
Journal of Fourier Analysis and Applications (2025) 31:49
https://doi.org/10.1007/s00041-025-10182-7

Frame Quantization of Neural Networks

Wojciech Czaja1 · Sanghoon Na1

Received: 14 April 2024 / Revised: 30 May 2025 / Accepted: 2 June 2025 /
Published online: 25 June 2025
© The Author(s) 2025

Abstract
We present a post-training quantization algorithm with error estimates relying on
ideas originating from frame theory. Specifically, we use first-order Sigma-Delta (��)
quantization for finite unit-norm tight frames to quantize weight matrices and biases
in a neural network. In our scenario, we derive an error bound between the original
neural network and the quantized neural network in terms of step size and the number
of frame elements. We also demonstrate how to leverage the redundancy of frames to
achieve a quantized neural network with higher accuracy.

Keywords Neural Network Quantization · Post-Training Quantization · Sigma-Delta
Quantization · Finite Frames

1 Introduction

Quantization is the process of compressing input from a continuous or large set of
values into a small-sized discrete set. It gained popularity in signal processing, where
one of its primary goals is obtaining a condensed representation of the analogue
signal suitable for digital storage and recovery. Examples of quantization algorithms
include truncated binary expansion, pulse-code modulation (PCM) and sigma-delta
(��) quantization. Among them, �� algorithms stand out due to their theoretically
guaranteed robustness. Mathematical foundations were developed in several seminal
works [4–6, 12, 17], and have been carefully studied since, e.g., [20, 21, 26, 35].

On a different level, the notion of quantization also led to the development of
quantum mechanics from the classical understanding of the physical phenomena,
through ideas such as Weyl quantization, e.g., [3, 15]. This is a different, but not
entirely unrelated, quantization concept, which has been brought closer to the analog-
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to-digital quantization in thework ofKarlheinzGröchenig and his collaborators via the
use of localization operators arising in the time-frequency analysis [2, 10]. Gröchenig
then extended the concept of localization to frame theory [14], laying a foundation for
further joint exploration of the theory of quantization and the frame theory [15].

In recent years, the concept of quantization captured the attention of the machine
learning community. The quantization of deep neural networks (DNNs) is considered
one of the most effective network compression techniques [13]. Computers express
parameters of a neural network as 32-bit or 64-bit floating point numbers. In neural
network quantization, one tries to replace these parameters using compact formats
such as 8 bits (or lower), while preserving the architecture and performance of the
network. An effective neural network quantization method enables users to run DNNs
on portable devices, such as smartphones, without relying on external servers. This
benefits storage requirements and helps avoid privacy-related issues. Due to these
reasons, there have been numerous efforts to develop neural network quantization
schemes that preserve the model accuracy.

Neural network quantization can be categorized into 2 classes. The first class is
Quantization-Aware-Training (QAT). QAT methods [11, 24, 27, 28, 34, 39] retrain
the given neural network, by restricting the domain of parameters to a finite set of
alphabets. The second class is Post-Training Quantization (PTQ). PTQ methods [1,
22, 29–32, 37, 38, 40, 41] take a pre-trained neural network and convert it directly
into a fixed-point neural network. They demand less computation because they do not
require end-to-end training. In addition, unlike QAT methods, PTQ methods do not
require the training dataset - they usually require only a small calibration set. These
reasons make PTQ methods attractive. For a detailed explanation of QAT and PTQ
methods, see [13] and references therein.

Despite the popularity of PTQ methods, unfortunately, most of them lack theoret-
ical error analysis. While some algorithms [29, 30, 40, 41] are equipped with error
estimates, they are typically probabilistic estimates with additional requirements on
input distributions. Moreover, their error estimates are proved only for feed-forward
networks. However, there are popular neural networks with different architectures,
such as ResNet [23], which is constructed by stacking together a series of residual
blocks. Therefore, the design of a PTQmethod with error estimates for different types
of neural networks is still an open question.

