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High-Level View
In this talk, we discuss Euclidean embeddings of metric spaces induced by
orthogonal representations of finite groups G acting on a linear space V
with inner product.
Problem: Construct bi-Lipschitz embeddings of the metric space
V̂ = V / ∼ of orbits, α : V̂ → Rm, where d([x ], [y ]) = infu∈[x ],v∈[y ] ‖u − v‖

a0d([x ], [y ]) ≤ ‖α([x ])− α([y ])‖2 ≤ b0d([x ], [y ]).
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The Program

Given a discrete group G acting unitarly on a normed real space V , we
formulate four general problems

1 Construct injective embeddings of the quotient space V /G ,
α : V̂ → Rm. The injectivity problem.

2 Construct/Obtain bi-Lipschitz properties for the Euclidean embedding
α : V̂ → Rm. The stability problem.

3 Develop algorithms for inversion α−1 : Rm → V̂ . The recovery
problem.

4 Analyze specific cases. Applications.

Radu Balan (UMD) G-Invariant Embeddings 4/10/2025



Problem Formulation Motivation Approach Analysis Results Numerics Extra

The Program

Given a discrete group G acting unitarly on a normed real space V , we
formulate four general problems

1 Construct injective embeddings of the quotient space V /G ,
α : V̂ → Rm. The injectivity problem.

2 Construct/Obtain bi-Lipschitz properties for the Euclidean embedding
α : V̂ → Rm. The stability problem.

3 Develop algorithms for inversion α−1 : Rm → V̂ . The recovery
problem.

4 Analyze specific cases. Applications.

Today we discuss results about the first two problems: injectivity,

bi-Lipschitz stability.
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I. Graph Learning Problems

Given a data graph (e.g., social network, transportation network, citation
network, chemical network, protein network, biological networks):

Graph adjacency or weight matrix, A ∈ Rn×n;
Data matrix, X ∈ Rn×r , where each row corresponds to a feature
vector per node.

Contruct a map f : (A,X )→ f (A,X ) that performs:
1 classification: f (A,X ) ∈ {1, 2, · · · , c}
2 regression/prediction: f (A,X ) ∈ R.

Key observation: The outcome should be invariant to vertex permutation:
f (PAPT ,PX ) = f (A,X ), for every P ∈ Sn.

Radu Balan (UMD) G-Invariant Embeddings 4/10/2025
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Graph Deep Learning with GCN/GNN
Our approach for these learning tasks (classification or regression) is based
on the following scheme (see GCN1 and equivariance2):

where α is a permutation invariant map (embedding), and SVM/NN is a
single-layer or a deep neural network (Support Vector Machine or a Fully
Connected Neural Network) trained on invariant representations.
Our focus is on the α component.

1Kipf, T. N. and Welling, M., Semi-Supervised Classification with Graph
Convolutional Networks, arXiv e-prints , arXiv:1609.02907 (Sep 2016).

2H. Maron, E. Fetaya, N. Segol, Y. Lipman, On the Universality of Invariant
Networks, arXiv:1901.09342 [cs.LG] (May 2019).
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II. Assignment Problems
The Graph Isomorphism Problem

Consider two graphs G = (V, E) and G̃ = (Ṽ, Ẽ) with n nodes. The graph
isomorphism problem is the computational problem of determining
whether these graphs are identical after a relabeling of nodes.

If A and Ã denote their adjacency matrices, these graphs are isomorphic if
and only if Ã = ΠAΠT for some permutation matrix Π ∈ Sn.

Current state-of-the-art (Wikipedia): Babai (2015,2017) presented a
quasi-polynomial algorithm with running time 2O((log n)c ), for some fixed
c > 0. Helfgott (2017) claims that one can take c = 3.

Similar problem can be stated for weighted graphs: A, Ã ∈ Sym(n) with
nonnegative entries, isomorphic if and only if Ã = ΠAΠT for some Π ∈ Sn.

Radu Balan (UMD) G-Invariant Embeddings 4/10/2025
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Graph Alignment Problems

Consider two n × n symmetric matrices A,B. The “vanilla” alignment
problem for quadratic forms asks for the orthogonal matrix U ∈ O(n) that
minimizes

‖UAUT −B‖2
F := trace((UAUT −B)2) = ‖A‖2

F +‖B‖2
F −2trace(UAUT B).

