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High-Level Overview

In this talk we discuss a few harmonic analysis techniques and problems
applied to machine learning.
1. Neural Networks: A Quick Introduction & Motivating Examples
2. CRLB based Uncertainty Propagation: we use Cramer-Rao Lower
Bound to quantify uncertainty in MRI estimation using deep neural
networks
3. NN and MRI: Motion Compensation and Image Reconstruction
4. Lipschitz analysis: we provide rationals for studying Lipschitz properties
of NNs, and then we perform a Lipschitz analysis of these networks. We
focus on two aspects of this analysis: stochastic modelng of local vs.
global analysis, and a scattering network inspired Lipschitz analysis of
convolutive networks.
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Outline

1 Neural Networks - A Quick Introduction
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Neural Networks: Architectures and Properties

Neural networks were introduced a long time ago ...
1 1925: Ising model – first Recurrent Neural Network (RNN)
2 1940s: Hebbian learning for neuroplasticity – weights are learned

dynamically
3 1958: Rosenblatt introduced the perceptron, a 1-layer NN
4 1965: Ivakhnenko and Lapa: Multi-Layer Perceptron (MLP)
5 1967: Amari studied stochastic gradient descent (SGD) for

training/learning
6 1980: Fukushima introduced the convolutional neural network (CNN)
7 1991-2: Schmidhuber introduced adversarial networks (precursors of

GANs - 2014 by Goodfellow), generative models, and the transformers
with linearized self-attention
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Network Architectures
Deep Neural Networks

Input layer: x = (x1, x2, · · · , xn)T

Output layer: y = (y1, y2, · · · , ym)T

Number of Layers: L
y = AL+1 · σ(AL · σ(AL−1 · · ·σ(A1 · x + b1) · · · ) + bL−1) + bL) + bL+1

The scalar activation function σ′ : R→ R acts entrywise.

Figure: A general Feed-Forward Network, or a Deep Neural Network (DNN)
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Network Architectures
Convolutive Neural Networks (CNN)

A Convolutive Neural Network is a Deep Neural Network with two
additional features:

1 Linear operators Ak are convolutive operators, and implemented as
convolutions

2 Activation functions are followed by downsampling and (optional)
pooling layers: either max-pooling or sum-pooling.

Figure: One layer of a Convolutive Neural Network (picture curtesy of
robygarba@pixabay)

Radu Balan (UMD) Data Representation for ML September 12, 2025 7 / 83



Neural Nets Lip I UQ in NN MOCO Lipschitz Analysis

Convolutive Neural Networks (CNN)
Alex Net

The AlexNet is 8 layer network, 5 convolutive layers plus 3 dense layers.
Introduced by (Alex) Krizhevsky, Sutskever and Hinton in 2012 .

Figure: From Krizhevsky et all 2012 : AlexNet: 5 convolutive layers + 3 dense
layers. Input size: 224x224x3 pixels. Output size: 1000.
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Universal Approximation Properties of Neural Netwoks
Conventional wisdom says that neural networks can approximate arbitrary
well any “reasonable” function f : Rn → Rm.
Earliest results showed that even one hidden layer networks approximate
target functions equally well. One hidden layer networks are called
perceptrons. The input-output characterization of a single-layer perceptron
Φ : Rn → R, is given by:

Φ(x) = aTσ(Wx + b) + b0 , x 7→ Φ(x) =
p∑

k=1
akσ(

n∑
j=1

Wk,jxj + bk) + b0.

Theorem (Cybenko 1989)
Assume σ : R→ R is a bounded continuous function that satisfies
limt→∞ σ(t) = 1 and limt→−∞ σ(t) = 0. Then for any continuous
f : [0, 1]n → R there are (W , a, b, b0) so that
|f (x)− aTσ(Wx + b)− b0| < ε for every x ∈ [0, 1]n.
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Further Results
Remark
The compact set [0, 1]n can be replaced by any compact set K: scale and
translate to bring it inside [0, 1]n; then use Tietze extension theorem.

Remark
Recent results extend the density result to various other spaces, such as
Ck(K ), W k,p(K ), etc; they also extend to the case of certain unbounded
σ, e.g., the ReLU function, ReLU(x) = x1(0,∞).

Remark
Cybenko’s proof (or several subsequent results) is not constructive. Recent
results by other researchers (e.g., Petersen and Voigtlaender; Bolcskei,
Grohs, Kutyniok and Petersen) provide explicit architectures (number of
layers, number of hidden nodes) and even memory cost (i.e., quantized
weights) that achieves a preset approximation accuracy.
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Outline

2 Lipschitz Analysis - Motivation
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Example 1: The AlexNet
The ImageNet Dataset

Dataset: ImageNet dataset. Currently: 14.2 mil.images; 21841 categories;
image-net.org
Task: Classify an input image, i.e. place it into one category.

Figure: The ”ostrich” category ”Struthio Camelus” 1393 pictures. From
image-net.org
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Example 1: The AlexNet
The Supervised Machine Learning

The AlexNet is 8 layer network, 5 convolutive layers plus 3 dense layers.
Introduced by (Alex) Krizhevsky, Sutskever and Hinton in 2012 [KSH12].
Trained on a subset of the ImageNet: Part of the ImageNet Large Scale
Visual Recognition Challenge 2010-2012: 1000 object classes and
1,431,167 images.