To address this problem, we return to the methods of quantization from signal pro-
cessing and investigate how to utilize them in the neural network settingwhile retaining
their theoretical guarantees. We focus on �� quantization algorithms. While [12, 17]
focus on �� quantization for bandlimited functions, [4–6] provide mathematical
analysis of �� quantization for finite frames in R

d and C
d , which is suitable for

quantization of weight matrices in neural networks. Leveraging the tools from [4–6],
we are able to provide a new PTQ algorithm with error estimates. Our contributions
are threefold:

1. In Section 4 we propose an algorithm for quantizing layers of a pre-trained neural
network using the first-order �� quantization algorithm for finite unit-norm tight
frames in R

d . Our algorithm does not require any training data, hence a data-free
quantization. To the best of our knowledge, our work is the first to utilize the tools
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from frame theory in this context (recent work [42] studies quantizing random
Fourier features (RFFs) using �� algorithm, which is different from our study of
DNNs).

2. We provide error estimates for both n-layer feed-forward neural networks and
neural networks formed by a series of residual blocks in Section 5. These results
demonstrate how to control the error using the step size and the number of frame
elements.

3. Finally, in Section 6, we present numerical results for quantizing neural networks
using our proposed algorithm. We apply the algorithm to several neural network
architectures on theMNIST andCIFAR-10 classification tasks, empirically demon-
strating its effectiveness. In addition, we numerically validate the theoretical error
bounds established in Section 5. Experiments and detailed explanations for the
most extreme case, 1-bit quantization, are also provided.

2 Preliminaries

In this paper, all vectors are column vectors inRd , d ∈ N. For a vector x , ‖x‖ denotes
the Euclidean norm of x . For a matrix A, ‖A‖ denotes the matrix 2-norm of A, which
is the largest singular value of A.

We introduce the mathematical formulation of neural networks used in this paper.
First, a fully connected feed-forward neural network (FNN) with n layers is a function
f : Rm0 → R

mn which acts on data x ∈ R
m0 via

f (x) = h[n] ◦ σ ◦ h[n−1] ◦ · · · ◦ σ ◦ h[1](x), (1)

where h[l](x) = Wlx + bl with weight matrix Wl ∈ R
ml×ml−1 and bias bl ∈ R

ml ,
l = 1, 2, · · · , n, and nonlinear activation function σ which acts on each component of
a vector. Here, we omit the activation for the last layer because the choice of the final
activation can be different from σ . For example in classification problems, softmax
activation function is used in the last step, while σ is often chosen as the Rectified
Linear Unit (ReLU) function, defined as x �→ max{0, x} for x ∈ R. Note that ReLU is
a 1-Lipchitz continuous function attaining 0 at x = 0. Throughout this paper we shall
assume activation function σ is an L-Lipschitz continuous function with σ(0) = 0,
which makes ReLU a special case. In addition, we will also assume that mi ≥ 3 for
all i’s. This is a natural assumption, since typical neural network architectures set the
number of neurons at each layer to be greater than 2.

Next, we introduce the mathematical formulation for residual blocks and residual
neural networks used in this paper. We adopt a similar mathematical formulation from
Chapter 3.8.2 in [16]. A residual neural network with n residual blocks is a function
g : Rk → R

k defined as

g(x) = z[n] ◦ σ ◦ z[n−1] ◦ · · · ◦ σ ◦ z[1](x), (2)
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where each residual block z[i] has a structure z[i](x) = Wi,2σ(Wi,1x + bi ) + x, with
weight matricesWi,1 ∈ R

ri×k,Wi,2 ∈ R
k×ri and bias bi ∈ R

ri . For residual networks,
we only consider ReLU as the activation function.

For a neural network F(x), the quantized neural network FQ(x) is defined as
a network formed by replacing weight matrices and biases of F(x) with quantized
weight matrices and quantized biases from any quantization algorithm. For example,
for a fully connected FNN f (x) in (1), assume that Qi ’s and ci ’s are quantized weight
matrices and quantized biases of Wi ’s and bi ’s, respectively. Then,

fQ(x) = h[n]
Q ◦ σ ◦ h[n−1]

Q ◦ σ · · · ◦ σ ◦ h[1]
Q (x), (3)

where h[i]
Q (x) = Qi x + ci for i = 1, · · · , n. Similarly for a residual network g(x) in

(2),

gQ(x) = z[n]
Q ◦ σ ◦ z[n−1]

Q ◦ · · · ◦ σ ◦ z[1]Q (x), (4)

where z[i]Q (x) = Qi,2σ(Qi,1x + ci ) + x for i = 1, · · · , n. Here, Qi,2’s, Qi,1’s and
ci ’s are quantized weight matrices and quantized biases of Wi,2’s, Wi,1’s and bi ’s
respectively.