The solution is well-known and depends on the eigendecomposition of
matrices A,B: if A = U1D1UT

1 , B = U2D2UT
2 then

Uopt = U2UT
1 , ‖UoptAUT

opt − B‖2
F =

n∑
k=1
|λk − µk |2,

where D1 = diag(λk) and D2 = diag(µk) are diagonal matrices with
eigenvalues ordered monotonically.
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Quadratic Assignment Problem (QAP)
The challenging case is when U is constrained to the permutation group as
is the case in the graph matching problem. In this case, the optimization
problem becomes

min
U∈Sn

‖UAUT − B‖F

which turns into a QAP: maxU∈Sn trace(UAUT B).
This is equivalent to computing the natural distance
d(Â, B̂) = minP,Q∈Sn ‖PAPT − QBQT‖F between the equivalence classes
Â, B̂ ∈ Ŝym(n) induced by action (Π,A) 7→ ΠAΠT .
How is this connected to the embedding problem? If one can design an
efficient nearly isometric map Φ : Sym(n)→ Rm so that
(1) Φ(PAPT ) = Φ(A) for all P ∈ Sn and A ∈ Sym(n), and

(2) (1−δ) min
P∈Sn

‖PAPT−B‖ ≤ ‖Φ(A)−Φ(B)‖ ≤ (1+δ) min
P∈Sn

‖PAPT−B‖,

then the QAP solved efficiently up to a multiplicative factor.
Radu Balan (UMD) G-Invariant Embeddings 4/10/2025
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Problem Setup
Consider a group G ⊂ O(d) acting on the Euclidean space V = Rd .

General problem
Construct an embedding map Φ : V → Rm

1 Invariance: Φ(Ug x) = φ(x) ∀g ∈ G , x ∈ V
2 Injectivity: if Φ(x) = Φ(y) then there exists g ∈ G so that y = Ug x .
3 Φ is bi-Lipschitz on (V̂ = V /G ,d):

a0 inf
u∈[x ],v∈[y ]

‖u − v‖ ≤ ‖Φ(x)− Φ(y)‖ ≤ b0 inf
u∈[x ],v∈[y ]

‖u − v‖.

Radu Balan (UMD) G-Invariant Embeddings 4/10/2025



Problem Formulation Motivation Approach Analysis Results Numerics Extra

Approaches
Over the past many years, several constructions have been proposed:

1 Invariant Polynomials: Hilbert, Noether, ..., Cahill3, Bandeira4

2 Kernels: replace monomials by other kernels, e.g. eiωx , e−x2 ,
σ(〈x , a〉)5

3 Sorting: extends the 1-D sorting, x 7→↓ x 6,7
1+2: sum pooling layer; 3: extension of max pooling layer in deep nets8, 9.

3J. Cahill, A. Contreras, A.C. Hip, Complete Set of translation Invariant
Measurements with Lipschitz Bounds, Appl. Comput. Harm. Anal. 49 (2020), 521–539.

4A. Bandeira, B. Blum-Smith, J. Kileel, J. Niles-Weed, A. Perry, A.S. Wein,
Estimation under group actions: Recovering orbits from invariants, ACHA 66 (2023)

5D. Yarotsky, Universal approximations of invariant maps by neural networks,
Constructive Approximation (2021)

6R. Balan, N. Haghani, M.Singh, Permutation Invariant Representations with
Applications to Graph Deep Learning, arXiv:2203.07546

7J. Cahill, J.W. Iverson, D.G. Mixon, D. Packer, Group-invariant max filtering,
arXiv:2205.14039.

8O. Vinyals, S. Bengio, M. Kudlur, Order Matters: Sequence to sequence for sets,
Proc. ICLR 2016.

9H. Maron, H. Ben-Hamu, N. Shamir, Y. Lipman, Invariant and equivariant graph
networks, Proc. ICLR 2019,
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Sorting based Representations and G-invariance

Assume V is a real d-dimensional Hilbert space and G a finite orthogonal
group of size N = |G |, acting on V , {Ug , g ∈ G}.
Fix a generator w ∈ V (call it, window, or template, or wavelet) and
consider the nonlinear map induced by sorting its coorbit:

φw : V → RN , φw (x) =↓ ((〈x ,Ug w〉)g∈G) .

where ↓ (y) = (yπ(i))i∈[N] is the non-increasing sorting operator:
yπ(1) ≥ · · · ≥ yπ(N).
Key observations:

1 φw (Ug x) = φw (x), φ is G-invariant.
2 φw is piecewise linear (in fact, φw (x) = φx (w), and (w , x) 7→ φw (x)

is piecewise bilinear).