Figure: From Krizhevsky et all 2012: AlexNet: 5 convolutive layers + 3 dense
layers. Input size: 224x224x3 pixels. Output size: 1000.
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Example 1: The AlexNet
Adversarial Perturbations

The authors of [Szegedy’13] (Szegedy, Zaremba, Sutskever, Bruna, Erhan,
Goodfellow, Fergus, ’Intriguing properties ...’) found small variations of the
input, almost imperceptible, that produced completely different
classification decisions:

Figure: From Szegedy et all 2013: AlexNet: 6 different classes: original image,
difference, and adversarial example – all classified as ’ostrich’

Radu Balan (UMD) Data Representation for ML September 12, 2025 14 / 83



Neural Nets Lip I UQ in NN MOCO Lipschitz Analysis

Other Examples

1 Generative Adversarial Networks: The Wasserstein distance based
GANs

2 Uncertainty Propagation through DNN: This example is based on a
project with Prof. Thomas Ernst, UMB, School of Medicine,
Baltimore.

3 The Scattering Networks: Naive vs. Exact analysis
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Lipschitz Analysis
Given a deep network:

Estimate the Lipschitz constant, or bound:

Lip = sup
f 6=f̃ ∈L2

‖y − ỹ‖2
‖f − f̃ ‖2

, Bound = sup
f 6=f̃ ∈L2

‖y − ỹ‖22
‖f − f̃ ‖22

.

This yields:
‖y − ỹ‖2 ≤ Lip‖f − f̃ ‖2,

for any two inputs f , f̃ ′, arbitrary close or far apart.
The goal of this study is to estimate the Lipschitz constants and bounds,
and understand how perturbations propagate through deep networks.
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Outline

3 Uncertainty Quantification in NN
1. MRI and NN
2. Uncertainty Propagation through NN
3. Experimental Results
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Uncertainty Quantification and Propagation through DNN

Collaborators:
UMD: Danial Ludwig, Michael Rawson
UMB:Thomas Ernst, Bo Li, Xiaoke Wang, Ze Wang
Joint Work:
ISMRM 2022: Estimating Noise Propagation of Neural Network based
Image Reconstruction using Automatic Differentiation
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MRI Model

Figure: Credits: hopkinsmedicine.org

The measurement model. For coil k ∈
[Nc ],

xk = F(Skz) + νk

where F is the Fourier acquisition ma-
trix, Sk is the diagonal matrix with the
coil k sensitivity map, νk is measure-
ment noise, and z is the brain signal.

Knowns: F , x1, ..., xNc . Unknowns: S1, ...,SNc , ν1, ..., νNc , z . Target: z.

Lots of research, lots of Nobel prizes, lots of companies (Siemens, GE,
Philips), lots of techniques (compressive sampling, GRAPPA, SENSE, ...)
to solve the inverse problem: z = G(measurements).
More recent: Use of Deep Neural Networks.
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The MRI Inverse Problem
At an abstract level, the forward model, z 7→ x and the reconstruction
(inverse) model, x 7→ ẑ are:

x = F (z) + ν , ẑ = G(x).

To fix notations: the target (brain) signal z ∈ Rd , the measured
(acquired) signal x ∈ Rn.
The DNN approach proposes to implement G using certain Neural
Network architectures. Out of many architectures out there, we focused
on a specific network, namely the end-to-end variational neural network
(E2E-VarNet) introduced by Sriram,et al, at MICCAI 2020.

Our problem: Given a trained network that implements a reconstruction
algorithm G , quantify the level of uncertainty per reconstructed pixel.

Assumption: We assume the network has been trained well enough so that
G(F (z)) = z , i.e., perfect reconstruction in the absence of noise.
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CRLB and FIM
An often used approach of quantifying uncertainty is through the Cramer-Rao
Lower Bound (CRLB). The CRLB has been used many times for experimental
design in Medical Imaging and elsewhere.
Fisher Information Matrix (FIM) I(z) and CRLB:

I(z) = E
[
(∇z log(p(x ; z))) (∇z log(p(x ; z)))T

]
, CRLB = (I(z))−1

Interpretation: Covariance of any unbiased estimator of z is lower bounded CRLB.
Assume further, the noise is AWGN with variance σ2. A simple computation
yields:

CRLB = σ2 (JT
F JF

)−1
, JF =

[
∂Fk
∂zj

]
(j,k)∈[n]×[d]

∈ Rn×d

where JF denotes the Jacobian matrix of the forward model F .

Goal: Determine CRLB and use it to measure the confidence in the reconstructed
image ẑ .

Challenge: The exact form of F is unknown!
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The CRLB and the Jacobian of the NN

Our main theoretical result is to connect CRLB = (I(z))−1 to the Jacobian1 JG
of G .

Lemma
Assume A ∈ Rn×d is full rank with n ≥ d.