Note that if we write ˜Wl = (Wl , bl) and x̃ = (xT , 1)T , then h[l](x) = Wlx + bl =
˜Wl x̃ holds. Therefore,without loss of generality,wewill omit the biases in our analysis.
This means we assume bi = 0 for all i’s, so h[i](x)’s in (1) can be regarded as
h[i](x) = Wi x and z[i](x)’s in (2) can be regarded as z[i](x) = Wi,2σ(Wi,1x) + x .

Next, we recall some basics from frame theory. In this paper, we only discuss finite
frames forRd . For a discussion of finite frames for general Hilbert spaces, see [9]. We
say a set {e1, · · · , eN } in R

d is a finite frame for Rd if there exist 0 < A ≤ B < ∞,
such that A‖x‖2 ≤ ∑N

i=1 |〈x, ei 〉|2 ≤ B‖x‖2 holds for all x ∈ R
d . The constants A

and B are called frame bounds, and {〈x, ei 〉}Ni=1 are called the frame coefficients of
x with respect to frame {e1, · · · , eN }. A frame {e1, · · · , eN } in R

d is called tight if
A = B. If a finite tight frame F = {e1, · · · , eN } satisfies ‖ei‖ = 1 for all i , then we
say F is a finite unit-norm tight frame (FUNTF). For a finite frame {e1, · · · , eN } in
R
d , the linear function S : Rd → R

d defined by

Sx =
N

∑

i=1

〈x, ei 〉ei , (5)

is the frame operator of F . Note that if F = {e1, · · · , eN } is a finite frame forRd with
frame bounds A and B, then it is easy to see that S is a d × d positive definite matrix
satisfying AId ≤ S ≤ BId ,where Id is the identitymatrix ofRd . Therefore, its inverse
S−1 exists and it satisfies 1

B Id ≤ S−1 ≤ 1
A Id . This inverse operator S

−1 is called the
dual frame operator. Multiplying (5) by S−1 gives us an atomic decomposition of an
arbitrary x ∈ R

d :
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x = S−1Sx = S−1
{

N
∑

i=1

〈x, ei 〉ei
}

=
N

∑

i=1

〈x, ei 〉S−1ei . (6)

It is straightforward to check {S−1e1, · · · , S−1eN } is a frame forRd with frame bounds
1/B and 1/A. We say that {S−1e1, · · · , S−1eN } is the canonical dual frame of F . For
detailed proofs of the aforementioned statements, see [9]. When F = {e1, · · · , eN } is
a tight frame for Rd with frame bound A, then S = AId and S−1 = 1

A Id . In this case,

(6) gives us the frame expansion x = 1
A

∑N
i=1〈x, ei 〉ei , for any x ∈ R

d . Moreover,
if F is a FUNTF, then it is known that A = N/d holds [6]. Therefore, we have the
frame expansion x = d

N

∑N
i=1〈x, ei 〉ei for any x ∈ R

d .

3 Frame Quantization

In vector quantization, first-order �� quantization algorithm has a uniform upper
bound on the error in the case of finite frames [5] and it is known to outperform PCM
most of the time for realistic settings [7]. Since a matrix can be interpreted as a stack
of column vectors, �� becomes an option for quantizing a weight matrix. In this
section, we introduce first-order �� quantization algorithms for finite frames for Rd .

We begin with some common definitions in [4–6, 9, 41]. Given K ∈ N and δ > 0, the
midrise quantization alphabet Aδ

K is defined as

Aδ
K =

{

(−K + 1

2
)δ, (−K + 3

2
)δ, · · · ,−1

2
δ,

1

2
δ, · · · , (K − 1

2
)δ

}

. (7)

The 2K -level midrise uniform scalar quantizer Q with step size δ is defined as

Q(u) = arg min
q∈Aδ

K

|u − q|.

Therefore, Q(u) is the element in Aδ
K which is closest to u.