Radu Balan (UMD) G-Invariant Embeddings 4/10/2025
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G-Invariant Coorbit Representations
For a collection w = (w1, · · · ,wp) ∈ V p the sorted coorbit representation:

Φw : V → RN×p , Φw(x) =
[
φw1 (x)| · · · |φwp (x)

]
.

Pass through a linear operator L : RN×p → Rm, the G-invariant coorbit
representation:

Ψw,L : V → Rm , Ψw,L(x) = L(Φw(x))

In particular, if S ⊂ [N]× [p], Φw,S := Ψw,1S = Φw|S .
Radu Balan (UMD) G-Invariant Embeddings 4/10/2025
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G-Invariant Coorbit Representations

Special cases:
1. For G = Sn and V = Rn×d with action (P,X ) 7→ PX 10 introduced the
embedding βA(X ) =↓ (XA), for key A ∈ Rd×D and sorting operator acting
independently in each column. This is of the type Ψw,L for w1 = δ1 · aT

1 ,...,
wD = δ1 · aT

D , where δ1 = (1, 0, · · · , 0)T and A = [a1| · · · |aD], and L a restriction
operator to an appropriate subset S ⊂ [n!]× [D] of size nD.

2. The max filter introduced in 11 for some template w ∈ V is defined by
〈〈·,w〉〉 : V → R, 〈〈x ,w〉〉 = maxg∈G 〈x ,Ug w〉. Equivalent recasting:
〈〈x ,w〉〉 = L(Φw (X )), for a restriction operator L to the subset S = {1}.

3. The operator Ψw,L, Ψw,L(X ) = L(Φw(X )) has been introduced in 12

10R. Balan, N. Haghani, M.Singh, Permutation Invariant Representations with
Applications to Graph Deep Learning, arXiv:2203.07546 (2022)

11J. Cahill, J. W. Iverson, D. G. Mixon, D. Packer, Group-invariant max filtering,
arXiv:2205.14039 (2022)

12R.B, Efstratios Tsoukanis, Matthias Wellershoff, “Stability of sorting based
embeddings”, arXiv:2410.05446 (2024)
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Main Results
Injectivity

Let VG = {x ∈ V : Ug x = x , ∀g ∈ G}, dG = dim (VG ), q ≥ 0 and for
g = (g1, · · · , gn), h = (h1, · · · , hn) ∈ Gn distinct, ρn(q) = maxg,h γ

q
g,h where

γq
g,h = semi .alg .dim. {(x , y) ∈ V × V : dim(span{Ugk x − Uhk y , k ∈ [n]}) = q}

Theorem (R.B.,E.Tsoukanis ’23-’25)
In any of the following cases

1 Assume p ≥ 2 dim(V )− dG and set n = (1, · · · , 1) ∈ [N]p.
2 Fix n ∈ [N] and choose p > maxq∈[n]

1
q (ρn(q)− dG − 1). Set

n = (n, · · · , n) ∈ [N]p.
3 Choose p ≥ 1 and n = (n1, · · · , np) ∈ [N]p so that

maxq1∈[n1],···,qp∈[np ]
(
mini∈[p]ρni (qi )− (q1 + · · ·+ qp)

)
≤ dG .

For a generic (w.r.t. Zariski topology) w and for any S ⊂ [N]× [p] with
|{k : (k, i) ∈ S}| ≥ ni , the map Φw,S : (V̂ ,d)→ (R|S|, ‖ · ‖2) is injective.

Radu Balan (UMD) G-Invariant Embeddings 4/10/2025
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Main Results (2)

Theorem (R.B, E.T., M. Wellershoff ’24)

Consider the same setup as before. Assume w ∈ V p and L : RN×p → Rm so that
Ψw,L : (V̂ ,d)→ (Rm, ‖ · ‖2) is injective.

1 Themap Ψw,L : (V̂ ,d)→ (Rm, ‖ · ‖2) is bi-Lipschitz. Let a0, b0 denote its
bi-Lipschitz constants.

2 If f : V → H is a Lipschitz continuous function so that f (Ug x) = f (x) for
all g , x, where H is a Hilbert space, then there exists a Lipschitz continuous
function g : Rm → H so that f = g ◦Ψw,L, i.e. f (x) = g(Ψw,L(x)).
Furthermore, Lip(g) ≤ Lip(f )/a0.

3 Assume g : Rm → H is a Lipschitz function with Lipschitz constant Lip(g).
Then f = g ◦Ψw,L : V → H is G-invariant and Lipschitz, with Lipschitz
constant Lip(f ) ≤ b0Lip(g).