1 For any B ∈ Rd×n such that BA = Id (i.e., a left inverse), BBT ≥ (AT A)−1.
2 If B0 = (AT A)−1AT is the pseudo-inverse of A then, B0BT

0 = (AT A)−1.

Consequence:

CRLB = σ2JG0 JT
G0

, G0 = argminG:G(F (z))=z trace(JG JT
G )

Use trace(JG JT
G ) as an additional term in the NN training loss function.

1The importance of Jacobians has been shown by (Antun et al, 2020), “On
instabilities of deep learning in image reconstruction ...”
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Architecture

ACS: Auto-Calibration Signal used by GRAPPA, 24 lines out of 320.
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Reconstruction
Measurement model: for each coil k,

xk = F(Skz) + νk

Figure: Reconstructed image and sensitivity maps (Sk) by E2E-VARNET. The
reduction factor of the k-space under-sampling is 11.
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Results (1)
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Results (2)
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Results (3)
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Results (4)
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Outline

4 ML based Motion Compensation for Brain MRI Reconstruction
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Based on this article:
Lei Zhang, X. Wang, M. Rawson, R.B., E. Herskovits, E.R. Melhem, L.
Chang, Z. Wang, T. Ernst, Motion Correction for Brain MRI Using Deep
Learning and a Novel Hybrid Loss Function, Algorithms 17, 215, (2024),
https://doi.org/10.3390/a17050215
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Motion Correction Problem

MRI is relatively slow and can take several minutes for a typical 3D volume
scan. Motion by human subjects is unavoidable and can be caused by
respiration, cardiac motion, and unintended patient movements.
Motion Correction is needed!

Figure: Credits: hopkinsmedicine.org

The measurement model. For coil k,
xk = F(SkTz) + νk

where F is the FULL Fourier acqui-
sition matrix, Sk is the diagonal ma-
trix with the coil k sensitivity map, T
denotes the motion operator (trans-
lation+rotation), νk is measurement
noise, and z is the brain signal.

Knowns: F , x1, ..., xNc . Unknowns: S1, ...,SNc , ν1, ..., νNc ,T , z . Target: z.
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MC-Net Architecture
Motion Correction Net (MC-Net) takes a motion-corrupted image as input and
outputs a motion-corrected image. It is derived from UNet (2019) architecture.
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Training Loss

The MC-Net was trained with a two-stage training strategy using a hybrid
loss function, L, that combines L1-loss and TV-loss:

L1 =
∑
i ,j
|I(i , j)−I0(i , j)|,TV =

∑
i ,j

((I(i+1, j)−I(i , j))2+(I(i , j+1)−I(i , j))2)1.25.

During the first training stage L = L1 to suppress overall motion-induced
artifacts. The pre-trained stage 1 model was then fine-tuned with
L = L1 + TV . Yhe hybrid loss function encourages the model to produce
output images with low total variation that can have sharp edges and
reduced motion artifacts.
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Results (1)

Example of motion artifact re-
moval. first row: the clean
reference image, corrupted im-
age, and motion correction re-
sults obtained using the L1, L1
+ TV, and MC-Net algorithms;
second row zooms in on the red
rectangle with Structural Sim-
ilarity Index Measure (SSIM)
and Peak-Signal-to-Noise-Ratio
(PSNR); third row shows the er-
ror maps multiplied by a factor
of five; lower plot refers to y-
positions in k-space.
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Results (2)

Example of motion artifact re-
moval. first row: the clean
reference image, corrupted im-
age, and motion correction re-
sults obtained using the L1, L1
+ TV, and MC-Net algorithms;
second row zooms in on the red
rectangle with Structural Sim-
ilarity Index Measure (SSIM)
and Peak-Signal-to-Noise-Ratio
(PSNR); third row shows the er-
ror maps multiplied by a factor
of five; lower plot refers to y-
positions in k-space.
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SSIM Performance

SSIM values of images corrected with MC-Net (blue dots) relative to those of
corrupted images (red dots) are plotted against the standard deviation across 256
time points (in mm or deg). The red line (Y=0.99 - 0.028X) and blue line
(Y=0.98-0.014X) show linear regressions.
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5 CNN and Lipschitz Analysis
1. Problem Formulation
2. Lipschitz Analysis
3. Numerical Results
4. Local Analysis and Stochastic Approach
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More details included in:
D. Zou, R. Balan, M. Singh, On Lipschitz Bounds of General
Convolutional Neural Networks, IEEE Trans.on Info.Theory, vol.
66(3), 1738–1759 (2020) doi: 10.1109/TIT.2019.2961812.
R. Balan, M. Singh, D. Zou, “Lipschitz Properties for Deep
Convolutional Networks”, arXiv:1701.05217 [cs.LG], Contemporary
Mathematics 706, 129-151 (2018)
http://dx.doi.org/10.1090/conm/706/14205.
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Example 1: The AlexNet
The ImageNet Dataset

Dataset: ImageNet dataset. Currently: 14.2 mil.images; 21841 categories;
image-net.org
Task: Classify an input image, i.e. place it into one category.

