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Human-Autonomous Image Labeling System
OSD Autonomy Research Pilot Initiative, Army Research Laboratory
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Iterative Task Assignment System

Problem Statement
1 Assignment Problem – How to optimally assign

homogeneous binary classification tasks amongst
diverse agents?

2 Joint Classification Problem – How to dynamically
combine multiple labels from noisy agents without
supervised knowledge?
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Generalized Assignment Problem (GAP)
Morales and Romeijn [2004]; Kundakcioglu and Alizamir [2008]

Z = max
x

∑
i∈I

∑
j∈J

vjixji (1)

1
∑
i∈I

cjixji ≤ bj , j ∈ J

2
∑
j∈J

xji = 1, i ∈ I

3 xji ∈ {0,1}
4 cji ,bji ∈ Z+

5 vji = g(rj , sj) ≥ 0

� n – number of tasks

� m – number of agents

� xji – assignment of task
i to agent j

� vji – assignment value
of task i to agent j

� cji – assignment cost of
task i to agent j

� bj – budget for agent j

� rj – reliability of agent j

� si – classification
confidence of task i
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Branch and Bound Algorithm
Fisher [2004]; Morales and Romeijn [2004]; Kundakcioglu and Alizamir
[2008]

Pseudo-code: Branch and
Bound
Data: v, c,b
Result: x ,Z
Z = Z0, queue = p0;
while queue 6= ∅ do

1. Select p ∈ queue
2. Branch on p
3. for j = 1, . . . ,m do

Bound pj

end
4. if Zj > Z then

if xj is feasible then
x = xj , Z = Zj

else
add pj to queue

end
end

end
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Lagrangian Relaxation
Fisher [2004]; Fisher et al. [1986]; Boyd and Vandenberghe [2004]

We relax the semi-assignment constraint, [2], in (1):

La(λ) = max
x

∑
i∈I

∑
j∈J

vjixji +
∑
i∈I

λi

1−
∑
j∈J

xji

 (2)

1
∑
i∈I

cjixji ≤ bj , j ∈ J

2 xji ∈ {0, 1}
3 cji , bji ∈ Z+

which yields m distinct 0-1 knapsack problems for fixed λ:

La
j (λ) = max

x

(∑
i∈I

(vji − λi) xji

)
, j ∈ J, s.t . [1, 2, 3], (3)

and the dual problem provides a bounding function:

ZDa = min
λ

La(λ) = min
λ

∑
j∈J

La
j (λ) +

∑
i∈I

λi

 ≥ Z . (4)
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Sub-gradient Method
Fisher [2004]; Boyd and Vandenberghe [2004]

Although ZDa is not everywhere differentiable, a sub-gradient descent
method can be implemented. A subgradient of a function, f at t0 is a
vector, ν, such that

f (t) ≤ f (t0) + ν(t − t0), ∀ t . (5)

gk = (1−
∑

j

xj1, . . . , 1−
∑

j

xjn) is a sub-gradient of

La(λk ) = max
x

∑
i∈I

∑
j∈J

vjixji +
∑
i∈I

λk
i

1−
∑
j∈J

xji


at λk , and we can use the following iterative step for the sub-gradient
descent algorithm:

λk+1
i = λk

i − αk gk
i . (6)
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Sub-gradient Method
Fisher [2004]; Boyd and Vandenberghe [2004]

Algorithm: Subgradient Method

Data: vj = (vj1, . . . , vjn)
T ,cj = (cj1, . . . , cjn)

T ,bj , λ
0

Result: x,Z
k = 0;
while convergence condition is not met do

for j = 1, . . . ,m do
[xj ,Zj ] = knapsack(vj − λk ,cj ,bj);

end
for i = 1, . . . ,n do

λk+1
i = λk

i − αk (1−
∑
j∈J

xji);

end
k = k + 1, Z =

∑
j

Zj +
∑

i

λk
i ;

end
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0-1 Knapsack Problem
Otten

The 0-1 knapsack problem,

La
j (λ) = max

x

(∑
i∈I

(
vji − λi

)
xji

)
, j ∈ J

= max
x

(∑
i∈I

v∗ji xji

)
(7)

1
∑
i∈I

cjixji ≤ bj ,

2 xji ∈ {0,1}
3 cji ,bji ∈ Z+

has a pseudo-polynomial time dynamic programming
algorithm.
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0-1 Knapsack Problem
Otten