Its proof is based on Kirszbraun’s extension theorem.

Radu Balan (UMD) G-Invariant Embeddings 4/10/2025
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Existing Results
Injectivity problem
Over the past 15 years or so, there have been works that recognized the
difference between generating polynomials and separating invariants13

A seminal paper that resurfaces results on semi-algebraic sets is 14. The
method goes back to earlier works in phase retrieval15.
More recently, in the context of G-invariance, 16,17, or permutation
invariance18

13Emilie Dufresne, Separating invariants and
finite reflection groups, Advances in Mathematics 221 (2009), no. 6, 1979–1989.

14Dym Nadav, Steven J. Gortler. ”Low dimensional invariant embeddings for universal
geometric learning.” arXiv preprint arXiv:2205.02956.

15R. Balan, P. Casazza, D. Edidin, On signal reconstruction without phase, ACHA
20(2006)

16D. G. Mixon, D. Packer, Max filtering with reflection groups, arXiv:2212.05104
17R. Balan, E. Tsoukanis, G-invariant representations using coorbits: Injectivity

properties, arXiv:2310.16365
18On the equivalence between graph isomorphism testing and function approximation

with GNNs, Z. Chen, S. Villar, L. Chen, J. Bruna, NeurIPS 2019.
Radu Balan (UMD) G-Invariant Embeddings 4/10/2025
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Existing Results (2)

Lipschitz and Bi-Lipschitz properties
Earlier results obtain Lipschitz/bi-Lipschitz properties on compacts, or
certain classes of functions.
Global L/bi-L are harder to establish and typically rule out polynomial
based embeddings.
So far only sorting based embeddings showed such global properties 19,20,
21

19R. Balan, E. Tsoukanis, G-invariant representations using coorbits: Bi-lipschitz
properties, arXiv:2308.11784

20J. Cahill, J. W. Iverson, D. G. Mixon, Bilipschigz group invariants, arXiv:2305.17241
21D. G. Mixon, Y. Qaddura, Injectivity, stability, and positive definiteness of max

filtering, arXiv:2212.11156
Radu Balan (UMD) G-Invariant Embeddings 4/10/2025
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Sketch of Proof: Injectivity Result

Define the “bad” set of w’s that fail to separate all distinct classes:

F = {w ∈ V p , ∃x 6∼ y Φw(x) = Φw(y) }.

The work is to embed F into a semi-algebraic set of semi-algebraic
dimension strictly less than pd = p dim(V ).
This technique is called “lift-and-project’22: we construct a semi-algebraic
vector bundle embedded into a certain Grassmanian vector bundle γ⊥n,k .
The bad set F is then indentified with a subset of the projection of this
vector bundle into its second component.
The full result for Ψw,L follows from analyzing the semi-agebraic
dimension of difference set {Φw(x)− Φw(y)} and of the kernel of L.

22R. Balan, P. Casazza, D. Edidin, On signal reconstruction without phase, ACHA
20(2006)
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Sketch of Proof: Lower Lipschitz bound
The proof is by contradiction. Consider the simpler case when L is given
by restriction to a subset S ⊂ [N]× [p].
1. If lower Lipschitz constant vanishes, then it must vanish locally: there
are (xn)n, (yn)n such that

lim
n→∞

‖Φw,S(xn)− Φw,S(yn)‖2

d([xn], [yn])2 = 0

and
lim

n→∞
xn = lim

n→∞
yn = z1, ‖xn‖ = 1, ‖yn‖ ≤ 1, ‖z1‖ = 1

and they are aligned with one another:
‖xn − yn‖ = min

g∈G
‖xn − Ug yn‖ (4.1)

‖xn − z1‖ = min
g∈G
‖xn − Ug z1‖ (4.2)

‖yn − z1‖ = min
g∈G
‖yn − Ug z1‖ (4.3)

Radu Balan (UMD) G-Invariant Embeddings 4/10/2025
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Lower Lipschitz bound

2. We construct inductively z2, z3, ..., zd such that for all 1 ≤ k ≤ d − 1:

‖zk+1‖ � ‖zk‖, dim(span(z1, . . . , zk)) = k

and the local lower Lipschitz constant vanishes in a convex set
{
∑k

r=1 ar zr , |ar − 1| < ε}.
3. For k = d this construction defines a non-empty open set
{
∑k

r=1 ar zr , |ar − 1| < ε} where the local lower Lipschitz constant
vanishes.
4. Finally, we can construct u, v 6= 0, so that x = u +

∑d
r=1 zr and

y = v +
∑d

r=1 zr satisfy x 6= y and yet

Φw,S(x) = Φw,S(y).