Definition 3.1 [5] Given K ∈ N and δ > 0, define the midrise quantization alphabet
Aδ
K and the 2K -level midrise uniform scalar quantizer Q with stepsize δ . Let F =

{e1, · · · , eN } be a finite frame for Rd where d ≥ 3 and let p be a permutation of
{1, 2, · · · , N }. For a given input sequence {x1, x2, · · · , xN }, the associated first-order
�� quantization is defined by the iteration:

un = un−1 + xp(n) − qn,

qn = Q(un−1 + xp(n)),

for n = 1, 2, · · · , N where u0 = 0. This produces the quantized sequence
{q1, · · · , qN } and an auxiliary sequence {u0, · · · , uN } of state variables.

In the above it is possible to consider nonzero initial condition ‖u0‖ < δ/2, but for
simplicity, we will only consider the case u0 = 0 as in [5].
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We now describe the vector quantization process. Let F = {e1, · · · , eN } be a finite
frame for Rd and let p be a permutation of {1, 2, · · · , N }. Choose an arbitrary vector
x ∈ R

d and represent it as x = ∑N
i=1 xi S

−1ei with frame expansion in (6). We
say x̄ = ∑N

i=1 qi S
−1ep(i) is the quantized expansion of x , where {q1, · · · , qN } is

the quantized sequence from the first-order �� quantization in Definition 3.1. The
first-order �� scheme in Definition 3.1 is an iterative scheme that depends heavily
on the choice of permutation p. Given a finite frame F = {e1, · · · , eN } for Rd ,
its frame variation with respect to a permutation p of {1, 2, · · · , N } is defined as
σ(F, p) := ∑N−1

i=1 ‖ep(i) − ep(i+1)‖. Frame variation is a measurement that captures
the interdependencies between the frame elements resulting from the choice of p. It
is an important quantity that reflects the role of permutation p in the error estimates
for first-order �� quantization.

We provide an error bound on the approximation error ‖x − x̄‖. Here, we only state
the result for the case of a FUNTF. For general results, see [5] and [6].

Theorem 3.1 [5] Let F = {e1, · · · , eN } be a finite unit-norm tight frame for Rd , and
let p be a permutation of {1, 2, · · · , N }. Let x ∈ R

d satisfy ‖x‖ ≤ (K − 1/2)δ and
have the frame expansion x = ∑N

i=1〈x, ei 〉S−1ei , where S−1 is the inverse frame
operator for F. Then, x̄ satisfies the approximation error

‖x − x̄‖ ≤ δd

2N
(σ (F, p) + 1).

To obtain a quantized expansion with a small error, it is desirable to choose a
permutation p that makes frame variation σ(F, p) small. In [36], the author proved
that for a set {e1, · · · , eN } ⊂ [− 1

2 ,
1
2 ]d , with d ≥ 3, there exists a permutation

p of {1, 2, · · · , N } which satisfies
∑N−1

i=1 ‖ep(i) − ep(i+1)‖ ≤ 2
√
d + 3N 1− 1

d −
2
√
d + 3. Note that for a unit-norm frame F = {e1, · · · , eN } for R

d , the set
1
2 F = { 12e1, · · · , 1

2eN } is a subset of [− 1
2 ,

1
2 ]d . In [6], the authors combined these

results to obtain the following result.

Theorem 3.2 [6] Let F = {e1, · · · , eN } be a unit-norm frame for Rd , d ≥ 3. Then,
there exists a permutation p of {1, 2, · · · , N } such that

σ(F, p) ≤ 4
√
d + 3N 1− 1

d − 4
√
d + 3. (8)

Next, we estimate the approximation error in terms of δ, d, and N .

Corollary 3.3 Let F = {e1, · · · , eN } be a finite unit-norm tight frame for Rd , d ≥ 3,
and let x ∈ R

d satisfy ‖x‖ ≤ (K − 1/2)δ. Let p be a permutation of {1, 2, · · · , N }
that satisfies (8). Let x̄ be the quantized expansion. Then, the approximation error
satisfies

‖x − x̄‖ ≤ δd

2N
(4

√
d + 3N 1− 1

d − 4
√
d + 3 + 1).

Proof Apply Theorem 3.2 to Theorem 3.1. ��
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Corollary 3.3 shows that we can bound the approximation error by only using the
variables δ, d, and N . We use this result to obtain error bounds between a neural
network and its quantized version in Section 5.