Figure: The ”ostrich” category ”Struthio Camelus” 1393 pictures. From
image-net.org
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Example 1: The AlexNet
The Supervised Machine Learning

The AlexNet is 8 layer network, 5 convolutive layers plus 3 dense layers.
Introduced by (Alex) Krizhevsky, Sutskever and Hinton in 2012 [KSH12].
Trained on a subset of the ImageNet: Part of the ImageNet Large Scale
Visual Recognition Challenge 2010-2012: 1000 object classes and
1,431,167 images.

Figure: From Krizhevsky et all 2012: AlexNet: 5 convolutive layers + 3 dense
layers. Input size: 224x224x3 pixels. Output size: 1000.
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Example 1: The AlexNet
Adversarial Perturbations

The authors of [Szegedy’13] (Szegedy, Zaremba, Sutskever, Bruna, Erhan,
Goodfellow, Fergus, ’Intriguing properties ...’) found small variations of the
input, almost imperceptible, that produced completely different
classification decisions:

Figure: From Szegedy et all 2013: AlexNet: 6 different classes: original image,
difference, and adversarial example – all classified as ’ostrich’
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Example 1: The AlexNet
Lipschitz Analysis

Szegedy et all 2013 computed the Lipschitz constants of each layer.

Layer Size Sing.Val
Conv. 1 3× 11× 11× 96 20
Conv. 2 96× 5× 5× 256 10
Conv. 3 256× 3× 3× 384 7
Conv. 4 384× 3× 3× 384 7.3
Conv. 5 384× 3× 3× 256 11

Fully Conn.1 9216(43264)× 4096 3.12
Fully Conn.2 4096× 4096 4
Fully Conn.3 4096× 1000 4

Overall Lipschitz constant:

Lip ≤ 20 ∗ 10 ∗ 7 ∗ 7.3 ∗ 11 ∗ 3.12 ∗ 4 ∗ 4 = 5, 612, 006
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Example 2: Generative Adversarial Networks
The GAN Problem

Two systems are involved: a generator network producing synthetic data; a
discriminator network that has to decide if its input is synthetic data or
real-world (true) data:

Introduced by Goodfellow et al in
2014, GANs solve a minimax opti-
mization problem:

min
G

max
D

Ex∼Pr [log(D(x))] + Ex̃∼Pg [log(1− D(x̃))]

where Pr is the distribution of true data, Pg is the generator distribution,
and D : x 7→ D(x) ∈ [0, 1] is the discriminator map (1 for likely true data;
0 for likely synthetic data).
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Example 2: Generative Adversarial Networks
The Wasserstein Optimization Problem

In practice, the training algorithms do not behave well (”saddle point
effect”).
The Wasserstein GAN (Arjovsky et al 2017) replaces the Jensen-Shannon
divergence by the Wasserstein-1 distance:

min
G

max
D∈Lip(1)

Ex∼Pr [D(x)]− Ex̃∼Pg [D(x̃)]

where Lip(1) denotes the set of Lipschitz functions with constant 1,
enforced by weight clipping.

Gulrajani et al in 2017 proposed to incorporate the Lip(1) condition into
the optimization criterion using a soft Lagrange multiplier technique for
minimization of:

L = Ex̃∼Pg [D(x)]− Ex∼Pr [D(x)] + λEx̂∼Px̂

[
‖∇x̂ D(x̂)‖2 − 1)2

]
where x̂ is sampled uniformly between x ∼ Pr and x̃ ∼ Pg .
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Example 3: Uncertainty Propagation through DNN
This example is based on a recent project with Prof. Thomas Ernst, UMB,
School of Medicine, Baltimore.
The standard way of quantifying uncertainty is through the Cramer-Rao Lower
Bound (CRLB). Fisher Information Matrix I(z) and CRLB:

I(z) = E
[
(∇z log(p(x ; z))) (∇z log(p(x ; z)))T

]
, CRLB = (I(z))−1

Interpretation: Covariance of any unbiased estimator of z is lower bounded
CRLB. For AWGN with variance σ2,

CRLB = σ2 (JT
F JF

)−1
, JF =

[
∂Fk
∂zj

]
(j,k)∈[n]×[d]

∈ Rn×d

where JF denotes the Jacobian matrix of the forward model.
Goal: Determine CRLB and use it to measure the confidence in the reconstructed
image ẑ .
Challenge: The exact form of F is unknown! But we assume we know a
left-inverse (the DNN) G0. It turns out a good proxy is CRLB = σ2JG0 JT

G0
.
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Example 4: The Scattering Network
Topology

Example of Scattering Network; definition and properties: [Mallat’12]; this
example from [B.,Singh,Zou’17]:

Input: f ; Outputs: y = (yl ,k).
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Example 4: Scattering Network
Lipschitz Analysis

Remarks:
Outputs from each layer

Tree-like topology
Backpropagation/Chain rule:
Lipschitz bound 40.
Mallat’s result predicts Lip = 1.