This contradicts the injectivity hypothesis.

Radu Balan (UMD) G-Invariant Embeddings 4/10/2025
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The Protein Dataset

Protein Dataset: PROTEINS FULL23 consists of 1113 proteins: 663
non-enzymes and 450 enzymes. Each graph associated to one protein:
nodes represent amino acids and edges represent the bonds between them.
Number of nodes (aminoacids): varying between 20 and 620 with average
of 39. Input feature vectors of size r = 29.
Task: the task is classification of each protein into enzyme or non-enzyme.

23P.D. Dobson, A.J. Doig, “Distinguishing Enzyme Structures from Non-enzymes
without Alignments”, J. Mol. Biol. 330, 771-783, 2003.

Radu Balan (UMD) G-Invariant Embeddings 4/10/2025
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The Deep Network Architecture
Architecture: ReLU activation and

GCN with L = 3 layers and 29 input feature vectors, and 50 hidden
nodes in each layer; no dropouts, no batch normalization. output of
GCN: d = 1, 10, 50, 100.
Mid-layer component: α
Fully connected NN with dense 3-layers and 150 internal units; no
dropouts, with batch normalization.

Radu Balan (UMD) G-Invariant Embeddings 4/10/2025
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The Network

Training has been done over 300 epochs with a batch size of 128. Loss
function: binary cross-entropy.
The following 7 α modules have been tested:

1 identity: α(X ) = X ; no permutation invariance.
2 data augmentation: α(X ) = X BUT the training data set has been

augmented with 4 random permutatons of each graph.
3 ordering: α(X ) =↓ (XA), A = [I 1]
4 kernels: α(X ) = (

∑n
k=1 exp(−‖xk − aj‖2))1≤j≤m=5nd

5 sumpooling: α(X ) = 1T X
6 sort-pooling: sorted by last column
7 set-to-set: introduced in [Vinyals&al.]24

24Vinyals, O., Bengio, S. Kudlur, M., Order Matters: Sequence to sequence for sets,
ICLR 2016.
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Enzyme Classification Example
Training Loss: X Entropy
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Enzyme Classification Example
Accuracy on Training set
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Enzyme Classification Example
Accuracy on Holdout data
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Enzyme Classification Example
Accuracy on Holdout data with nodes randomly permuted
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Performance Results: Accuracy

d = 50 ordering kernels identity data
augment

sum-
pooling

sort-
pooling

set-2-
set

Training 83.1 78.8 91 96 79.2 83.7 76.7
Holdout 71.5 76.5 72.5 71 77 71 76

Holdout Perm 71.5 76.5 69.5 72 77 71 76

Table: Accuracy ACC(%) for enzyme/non-enzyme classification of the seven
algorithms on PROTEINS FULL dataset after 300 epochs for embedding
dimension d = 50

For comparison: [Dobson&al.]25 obtains an accuracy of 77-80% using an
SVM based classifier.

25P.D. Dobson, A.J. Doig, “Distinguishing Enzyme Structures from Non-enzymes
without Alignments”, J. Mol. Biol. 330, 771-783, 2003.
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The QM9 Dataset
Dataset: QM926 consists of about 134,000 isomers of organic molecules
made up of CHONF, each containing 10-29 atoms. see
http://quantum-machine.org/datasets/ Nodes corresponds to atoms; each
feature vector containins geometry (x,y,z coordinates), partial charge per
atom (Mulliken charge), and atom type.
Task: the task is regression: predict a physical feature (electron energy
gap ∆ε) computed for each molecule.
Architecture: ReLU activation and

GCN with L = 3 layers and 50 hidden nodes in each layer; no
dropouts, no batch normalization; zero padding to m = 29 number of
rows. output of GCN: d = 1, 10, 50, 100.
Mid-layer component: α
Fully connected NN with dense 3-layers and 150 internal units in each
of the two hidden layers; no dropouts, with batch normalization.