While Theorem 3.2 provides a general bound on frame variation for finite unit-norm
frames, there are specific types of frames where the resulting frame variations can be
uniformly bounded by a constant which is independent of N . Here, we introduce the
harmonic frames, which is a well-known example of FUNTFs achieving uniformly
bounded frame variation for identity permutation.

Definition 3.2 For N ≥ d ≥ 2, the harmonic frame Hd
N = {e j }N−1

j=0 in R
d is defined

as

e j =
√

2

d

[

cos
2π j

N
, sin

2π j

N
, cos

2π2 j

N
, sin

2π2 j

N
, · · · , cos

2π d
2 j

N
, sin

2π d
2 j

N

]

when d is even, and

e j =
√

2

d

[ 1√
2
, cos

2π j

N
, sin

2π j

N
, cos

2π2 j

N
, sin

2π2 j

N
,

· · · , cos
2π d−1

2 j

N
, sin

2π d−1
2 j

N

]

when d is odd.

It is easy to check that the harmonic frames are FUNTFs. We omit the proof.

Lemma 3.4 [5] Let Hd
N = {e j }N−1

j=0 be the harmonic frame in R
d with N ≥ d ≥ 2.

Let p be the identity permutation. Then we have

σ(Hd
N , p) ≤ 2π(d + 1)√

3
.

ForFUNTFswith uniformlybounded framevariations, it is straightforward to check
that the approximation error in Corollary 8 can be improved to ‖x − x̄‖ ≤ Cdδ/N .
For more details on finite frames with uniformly bounded frame variation, see [8].

4 Frame Quantization for Neural Networks

In this section, we explain our method to quantize a weight matrix Wi ∈ R
mi×mi−1 .

Let Fi = {ei1, · · · , eiNi
} be a FUNTF for Rmi that we are using for quantization.

Write Wi = [wi
1, w

i
2, · · · , wi

mi−1
] where wi

j is a mi × 1 column vector for j =
1, 2, · · · ,mi−1. First, choose appropriate positive integer Ki and step size δi > 0 that
satisfy

max
j=1,··· ,mi−1

‖wi
j‖ ≤ (Ki − 1

2
)δi . (9)



49 Page 8 of 24 Journal of Fourier Analysis and Applications (2025) 31 :49

Next, we find a permutation pi of {1, · · · , Ni } that satisfies (8). The algorithm to find
such permutations is described in [6, 36], so we omit the details. Then, we compute
the quantized expansions of wi

j ’s, using frame Fi , constant Ki , and step size δi for

i = 1, · · · , n. Let qij be the quantized expansion of wi
j . Since we are using finite

unit-norm tight frame, the dual frame operator S−1 is mi
Ni
Imi , where Imi is the identity

matrix of Rmi . Therefore qij ’s can be written as

qij =
Ni

∑

k=1

qij,k S
−1eipi (k) = mi

Ni

Ni
∑

k=1

qij,ke
i
pi (k)

. (10)

Note that the first-order �� quantization in Definition 3.1 forces qij,k ∈ Aδi
Ki

for all
( j, k) ∈ {1, · · · ,mi−1} × {1, · · · , Ni }. Therefore, at most 2Ki values are candidates
for qij,k . In our scenario, we storeCi = [qij,k]1≤ j≤mi−1,1≤k≤Ni ∈ (Aδi

Ki
)mi−1×Ni .When

we need a quantized neural network, then we use the finite unit-norm tight frames Fi ’s
and matrices Ci ’s to reconstruct a network using (10).

Current neural network quantization methods convert a weight matrix W =
[wi j ]1≤i≤m,1≤ j≤n ∈ R

m×n into a quantized matrix Q = [qi j ]1≤i≤m,1≤ j≤n , where
each qi j uses fewer bits compared to the corresponding wi j . Note that W and Q have
the same dimensions. Our method differs from typical approaches because we are
storing matrices Ci ’s that have different dimensions from the weight matrices Wi ’s.
Due to their different dimensions, we will not say Ci ’s are quantized weights. Instead,
we will say that the matrix Qi = [qi1, · · · , qimi−1

] ∈ R
mi×mi−1 , where the columns are

the quantized expressions qij ’s, is the quantized weight matrix of Wi ∈ R
mi×mi−1 for

i = 1, · · · , n.

