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ABSTRACT
Hyperspectral imagery (HSI) is an established technique
with an array of applications, but its use is limited due to
both practical and technical issues associated with spectral
devices. The goal of the ICASSP 2024 ‘Hyper-Skin’ Chal-
lenge is to extract skin HSI from matching RGB images
and an infrared band. To address this problem we propose
a model using features of the scattering transform - a type
of convolutional neural network with predefined filters. Our
model matches and inverts those features, rather than the
pixel values, reducing the complexity of matching while
grouping similar features together, resulting in an improved
learning process.

Index Terms— HSI, scattering transform, data fusion,
skin, machine learning

I. INTRODUCTION

Hyperspectral imagery (HSI), consisting of a set of 2D
images representing different wavelengths, finds numerous
applications in a wide range of fields [1]. In spite of its
value, in many applications there are practical limitations
for implementing this technology. The goal of the ICASSP
2024 Grand Challenge on Hyperspectral Skin Vision [2] is
therefore to reconstruct HSI data from multispectral data
(henceforth referred to as MSI) consisting of standard RGB
images and one near-infrared band, with applications to skin
analysis [3]. We propose a model based on matching and
inverting scattering transform [4] features to address this
challenge.

II. METHODS

2.1. Overview.
Our model takes advantage of representing and matching
data in the feature space [5], instead of its original represen-
tation. Features are extracted by the scattering transform [4],
which groups information about size, location, and direction
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into scattering coefficients. Then, a transformation is learned
by matching MSI scattering coefficients to those of the
training HSI data. A preimage is then applied to obtain an
HSI representation. Finally, a multi-image superresolution
(MISR) network more closely aligns the skin values of the
preimage.

2.2. Scattering Transform.
The scattering transform uses a convolutional neural network
(CNN) structure but with predefined wavelet filters [4]. Let
ψ be the mother wavelet, fix L P N, and for j, q P Z denote
ψj,qpuq “ 2´2jψp2´lrθuq, where θ “ qπ{L and rθ is the
corresponding rotation. Also, let ϕJpuq “ 2´2Jϕp2´Juq

where ϕ is a low-pass filter. Then, the 2-layer scattering
transform of an image x is given by:
tx ˚ ϕJ , |x ˚ ψj,q| ˚ ϕJ , ||x ˚ ψj,q| ˚ ψj1,q1 | ˚ ϕJu1ďjăj1

ďJ
1ďq,q1

ďL

where ˚ denotes (periodic) convolution.

2.3. Matching Networks.
Due to computational constraints, two different matching
networks are used. One network matches the scattering coef-
ficients of MSI images to the scattering coefficients of even
channels of HSI images, while the other network matches
them to the coefficients of the odd channels. This was
done to achieve compatible interpolations of both of these
sets of HSI channels, rather than reconstructing results over
essentially non-overlapping spectral bands. Each matching
network consists of 2 linear layers. ReLU is used for the
activation function of the first layer and tanh for the second.

2.4. Inverse Networks.
As above, one inverse network is trained for scattering
coefficients of even channels and another for odd channels.
We use an inverse similar to the one proposed in [6]. Two
convolutional blocks, each consisting of upsampling by a
factor of 2, a convolutional layer, batch normalization, and
ReLU activation, are first applied. This is followed by one
more convolutional layer, batch normalization, and tanh
activation.

2.5. Multi-image Superresolution Network.



Some correlations are lost between adjoining HSI channels
due to their separation above. This final network is applied
to improve alignment of the predicted even and odd channel
images. First, a mask is applied to the predicted HSI images
which removes (most) non-skin features. Then, the network
is applied to the skin spectra (i.e. the vectors of pixels from
each HSI channel which have the same coordinates). The
general network architecture is identical to the matching
network.

III. IMPLEMENTATION AND RESULTS
3.1. Dataset.
We use the data in [3], as detailed in [2]. Note that the HSI
data is divided into the visual range (VIS), from 400 to 700
nm in 10 nm increments, and the near-infrared range (NIR),
from 700 to 1000 nm in 10 nm increments, with 700 nm in
common. We label the channels in VIS from 0 to 31 and
NIR from 32 to 61, so 31 and 32 are the same channel.
Even channels refer to the even labels, and similarly for odd
channels.

3.2. Implementation Details.
To compute the scattering transform, we use the package
Kymatio [7]. Here, ψ is a Morlet wavelet and ϕ is a
Gaussian. Additionally, the output is downsampled by a
factor of 2J . For our purposes, we choose J “ 2 and L “ 4,
and we take the scattering transform of each channel of our
images.

All network architectures were implemented using Py-
torch, using the Adam optimizer with learning rate 0.001.
The matching networks were trained for 100 epochs each
using L2 loss. The inverse networks were trained for 150
epochs each using L1 loss. The MISR network was trained
for either 30 or 60 epochs with L2 loss.

Three models were tested. Model 1 doesn’t use the MISR
network, whereas Models 2 and 3 use the network trained for
30 and 60 epochs, respectively (in order to compare between
different training times). Since the outputs of the models
have one channel in common (700 nm), the final output for
that channel is obtained by averaging these1.

3.3. Results.
Table 1 summarizes the results of our three models and the
baseline Mask-guided Spectral-Wise Transformer (MST++)
method [8]. Models were compared using the average of the
spectral angle mapper (SAM) scores [3] of the reconstructed
skin values of the testing set; a lower SAM score corresponds
to better performance. Our models perform comparably to
the baseline model, with the third model performing best.

IV. CONCLUSION
Separate inverse networks (and MISR) were used due to

limited computational resources. Our model’s performance

1Source codes for our models are available at https://github.com/
BrandonKolstoe/Hyperskin Scattering.

Table I. Average SAM scores of skin reconstructions of the
MST++ baseline and our proposed models.

Model Average SAM score
MST++ (baseline) 0.1182 ˘ 0.0200

Model 1 (no MISR) 0.1201 ˘ 0.0116
Model 2 (MISR, 30 Epochs) 0.1183 ˘ 0.0124
Model 3 (MISR, 60 Epochs) 0.1179 ˘ 0.0129

could likely be improved by applying PCA with dimension-
ality reduction to the HSI scattering coefficients [6], allowing
us to train a single inverse network. This could also allow for
deeper scattering transforms (i.e. with more details). We wil
also explore further improvement through use of scattering
transforms better suited to HSI data [9].
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