26R. Ramakrishnan, P.O. Dral, M. Rupp, and OA. von Lilienfeld. Quantum chemistry
structures and properties of 134 kilo molecules. Scientific data, 1(1):1-7, 2014.
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The Network

Training has been done over 300 epochs with a batch size of 128. Loss
function: Mean-Square Error (MSE).
The same 7 α modules have been tested:

1 identity: α(X ) = X ; no permutation invariance.
2 data augmentation: α(X ) = X BUT the training data set has been

augmented with 4 random permutatons of each graph.
3 ordering: α(X ) =↓ (XA), A = [I 1]
4 kernels: α(X ) = (

∑n
k=1 exp(−‖xk − aj‖2))1≤j≤m=5nd

5 sumpooling: α(X ) = 1T X
6 sort-pooling: sorted by last column
7 set-to-set: introduced in [Vinyals&al.]27

27Vinyals, O., Bengio, S. Kudlur, M., Order Matters: Sequence to sequence for sets,
ICLR 2016
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QM9 Regression Example
Training MSE
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QM9 Regression Example
Validation MSE
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QM9 Regression Example
Validation MSE with Random Permutations

Radu Balan (UMD) G-Invariant Embeddings 4/10/2025



Problem Formulation Motivation Approach Analysis Results Numerics Extra

Performance Results: MAE

d = 100 ordering kernels identity data
augment

sum-
pooling

sort-
pooling

set-2-
set

Training 0.155 0.269 0.139 0.164 0.178 0.199 0.173
Holdout 0.187 0.267 0.227 0.206 0.201 0.239 0.201

Holdout Perm 0.187 0.267 1.086 0.213 0.201 0.239 0.201

Table: Mean Absolute Error (MAE) for regression of the electron energy gap
∆ε = LUMO − HOMO (eV) of the seven algorithms on QM9 dataset after 300
epochs for embedding dimension d = 100

For comparison:
chemical accuracy is 0.043eV
the best ML method [Gilmer&al.] achieves MAE of 0.053eV
Coulomb method [Rupp&al.] achieves MAE of 0.229eV
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Thank you!
Questions?
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A Universal Embedding

Consider the map

µ : R̂n×d → P(Rd ) , µ(X )(x) = 1
n

n∑
k=1

δ(x − xk)

where P(Rd ) denotes the convex set of probability measures over Rd , and
δ denotes the Dirac measure. xk is the kth row of X .
Clearly µ(X ′) = µ(X ) iff X ′ = PX for some P ∈ Sn.
The Wasserstein-2 distance is equivalent to the natural metric:

W2(µ(X ), µ(Y ))2 := inf
q∈J(µ(X),µ(Y ))

Eq[‖x − y‖2
2] = min

P∈Sn
‖Y − PX‖2

By Kantorovich-Rubinstein theorem, the Wasserstein-1 distance (the Earth moving distance)
extends to a norm on the space of signed Borel measures.
Main drawback: P(Rd ) is infinite dimensional!
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Finite Dimensional Embeddings
Idea: “Project” the measure onto a finite dimensional space. This is
accomplished by kernel methods:
Fix a family of functions f1, · · · , fm and consider:

µ(X ) 7→
∫
Rd

fj(x)dµ(X ) = 1
n

n∑
k=1

fj(xk) , j ∈ [m]

Possible choices:
1 Polynomial embeddings: R[X ]Sn , ring of invariant polynomials;

[Lipman&al.],[Peyré&al.],[Sanay&al.],[Kemper book] ...
2 Gaussian kernels: fj(x) = exp(−‖x − aj‖2/σ2

j ) ;
[Gilmer&al.],[Zaheer&al.], [Vinyals&al.],...

3 Fourier kernels (cmplx embd): fj(x) = exp(2πi〈x , ωj〉); related to
Prony method; [Li&Liao] for bi-Lipschitz estimates.

Main drawback: No global bi-Lipschitz embeddings [Cahill&al.]. Ok on
(some) compacts.
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The Embedding Problem
Notations (2)

Definition
Fix X ∈ Rn×d . A matrix A ∈ Rd×D is called admissible for X if
β−1

A (βA(X )) = X̂ . In other words, if Y ∈ Rn×d so that ↓ (XA) =↓ (YA)
then there is Π ∈ Sn sot that Y = ΠX.

We denote by Ad ,D(X ) (or A(X )) the set of admissible keys for X .

Definition
Fix A ∈ Rd×D. A data matrix X ∈ Rn×d is said separated by A if
A ∈ A(X ).

We let S(A) denote the set of data matrices separated by A.
The key A is universal iff S(A) = Rn×d .
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Genericity Results for d ≥ 2
Admissible keys

Theorem
Let X ∈ Rn×d . For any D ≥ d + 1 the set Ad ,D(X ) of admissible keys for
X is dense in Rd×D with respect to Euclidean topology, and it is generic
with respect to Zariski topology. In particular, Rd×D \ Ad ,D(X ) has
Lebesgue measure 0, i.e., almost every key is admissible for X.