Algorithm 1 Frame Quantization

Require: Weight matrix Wi ∈ R
mi×mi−1 and FUNTF Fi = {ei1, · · · , eiNi

} for Rmi .

1. Set level Ki ∈ N and stepsize δi that satisfy max j=1,··· ,mi−1 ‖wi
j‖ ≤ (Ki − 1

2 )δi .

2. Find a permutation pi of {1, · · · , Ni } that satisfies (8).
for j = 1, · · · ,mi−1 do

1. Compute frame expansion wi
j = mi

Ni

∑Ni
k=1 wi

j ,ke
i
k .

2. Use first-order �� quantization algorithm 3.1 with Ki and δi to compute

qij = mi

Ni

Ni
∑

k=1

qij ,ke
i
pi (k)

.

end for
3. Set Ci = [qij,k ]1≤ j≤mi−1,1≤k≤Ni ∈ (A

δi
Ki

)mi−1×Ni .

Ensure: Quantized matrix Qi = [qi1, · · · , qimi−1
] ∈ R

mi×mi−1 . Store Ci .

Note that the above algorithm uses first-order �� quantization for the column
vectors of the weight matrix Wi . On the other hand, we may consider applying first-
order �� quantization algorithm for the row vectors of the weight matrix Wi . In this
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case, we apply Algorithm 1 to WT
i . This framework is applied for neural networks

with residual blocks in Section 5.2.
Although biases are not typically quantized in practice, if quantization of biases

is needed for some purpose, we may also quantize biases by adding them to the
final columns of weight matrices. This means that we can also quantize bi ’s while
we quantize the weight matrices Wi ’s by applying Algorithm 1 to matrices ˜Wi =
(Wi , bi )’s.

5 Error Estimates

We begin with some auxiliary lemmas, which play an important role in proving error
estimates between a neural network and its approximation by a quantized network.

Lemma 5.1 Let Qi be the quantized matrix for weight matrix Wi ∈ R
mi×mi−1 using

Algorithm 1. Then,

‖Wi − Qi‖ ≤ 2
√
2δimi

√
mi−1mi N

− 1
mi

i ,

where δi is the step size and Ni is the number of elements in the frame Fi =
{ei1, · · · , eiNi

} used in Algorithm 1.

Proof Write Wi = [wi
1 · · · wi

mi−1
], Qi = [qi1, · · · , qimi−1

] ∈ R
mi×mi−1 where wi

j ’s

and qij ’s are mi × 1 column vectors. Since Algorithm 1 uses pi that satisfies (8),
Corollary 3.3 gives us the error estimate

‖wi
j − qij‖ ≤ δimi

2Ni
(4

√

mi + 3N
1− 1

mi
i − 4

√

mi + 3 + 1) (11)

for all j = 1, · · · ,mi−1. Now, using (11) and the assumption mi ≥ 3 from Section 2,
we have

‖Wi − Qi‖ = max‖x‖=1
‖(Wi − Qi )x‖ ≤ max‖x‖=1

{
mi−1
∑

j=1

|x j | × ‖wi
j − qij‖}

≤ δimi

2Ni
(4

√

mi + 3N
1− 1

mi
i − 4

√

mi + 3 + 1) × max‖x‖=1
{
mi−1
∑

j=1

|x j |}

≤ δimi
√
mi−1

2Ni
(4

√

mi + 3N
1− 1

mi
i − 4

√

mi + 3 + 1)

≤ δimi
√
mi−1

2Ni
× 4

√

mi + 3N
1− 1

mi
i ≤ 2

√
2δimi

√
mi−1mi N

− 1
mi

i .

��
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Next, we provide an upper bound for the norm of the quantized matrices Qi ’s. This
is used in deriving the error estimate between an n-layer FNN and its corresponding
quantized neural network.

Lemma 5.2 Let Qi be the quantized matrix of Wi . Let σi = ‖Wi‖. Then we have

‖Qi‖ ≤ 2
√
2δ jm j

√
m jm j−1N

− 1
m j

j + σi .

Proof Using Lemma 5.1 and the triangle inequality of matrix norms, we have

‖Qi‖ ≤ ‖Qi − Wi‖ + ‖Wi‖ ≤ 2
√
2δimi

√
mimi−1N

− 1
mi

i + σi .