Radu Balan (UMD) Data Representation for ML September 12, 2025 47 / 83



Neural Nets Lip I UQ in NN MOCO Lipschitz Analysis

Example 4: Scattering Network
Lipschitz Analysis

Remarks:
Outputs from each layer
Tree-like topology

Backpropagation/Chain rule:
Lipschitz bound 40.
Mallat’s result predicts Lip = 1.

Radu Balan (UMD) Data Representation for ML September 12, 2025 47 / 83



Neural Nets Lip I UQ in NN MOCO Lipschitz Analysis

Example 4: Scattering Network
Lipschitz Analysis

Remarks:
Outputs from each layer
Tree-like topology
Backpropagation/Chain rule:
Lipschitz bound 40.

Mallat’s result predicts Lip = 1.

Radu Balan (UMD) Data Representation for ML September 12, 2025 47 / 83



Neural Nets Lip I UQ in NN MOCO Lipschitz Analysis

Example 4: Scattering Network
Lipschitz Analysis

Remarks:
Outputs from each layer
Tree-like topology
Backpropagation/Chain rule:
Lipschitz bound 40.
Mallat’s result predicts Lip = 1.

Radu Balan (UMD) Data Representation for ML September 12, 2025 47 / 83



Neural Nets Lip I UQ in NN MOCO Lipschitz Analysis

Problem Formulation
Nonlinear Maps

Consider a nonlinear function between two metric spaces,

F : (X , dX )→ (Y , dY ).

Radu Balan (UMD) Data Representation for ML September 12, 2025 48 / 83



Neural Nets Lip I UQ in NN MOCO Lipschitz Analysis

Problem Formulation
Lipschitz analysis of nonlinear systems

F : (X , dX )→ (Y , dY )

F is called Lipschitz with constant C if for any f , f̃ ∈ X ,

dY (F(f ),F(f̃ )) ≤ C dX (f , f̃ )

The optimal (i.e. smallest) Lipschitz constant is denoted Lip(F). The
square C2 is called Lipschitz bound (similar to the Bessel bound).

F is called bi-Lipschitz with constants C1,C2 > 0 if for any f , f̃ ∈ X ,

C1 dX (f , f̃ ) ≤ dY (F(f ),F(f̃ )) ≤ C2 dX (f , f̃ )

The square C2
1 ,C2

2 are called Lipschitz bounds (similar to frame bounds).
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Problem Formulation
Motivating Examples

Consider the typical neural network as a feature extractor component in a
classification system:

g = F(f ) = FM(...F1(f ; W1, ϕ1); ...; WM , ϕM)

Fm(f ; Wm, ϕm) = ϕm(Wmf )

Wm is a linear operator (matrix); ϕm is a Lip(1) scalar nonlinearity (e.g.
Rectified Linear Unit).
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Problem Formulation
Problem 1

Given a deep network:

Estimate the Lipschitz constant, or bound:

Lip = sup
f 6=f̃ ∈L2

‖y − ỹ‖2
‖f − f̃ ‖2

, Bound = sup
f 6=f̃ ∈L2

‖y − ỹ‖22
‖f − f̃ ‖22

.

Methods (Approaches):
1 Standard Method: Backpropagation, or chain-rule
2 New Method: Storage function based approach (dissipative systems)
3 Numerical Method: Simulations
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Problem Formulation
Problem 2

Given a deep network:

Estimate the stability of the output to specific variations of the input:
1 Invariance to deformations: f̃ (x) = f (x − τ(x)), for some smooth τ .
2 Covariance to such deformations f̃ (x) = f (x − τ(x)), for smooth τ

and bandlimited signals f ;
3 Tail bounds when f has a known statistical distribution (e.g. normal

with known spectral power)
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ConvNet
Topology

A deep convolution network is composed of multiple layers:
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ConvNet
One Layer

Each layer is composed of two or three sublayers: convolution,
downsampling, detection/pooling/merge.
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ConvNet: Sublayers
Linear Filters: Convolution and Pooling-to-Output Sublayer

f (2) = g ∗ f (1) , g ∗ f (1)(x) =
∫

g(x − ξ)f (1)(ξ)dξ

where g ∈ B = {g ∈ S ′ , ĝ ∈ L∞(Rd )}.

(B, ∗) is a Banach algebra with norm ‖g‖B = ‖ĝ‖∞.
Notation: g for regular convolution filters, and Φ for pooling-to-output
filters.
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ConvNet: Sublayers
Downsampling Sublayer

f (2)(x) = f (1)(Dx)

For f (1) ∈ L2(Rd ) and D = D0 · I, f (2) ∈ L2(Rd ) and

‖f (2)‖22 =
∫
Rd
|f (2)(x)|2dx = 1

|det(D)|

∫
Rd
|f (1)(x)|2dx = 1

Dd
0
‖f (1)‖22

Radu Balan (UMD) Data Representation for ML September 12, 2025 56 / 83



Neural Nets Lip I UQ in NN MOCO Lipschitz Analysis

ConvNet: Sublayers
Detection and Pooling Sublayer

We consider three types of detection/pooling/merge sublayers:
Type I, τ1: Componentwise Addition: z =

∑k
j=1 σj(yj)