Proof
It is sufficient to consider the case D = d + 1. Also, it is sufficient to
analyze the case A = [Id b] and to show that a generic b ∈ Rd defines an
admissible key. The vector b ∈ Rd does not define an admissible key if
there are Ξ,Π1, · · · ,Πd ∈ Sn so that for Y = [Π1x1, · · · ,Πd xd ],

Yb = ΞXb but Y − ΠX 6= 0 , ∀Π ∈ Sn

Define the linear operator
B(Ξ; Π1, · · · ,Πd ) : Rd → Rn , B(Ξ; Π1, · · · ,Πd )b = ΞXb−[Π1x1, · · · ,Πd xd ]bRadu Balan (UMD) G-Invariant Embeddings 4/10/2025
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Genericity Results for d ≥ 2
Admissible keys

Proof - cont’d
Let

P =
{

(Π1, · · · ,Πd ) ∈ (Sn)d ∀Π ∈ Sn, ∃k ∈ [d ] s.t. (Π− Πk)xk 6= 0
}

Then

{b ∈ Rd : [Id b] not admissible for X} =
⋃

(Ξ;Π1,···,Πd )∈Sn×P
ker(B(Ξ; Π1, · · · ,Πd ))

It is now sufficient to show that each null space has dimension less than d .
Indeed, the alternative would mean B(Ξ; Π1, · · · ,Πd ) = 0 but this would
imply (Π1, · · · ,Πd ) 6∈ P. �
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Non-Universality of vector keys
Insufficiency of a single vector key

The following is a no-go result, which shows that there is no universal
single vector key for data matrices tall enough.

Proposition
If d ≥ 2 and n ≥ 3,⋃

X∈Rn×d

{b ∈ Rd : A = [Id b] not admissible forX} = Rd .

Consequently, ⋂
X∈Rn×d

Ad ,d+1(X ) = ∅.

On the other hand, for n = 2, d = 2, any vector b ∈ R2 with b1b2 6= 0
defines a universal key A = [I2 b].
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Non-Universality of vector keys
Insufficiency of a single vector key - cont’d

Proof
To show the result, it is sufficient to consider a counterexample for n = 3,
d = 2, with key b = [1, 1]T .

X =

 1 −1
−1 0
0 1

 , Y =

 1 0
−1 1
0 −1


Then Xb = [0,−1, 1]T and Yb = [1, 0,−1]T , yet X 6∼ Y . Thus [I2 b] is
not admissible for X .
Then note if a ∈ Rd so that [Id a] is admissible for X then for any P ∈ Sd
and L an invertible d × d diagonal matrix, L−1PT A ∈ Ad ,1(XPL). This
shows how for any b ∈ R2, one can construct X ∈ R3×2 so that
b 6∈ A2,1(X ).
For n > 3 or d > 2, proof follows by embedding this example.
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Genericity Results for d ≥ 2
Admissible Data Matrices

Theorem
Assume a ∈ Rd is a vector with non-vanishing entries, i.e., a1a2 · · · ad 6= 0.
Then for any n ≥ 1, S([Id a]) is dense in Rn×d and includes an open dense
set with respect to Zariski topology. In particular, Rn×d \ S([Id a]) has
Lebesgue measure 0, i.e., almost every data matrix X is separated by the
vector key a.

Corollary
Assume A ∈ Rd×(D−d) is a matrix such that at least one column has
non-vanishing entries. Then for any n ≥ 1, S([Id A]) is dense in Rn×d and
is generic with respect to Zariski topology. In particular, Rn×d \ S([Id A])
has Lebesgue measure 0, i.e., almost every data matrix X is separated by
the matrix key [Id A].
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Proof that S([Id A]) is generic
The case D > d

Assume A ∈ Rd×(D−d) satisfies A1,kA2,k · · ·Ad ,k 6= 0 for some
k ∈ [D − d ]. The set of non-separated data matrices X ∈ Rn×d (i.e., the
complement of S([Id A])) factors as follows:

Rn×d\S([Id A]) =
⋃

(Ξ1,···,ΞD−d ;Π1,···,Πd )∈(Sn)D

(ker L(Ξ1, · · · ,ΞD−d ; Π1, · · · ,Πd ; A)\

\
⋃

Π∈Sn

ker M(Π,Π1, · · · ,Πd )

