^T$ and $A = [a_1|\cdots|a_D]$. Then note $\phi_{w_1}(X) = \downarrow (Xa_1) \otimes 1_{(n-1)!}$. Thus $\Phi_{\mathbf{w}}(X) = \beta_A(X) \otimes 1_{(n-1)!}$. Thus $\beta_A(X) = \Phi_{\mathbf{w},S}(X)$ for an appropriate subset $S \subset [n!] \times [D]$ of size nD. 2. The max filter introduced in 1^8 for some template $w \in V$ is defined by $\langle \langle \cdot, w \rangle \rangle : V \to \mathbb{R}, \ \langle \langle x, w \rangle \rangle = \max_{g \in G} \langle x, U_g w \rangle$. Equivalent recasting: $\langle \langle x, w \rangle \rangle = \Phi_{w,S}(X)$, for $S = \{1\}$.

¹⁷R. Balan, N. Haghani, M.Singh, Permutation Invariant Representations with Applications to Graph Deep Learning, arXiv:2203.07546 (2022)

¹⁸ J. Cahill, J. W. Iverson, D. G. Mixon, D. Packer, Group-invariant max filtering, arXiv:2205.14039 (2022)

•00

Table of Contents

- Injectivity

Minimal embeddings

Intro

Setup: Let V be a d-dimensional Hilbert space and G a finite group of size N = |G| acting unitarily on V, $\{U_g, g \in G\}$. For a subset $S \subset [N] \times [p]$ of cardinal m = |S|, let

$$\Phi_{\mathbf{w},S}: V \to l^2(S) \sim \mathbb{R}^m , \ \Phi_{\mathbf{w},S}(x) = (\Phi_{\mathbf{w}}(x))|_S$$

be the restriction of $\Phi_{\mathbf{w}}$ to S.

A typical injectivity result asserts that for $p \ge p_{min}$ and a generic $\mathbf{w} \in V^p$, for any S of cardinal $m \ge m_{min}$ that satisfy certain shape conditions, the map $\Phi_{\mathbf{w},S}$ is injective on \hat{V} . (p_{min}, m_{min}) depend on specific rep. \mathbb{R}

Current injectivity results

Intro

Setup: dim(V) = d, G finite group of size N. Denote by $d_G = \dim\{x \in V : U_g x = x \ \forall g \in G\}$.

Theorem (R.B, E.Tsoukanis '23)

Let $p \ge 2d - d_G$. Then for a generic $\mathbf{w} \in V^p$ the following holds: for every $S \subset [N] \times [p]$ that satisfies the property that for every $i \in [p]$ there is a $k \in [N]$ so that $(k, i) \in S$, the map $\Phi_{\mathbf{w}, S}$ is injective on \hat{V} .

Theorem (R.B, E.Tsoukanis '23)

If $S \subset [N] \times [p]$ satisfies a stronger intersection property, namely, for each $i \in [p]$ there are distinct $k_1, \ldots, k_n \in [N]$ so that $(k_1, i), \ldots, (k_n, i) \in S$, then the lower bound $2d - d_G$ can be replaced by

$$p_{n,min} = \max_{q \in [n], g, h \in G^n} \frac{1}{q} (\gamma_q^{g,h} - d_G - 1)$$
 where

$$\gamma_q^{g,h} = \textit{semialg-dim}\{(x,y) \in V \times V : \textit{dim}(\textit{span}\{\ U_{g(1)}x - U_{h(1)}y, \dots, U_{g(n)}x - U_{h(n)}y\}) \leq q\}$$

Table of Contents

Introduction

Intro

- 2 G-Invariant Coorbit Representations
- Injectivity
- 4 Stability

Injectivity implies (bi-Lipschitz) Stability

Theorem

Intro

For fixed $\mathbf{w} \in V^p$ and $S \subset [N] \times [p]$, where |S| = m, suppose that the map $\Phi_{w,S}: V \to \mathbb{R}^m$, is injective on V/G. Then, $\exists 0 < a \leq b < \infty$ such that $\forall (x, y) \in V, x \nsim y$

$$a d([x], [y]) \le \|\Phi_{\mathbf{w}, S}(x) - \Phi_{\mathbf{w}, S}(y)\|_2 \le b d([x], [y]).$$

Injectivity implies (bi-Lipschitz) Stability

Theorem

For fixed $\mathbf{w} \in V^p$ and $S \subset [N] \times [p]$, where |S| = m, suppose that the map $\Phi_{\mathbf{w},S}: V \to \mathbb{R}^m$, is injective on V/G. Then, $\exists 0 < a \leq b < \infty$ such that $\forall (x, y) \in V, x \nsim y$

$$ad([x],[y]) \le \|\Phi_{\mathbf{w},S}(x) - \Phi_{\mathbf{w},S}(y)\|_2 \le bd([x],[y]).$$

Corollary

For max filter bank $\Phi: \mathbb{R}^d/G \to \mathbb{R}^m$, injectivity implies stability.

Upper Lipschitz bound

Lemma

Let $\mathbf{w} \in V^p$, $S \subset [N] \times [p]$ and

$$B = \max_{\substack{\sigma_1, \dots, \sigma_p \subset G \\ |\sigma_i| = m_i, \forall i}} \lambda_{max} \left(\sum_{i=1}^p \sum_{g \in \sigma_i} g.w_i w_i^T U_g^T \right)$$

where $S_i = \{j \in [N], (i,j) \in S\}$ and $m_i = |S_i|$. Then $\Phi_{\mathbf{w},S} : \hat{V} \to \mathbb{R}^m$ is Lipschitz with constant upper bounded by \sqrt{B} .

Lower Lipschitz bound

The proof of the main Theorem is by contradiction.

1. If lower Lipschitz constant vanishes, then it must vanish locally: there are $(x_n)_n, (y_n)_n$ such that

$$\lim_{n \to \infty} \frac{\|\Phi_{\mathbf{w},S}(x_n) - \Phi_{\mathbf{w},S}(y_n)\|^2}{\mathbf{d}([x_n], [y_n])^2} = 0$$

and

Intro

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = z_1, \ \|x_n\| = 1, \ \|y_n\| \le 1, \ \|z_1\| = 1$$

and they are aligned with one another:

$$||x_n - y_n|| = \min_{g \in G} ||x_n - U_g y_n||$$
 (1)

$$||x_n - z_1|| = \min_{g \in G} ||x_n - U_g z_1||$$
 (2)

$$||y_n - z_1|| = \min_{g \in G} ||y_n - U_g z_1||$$
 (3)

Lower Lipschitz bound

Intro

2. We construct inductively $z_2, z_3, ..., z_d$ such that for all $1 \le k \le d-1$:

$$||z_{k+1}|| \ll ||z_k||, \ \dim(\text{span}(z_1, \dots, z_k)) = k$$

and the local lower Lipschitz constant vanishes in a convex set $\{\sum_{r=1}^{k} a_r z_r, |a_r - 1| < \epsilon\}.$

- 3. For k = d this construction defines a non-empty open set $\{\sum_{r=1}^k a_r z_r \;,\; |a_r-1|<\epsilon\}$ where the local lower Lipschitz constant vanishes.
- 4. Finally, we can construct $u, v \neq 0$, so that $x = u + \sum_{r=1}^{d} z_r$ and $v = v + \sum_{r=1}^{d} z_r$ satisfy $x \neq y$ and yet

$$\Phi_{\mathbf{w},S}(x) = \Phi_{\mathbf{w},S}(y).$$

This contradicts the injectivity hypothesis.

Happy Birthday Charly!

Thank you!