Type II, τ2: p-norm aggregation: z =
(∑k

j=1 |σj(yj)|p
)1/p

Type III, τ3: Componentwise Multiplication: z =
∏k

j=1 σj(yj)

Assumptions: (1) σj are scalar Lipschitz functions with Lip(σj) ≤ 1; (2) If
σj is connected to a multiplication block then ‖σj‖∞ ≤ 1.
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ConvNet: Sublayers
MaxPooling and AveragePooling

MaxPooling can be implemented as follows:

AveragePooling can be implemented as follows:
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ConvNet: Sublayers
Long Short-Term Memory

Long Short-Term Memory (LSTM) networks
[Hochreiter,Schmidhuber.’97],[Greff et.al.’15].
By BiObserver - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=43992484
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ConvNet: Layer m
Components of the mth layer
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ConvNet: Layer m
Topology coding of the mth layer

nm denotes the number of input nodes in the m-th layer:
Im = {Nm,1,Nm,2, · · · ,Nm,nm}.
Filters:

1 pooling filter: φm,n for node n, in layer m;
2 convolution filter: gm,n,k for input node n to output node k, in layer

m;
For node n: Gm,n = {gm,n;1, · · · gm,n;km,n}.
The set of all convolution filters in layer m: Gm = ∪nm

n=1Gm,n.

Om = {N ′m,1,N ′m,2, · · · ,N ′m,n′m} the set of output nodes of the m-th layer.
Note that n′m = nm+1 and there is a one-one correspondence between Om
and Im+1.
The output nodes automatically partitions Gm into n′m disjoint subsets
Gm = ∪n′m

n′=1G ′m,n′ , where G ′m,n′ is the set of filters merged into N ′m,n′ .
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ConvNet: Layer m
Topology coding of the mth layer

For each filter gm,n;k , we define an associated multiplier lm,n;k in the
following way: suppose gm,n;k ∈ G ′m,k , let K =

∣∣∣G ′m,k ∣∣∣ denote the
cardinality of G ′m,k . Then

lm,n;k =
{

K , if gm,n;k ∈ τ1 ∪ τ3

K max{0,2/p−1} , if gm,n;k ∈ τ2
(5.1)
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ConvNet: Layer m
Topology coding of the mth layer
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ConvNet: Layer m
Topology coding of the mth layer
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Semi-discrete Bessel Systems
A countable set of functions {gn , n ≥ 1} ⊂ L2(S) (where S is a LCA
group) is called a semi-discrete Bessel system in L2(S) if there is a
constant (called a Bessel bound) B ≥ 0 such that, for every f ∈ L2(S),∑

n≥1
‖f ∗ gn‖22 ≤ B‖f ‖22 , f ∗ gn(x) =

∫
S

f (x − y)gn(y)dy .

The Lipschitz constant of a linear operator equals its operator norm. For
nonlinear maps, the Lipschitz bound (square of its Lipschitz constant) is a
replacement for the Bessel bound (or, the upper frame bound).
Lemma
Assume {gn , n ≥ 1} is a semi-discrete Bessel system in L2(Rd ). Then its
optimal Bessel bound is given by

B = sup
ω∈Rn

∑
n≥1
|ĝn(ω)|2 =: ‖

∑
n≥1
|ĝn|2‖∞.
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Layer Analysis
Bessel Bounds

In each layer m and for each input node n we define three types of Bessel
bounds (one for each type of the detection/pooling/merge sublayer):

1st type Bessel bound:

B(1)
m,n = ‖

∣∣∣φ̂m,n
∣∣∣2 +

∑
gm,n;k∈Gm,n

lm,n;kD−d
m,n;k |ĝm,n;k |2 ‖∞ (5.2)

2nd type Bessel bound:

B(2)
m,n = ‖

∑
gm,n;k∈Gm,n

lm,n;kD−d
m,n;k |ĝm,n;k |2 ‖∞ (5.3)

3rd type (or generating) bound:

B(3)
m,n = ‖φ̂m,n‖2∞ . (5.4)
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Layer Analysis
Bessel Bounds

Next we define the layer m Bessel bounds:

1st type Bessel bound B(1)
m = max

1≤n≤nm
B(1)

m,n (5.5)

2nd type Bessel bound B(2)
m = max

1≤n≤nm
B(2)

m,n (5.6)

3rd type (generating) Bessel bound B(3)
m = max

1≤n≤nm
B(3)

m,n. (5.7)

Remark. These bounds characterize Bessel bounds of the associated
semi-discrete Bessel systems.
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Lipschitz Analysis
First Result

Theorem (1. BSZ’17)
Consider a Convolutional Neural Network F with M layers as described
before, with non-expansive Lipschitz activation functions, Lip(ϕm,n,n′) ≤ 1.
Additionally, those ϕm,n,n′ that aggregate into a multiplicative block
satisfy ‖ϕm,n,n′‖∞ ≤ 1. Let the m-th layer 1st type Bessel bound be

B(1)
m = max

1≤n≤nm
‖
∣∣∣φ̂m,n

∣∣∣2 +
km,n∑
k=1

lm,n;kD−d
m,n;k |ĝm,n;k |2 ‖∞.