 (∗)

where, with A = [a1, · · · , aD−d ], X = [x1, · · · , xd ]:

L(Ξ1,···,ΞD−d ;Π1,···,Πd ;A):Rn×d→Rn×D−d , (L((...)X)k =[(Ξk−Π1)x1,···,(Ξk−Πd )xd ]ak , k∈[D−d]

M(Π,Π1,···,Πd ):Rn×d→Rn×d , M(Π,Π1,···,Πd )X=[(Π−Π1)x1,···,(Π−Πd )xd ]
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Proof that S(A) is generic
cont’d

1. The outer union can be reduced by noting that on the ”diagonal” ∆,

∆ = {(Ξ1, · · · ,ΞD−d ; Π1, · · · ,Πd ) ∈ (Sn)D , Π1 = Π2 = · · · = Πd}

M(Π1,Π1, · · · ,Πd ) = 0→
⋃

Π∈Sn

ker M(Π,Π1, · · · ,Πd ) = Rn×d

2. If (Ξ1, · · · ,ΞD−d ; Π1, · · · ,Πd ) ∈ (Sn)D \∆ then for every k ∈ [D − d ]
there is j ∈ [d ] such that Ξk − Πj 6= 0. In particular choose the k column
of A that is non-vanishing. Let xj ∈ Rn so that (Ξk − Πj)xj 6= 0. Consider
the matrix X = [0, · · · , 0, xj , 0, · · · , 0] where xj is the only non identically 0
column. Claim: X 6∈ ker L(Ξ1, ...,Πd ; A). Indeed, the resulting k column
of L()X is Aj,k(Ξk − Πj)xj 6= 0. It follows that

dim ker L(Ξ1, · · · ,ΞD−d ; Π1, · · · ,Πd ; A) < nd

Hence Rn×d \ S([Id A]) is a finite union of subsets of closed linear spaces
properly included in Rn×d . This proves the theorem. �
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Additional Relations

Note the following relationship and matrix representation of X when
matrices are column-stacked:

M(Π,Π1, · · · ,Πd ) = L(Π, · · · ,Π; Π1, · · · ,Πd ; I)

L ≡


A1,1(Ξ1 − Π1) A2,1(Ξ1 − Π2) · · · Ad ,1(Ξ1 − Πd )
A1,2(Ξ2 − Π1) A2,2(Ξ2 − Π2) · · · Ad ,2(Ξ2 − Πd )

...
... . . . ...

A1,D−d (ΞD−d − Π1) A2,D−d (ΞD−d − Π2) · · · Ad ,D−d (ΞD−d − Πd )


a n(D − d)× nd matrix.
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Planar Rotations
Consider the action on R2 of the cyclic group < U >' ZN generated by a
planar rotation by a = 2π

N , U = [cos(a) − sin(a); sin(a) cos(a)]. The
quotient space R2/ ∼ is topolgically equivalent to a 2 dim. cone in R3, by
identifying the positive x-semiaxis with the half-line of angle a.
Recall ρn(q) = maxg ,h γ

q
g ,h where

γq
g ,h = semi .alg .dim. {(x , y) ∈ V×V : dim(span{Ugk x−Uhk y , k ∈ [n]}) = q}

Explicit computation:

ρ1(q) =


2, q = 0,

4, q = 1,

−1, q ≥ 2.

ρ2(q) =



2, q = 0,
3, q = 1 & N odd,
4, q = 1 & N even,
4, q = 2
−1, q ≥ 3.
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Planar Rotations (2)

Theorem
1 For any w ∈ R2, the map Φw : R̂2 → RN is never injective.
2 For any w1,w2 ∈ R2 and S = {(1, 1), (1, 2)} (the max filter case), the

map Φw,S : R̂2 → R2 is never injective.
3 If w1,w2,w3 ∈ R2 are linearly independent and angle(wi ,wj) < 2π

N
then for either S = {(1, 1), (1, 2), (1, 3)} (the max filter, or
n = (1, 1, 1) configuration), or S = {(1, 1), (2, 1), (1, 2)} (a n = (2, 1)
configuration), generically, the map Φw,S : R̂2 → R3 is injective and
bi-Lipschitz.

A careful analysis of our main theorem would guarantee the embedding
Φw,S : R̂2 → R4 is injective (and hence bi-Lipschitz) for certain
n = (2, 1, 1) configurations, or any n = (1, 1, 1, 1) configuration.
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