Algorithm: 0-1 Knapsack Problem
Data: v∗j = (v∗j1, . . . , v

∗
jn)

T , cj = (cj1, . . . , cjn)
T , bj

Result: xj = (xj1, . . . , xjn)
T ,Zj

M = {0}n×bj , S = {0}n×bj , xj = {0}n;
for i = 1, . . . , n do

for l = 1, . . . , bj do
M(i, l) = max(M(i − 1, j),M(i − 1, j − cj(i)) + v∗j (i));
if M(i − 1, j − cj(i)) + v∗j (i)) > M(i − 1, j) then

S(i, l) = 1;
end

end
end
for i = n, . . . , 1 do

if S(i,K ) then
xj(i) = 1,K = K − cj(i);

end
end
Zj = M(n, bj) ;
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0-1 Knapsack Problem

Let v∗j = (4,3,2,1), cj = (2,1,3,1), and bj = 5.

M = S =
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Validation

Problem
� Randomized problems of sizes from Fisher et al. [1986]
� Compare against MATLAB integer programming

application
� NP-hard problem (no “analytical” solution)
� Compare target function values, Z
� MATLAB uses Branch and Bound (with plane cutting

techniques, integer relaxation)

Implementation
� MATLAB R2015b
� Personal Laptop (8GB, Intel Core i7-4510U, 2.6 GHz,

Windows 10-64)
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Validation Set-up

� Problem size derived from Fisher et al. [1986]
� Randomized v,c,b to facilitate feasible problems
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Accuracy of Methods
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Accuracy of Methods

Figure: Target function values, Z, for each method compared
against target function value of MATLAB solution. Relative error
reported to account for problem size.
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Computational Time of Methods

Fsubgradient = 60.29, Fmultiplier = 173.75, FMATLAB = 49.03
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Tightness of Bound
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Schedule (with Milestones*) - AMSC 663

� Develop Assignment Module (15 OCT - 4 DEC)
� Implement branch and bound algorithm (6 NOV)*
� Validate branch and bound algorithm (25 NOV)*
� Implement greedy search algorithm
� Mid-year Review (14 DEC)*
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Schedule (with Milestones*) - AMSC 664

� Build Image Labeling System (25 JAN - 26 FEB)
� Build agent classes
� Develop message-passing framework
� Integrate all components into a system (26 FEB)*

� Test Image Labeling System (26 FEB - 15 APR)
� Testing (1 APR)*
� Performance analysis of test results

� Conclusion (15 APR - 1 MAY)
� Final Presentation and Results (6 MAY)*
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Deliverables

� Software
� Image Labeling System (fusion module, assignment

module, agent classes)
� Execution script

� Data
� Office Object Database
� Office Object RSVP Database

� Analysis
� Performance analysis of test results
� Implications for human-autonomous systems
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Greedy Method

Efficient implementation of
the Branch and Bound
algorithm requires a feasible
solution to provide a lower
bound for solutions:

Zfeasible ≤ Z ≤ ZDa. (8)

A tight lower bound requires
fewer problems to be
enqueued.

Pseudo-code: Greedy Search
Data: v, c,b
Result: x,Z
x = bound(v, c,b);
if x is feasible then

Z = vT x, return;
else

I0 = {i ∈ I|
∑
j∈J

xji = 1};

for i ∈ I0 do
xji = 0 ∀ j ∈ J;
1. sort(vji)
2. assign xji ∀ j ∈ J, i ∈ I0;
if x is feasible then

Z = vT x, return;
end

end
end
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Multiplier Adjustment Method
Fisher et al. [1986]

1. Find (x0,Z 0) to (3) s.t.
∑

j

xji ≤ 1

2. if x0 is feasible then
return;

end
3. while Z k < Z k−1 and xk is not feasible do

for i ∈ {i ∈ I|
∑

j

xji = 0} and j ∈ J do

Calculate, δji , least decrease in λi for xji = 1
end
for i∗ ∈ {i ∈ I|

∑
j

xk
ji = 0 and min2 δji > 0} do

λi∗ = λi∗ −min2 δji∗ ;
if possible then

Find (xk ,Z k ) to (3) s.t.
∑

j

xk
ji ≤ 1; continue;

end
end

end
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Computational Time of Methods
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