Then the Lipschitz bound of the entire CNN is upper bounded by∏M
m=1 max(1,B(1)

m ). Specifically, for any f , f̃ ∈ L2(Rd ):

‖F(f )−F(f̃ )‖22 ≤
( M∏

m=1
max(1,B(1)

m )
)
‖f − f̃ ‖22,
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Lipschitz Analysis
Second Result

Theorem (2. BSZ’20)
Consider a Convolutional Neural Network with M layers as described
before, where all scalar nonlinearities satisfy the same conditions as in the
previous result. For layer m, let B(1)

m , B(2)
m , and B(3)

m denote the three
Bessel bounds defined earlier. Denote by L the optimal solution of the
following linear program:

Γ = max
y1,...,yM ,z1,...,zM≥0

M∑
m=1

zm

s.t. y0 = 1
ym + zm ≤ B(1)

m ym−1, 1 ≤ m ≤ M
ym ≤ B(2)

m ym−1, 1 ≤ m ≤ M
zm ≤ B(3)

m ym−1, 1 ≤ m ≤ M

(5.8)
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Lipschitz Analysis
Second Result - cont’d

Theorem (2. BSZ’20)
Then the Lipschitz bound satisfies Lip(F)2 ≤ Γ. Specifically, for any
f , f̃ ∈ L2(Rd ):

‖F(f )−F(f̃ )‖22 ≤ Γ‖f − f̃ ‖22,
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Example 1: Scattering Network

The Lipschitz constant:
Backpropagation/Chain rule:
Lipschitz bound 40 (hence
Lip ≤ 6.3).

Using our main theorem,
Lip ≤ 1, but Mallat’s result:
Lip = 1.

Filters have been choosen as in a
dyadic wavelet decomposition. Thus
B(1)

m = B(2)
m = B(3)

m = 1, 1 ≤ m ≤ 4.
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Example 2: A General Convolutive Neural Network
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Example 2: A General Convolutive Neural Network
Set p = 2 and:

F (ω) = exp(
4ω2 + 4ω + 1

4ω2 + 4ω
)χ(−1,−1/2)(ω) + χ(−1/2,1/2)(ω) + exp(

4ω2 − 4ω + 1
4ω2 − 4ω

)χ(1/2,1)(ω).

φ̂1(ω) = F (ω)
ĝ1,j (ω) = F (ω + 2j − 1/2) + F (ω − 2j + 1/2) , j = 1, 2, 3, 4

φ̂2(ω) = exp(
4ω2 + 12ω + 9
4ω2 + 12ω + 8

)χ(−2,−3/2)(ω) +

χ(−3/2,3/2)(ω) + exp(
4ω2 − 12ω + 9
4ω2 − 12ω + 8

)χ(3/2,2)(ω)

ĝ2,j (ω) = F (ω + 2j) + F (ω − 2j) , j = 1, 2, 3
ĝ2,4(ω) = F (ω + 2) + F (ω − 2)
ĝ2,5(ω) = F (ω + 5) + F (ω − 5)

φ̂3(ω) = exp(
4ω2 + 20ω + 25
4ω2 + 20ω + 24

)χ(−3,−5/2)(ω) +

χ(−5/2,5/2)(ω) + exp(
4ω2 − 20ω + 25
4ω2 − 20ω + 25

)χ(5/2,3)(ω).
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Example 2: A General Convolutive Neural Network

Bessel Bounds: B(1)
m = 2e−1/3 =

1.43, B(2)
m = B(3)

m = 1.
The Lipschitz bound:

Using
backpropagation/chain-rule:
Lip2 ≤ 5.
Using Theorem 1:
Lip2 ≤ 2.9430.
Using Theorem 2 (linear
program): Lip2 ≤ 2.2992.
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Example 3: Lipschitz constant based objective functions
Nonlinear Discriminant Analysis

In Linear Discriminant Analysis (LDA), the objective is to maximize the
”separation” between two classes, while controlling the variances within
class.
A similar nonlinear discriminant can be defined:

S = ‖E[F(f )|f ∈ C1]− E[F(f )|f ∈ C2]‖2
‖Cov(F(f )|f ∈ C1)‖F + ‖Cov(F(f )|f ∈ C2)‖F

.

Replace the statistics ‖Cov‖F by Lipschitz bounds:
Lipschitz bound based separation:

S̃ = ‖E[F(f )|f ∈ C1]− E[F(f )|f ∈ C2]‖2

Lip2
1 + Lip2

2
.

Radu Balan (UMD) Data Representation for ML September 12, 2025 76 / 83



Neural Nets Lip I UQ in NN MOCO Lipschitz Analysis

Example 3: Lipschitz constant based objective functions
Nonlinear Discriminant Analysis

In Linear Discriminant Analysis (LDA), the objective is to maximize the
”separation” between two classes, while controlling the variances within
class.
A similar nonlinear discriminant can be defined:

S = ‖E[F(f )|f ∈ C1]− E[F(f )|f ∈ C2]‖2
‖Cov(F(f )|f ∈ C1)‖F + ‖Cov(F(f )|f ∈ C2)‖F

.

Replace the statistics ‖Cov‖F by Lipschitz bounds:
Lipschitz bound based separation:

S̃ = ‖E[F(f )|f ∈ C1]− E[F(f )|f ∈ C2]‖2

Lip2
1 + Lip2

2
.

Radu Balan (UMD) Data Representation for ML September 12, 2025 76 / 83



Neural Nets Lip I UQ in NN MOCO Lipschitz Analysis

Example 3: Lipschitz constant based objective functions
Nonlinear Discriminant Analysis

The Lipschitz bounds Lip2
1 , Lip2

2 are computed using Gaussian generative
models for the two classes: (µc ,WcW T

c ), where Wc represents the
whitening filter for class c ∈ {1, 2}.
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Example 3: Lipschitz constant based objective functions
Numerical Results

Dataset: MNIST database; input images: 28× 28 pixels. Two classes: ”3”
and ”8”
Classifier: 3 layer and 4 layer random CNN, followed by a trained SVM.

Figure: Results for uniformly distributed random weights

Conclusion: The error rate decreases as the Lipschitz bound separation
increases. The discriminant spread is wider.
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Example 3: Lipschitz constant based objective functions
Numerical Results

Dataset: MNIST database; input images: 28× 28 pixels. Two classes: ”3”
and ”8”
Classifier: 3 layer and 4 layer random CNN, followed by a trained SVM.

Figure: Results for normaly distributed random weights
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Local Analysis
Consider a deep network F : (X , ‖ · ‖2)→ (Y , ‖ · ‖2) between Euclidean
finite-dimensional linear spaces with M layers, where the i th layer is
characterized by the input-output nonlinear Lipschitz map Fi . Denote by
JF , JFi the Jacobian matrices of these maps. Then by an application of
the Fundamental Theorem of Calculus (plus Lebesgue’s differentiation
theorem), the optimal Lipschitz constant is

Lip(F) = sup
x∈X
‖JF (x)‖Op = sup

x∈X
‖JFM · · · JF1(x)‖Op

where the Op norm is the largest singular value of the corresponding
Jacobian.
In the case of type I or II network (i.e., no multiplicative aggregation), the
nonlinear are homogeneous of degree 1, and in each layer the Jacobian
factors as a product of 3 matrices:

JF (x) = PM(x)DM(x)AMPM−1(x)DM−1(x)AM−1 · · ·P1(x)D1(x)A1,
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Local Analysis (2)

JF (x) = PM(x)DM(x)AMPM−1(x)DM−1(x)AM−1 · · ·P1(x)D1(x)A1,

where: Ai is the matrix associated to linear operators (filters), Di is the
diagonal matrix associated to derivative of activation functions (it is a
binary matrix composed of 0’s and 1’s in the case of ReLU activation),
and Pi is the matrix associated to the composition of downsampling and
pooling sublayers. In the case of sum-pooling, Pi is independent of input
x ; in the case of max-filter, it has a weak dependency on x . In both cases
it is sparse, with binary entries.

Results for Alex Net using method: Lip const

Analytical estimate: based on Theorem 1 2.51× 103

Empirical bound: quotient from pairs of samples 7.32× 10−3

Numerical estimate: maximize the “sandwich” formula 1.44
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x ; in the case of max-filter, it has a weak dependency on x . In both cases
it is sparse, with binary entries.

Results for Alex Net using method: Lip const

Analytical estimate: based on Theorem 1 2.51× 103

Empirical bound: quotient from pairs of samples 7.32× 10−3

Numerical estimate: maximize the “sandwich” formula 1.44
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Local Analysis: Domains of linearity

It is not suprising that the analytic estimate 2.51× 103 is bigger than the
numerical estimate 1.44. The suprising conclusion is the difference
between the numerical estimate, 1.44, and the empirical bound 7.32−3.

The “sandwich” formula provides
additional information: The upper
bound is achieved locally for the prin-
cipal right-singular vector v at the
specific input x where the maximum
is achieved. We performed the fol-
lowing numerical expriment: we com-
puted the ratio R(t) = 1

t ‖F(x +tv)−
F(x)‖2:

Figure: The ratio
R(t) = ||F(x + t · v)−F(x)||/t for
different t.
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Lipschitz Analysis: Stochastic Model
The numerical study of the Alex Net showed that the optimal Lipschitz
constant is somewhat theoretical and is achieved by very small
perturbations. Notice for two inputs x1 and x2:

F(x1)−F(x2) =
∫ 1

0
JFM JFM−1 · · · JF1((1−t)x1+tx2)(x2−x1)dt = J∗·(x2−x1)

where the effective Jacobian J∗ is estimated by

J∗ ≈ (E[PM ])(E[DM ])AM · · · (E[P1])(E[D1])A1

where we assume:
1 (ergodicity) x1 and x2 are sufficientlly distinct so that the network

passes through all linearity domains during the convex combination
x1 → (1− t)x2 + tx2 → x2, and

2 (independence) the behavior of activation maps and pooling sublayers
are independent from layer to layer.
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