��

5.1 Feedforward Networks

In this section, we derive an upper estimate for ‖ f (x)− fQ(x)‖, where f (x) is a FNN
with n layers (1) and fQ(x) its quantized neural network (3). For convenience, we
adopt the assumptions from Section 2 and omit the biases in our analysis. Thus, we
can write f (x) = Wn(σ (· · · σ(W1x) · · · )) and fQ(x) = Qn(σ (· · · σ(Q1x) · · · )). As
in Lemma 5.2, we let σi = ‖Wi‖ for i = 1, · · · , n.

Theorem 5.3 Let f (x) = Wn(σ (· · · σ(W1x) · · · )) be a feed-forward neural network
with n layers. Let fQ(x) = Qn(σ (· · · σ(Q1x) · · · )) be the quantized neural network
obtained by means of Algorithm 1. Then, for any input X ∈ R

m0 , we have

‖ f (X) − fQ(X)‖ ≤ Ln−1‖X‖ ×
n

∑

j=1

{

2
√
2δ jm j

√
m jm j−1N

− 1
m j

j ×
n

∏

i= j+1

σi

×
j−1
∏

l=1

(2
√
2δlml

√
mlml−1N

− 1
ml

l + σl)
}

. (12)

Proof Note that since σ is an L−Lipschitz continuous function with σ(0) = 0, we
have

‖σ(v)‖ = ‖σ(v) − σ(0)‖ ≤ L‖v − 0‖ = L‖v‖

for any vector v. Using this, for j = 1, · · · , n, we have

‖Wnσ · · ·WjσQ j−1σQ j−2 · · · Q1X − Wnσ · · ·Wj+1σQ jσQ j−1σQ j−2 · · · Q1X‖
≤ Ln− j‖Wn‖ · · · ‖Wj+1‖ × ‖Wj − Q j‖‖σQ j−1σQ j−2 · · · Q1X‖
≤ Ln−1‖Wn‖ · · · ‖Wj+1‖ × ‖Wj − Q j‖ × ‖Q j−1‖ · · · ‖Q1‖‖X‖.
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Next, using Lemma 5.1, Lemma 5.2, and triangle inequality, we get

‖ f (X) − fQ(X)‖ = ‖Wn(σ (· · · σ(W1x) · · · )) − Qn(σ (· · · σ(Q1x) · · · ))‖

≤
n

∑

j=1

‖Wnσ · · ·WjσQ j−1σQ j−2 · · · Q1X − Wnσ · · ·

Wj+1σQ jσQ j−1σQ j−2 · · · Q1X‖

≤
n

∑

j=1

Ln−1‖Wn‖ · · · ‖Wj+1‖ × ‖Wj − Q j‖ × ‖Q j−1‖ · · · ‖Q1‖‖X‖

≤ Ln−1‖X‖ ×
n

∑

j=1

{

2
√
2δ jm j

√
m jm j−1N

− 1
m j

j ×
n

∏

i= j+1

σi

×
j−1
∏

l=1

(2
√
2δlml

√
mlml−1N

− 1
ml

l + σl)
}

. (13)

��
Note that {σi }ni=1, {mi }ni=0, and L are constants determined by the given FNN f (x).

Therefore, the upper bound in (12) can be only controlled by the step sizes δi and the
numbers of frame elements Ni . Once we fix δi ’s, then the upper bound in (12) can

be written as
∑n

j=1 O(N
−1/m j
j )‖X‖. This shows we can leverage the redundancy of

frames for the accuracy of quantized neural networks. On the other hand, if we fix
frames F1, · · · , Fn , then the upper bound in (12) depends only on δi ’s and can be
written as

∑n
i=1 O(δi )‖X‖. Therefore, smaller δi ’s and larger Ni ’s would generate a

quantized neural network with higher accuracy.
When the number of neurons in each hidden layer is the same, that is when m1 =

· · · = mn−1, then we have a simplified version of Theorem 5.3.

Corollary 5.4 Let f (x) = Wn(σ (· · · σ(W1x) · · · )) be a feed-forward neural network
with n layer with m1 = m2 = · · · = mn−1 = m. Fix a FUNTF F ⊂ R

m with N
elements and a stepsize δ. Choose a permutation p of {1, 2, · · · , N } that satisfies
(8). Now, use Algorithm 1 to quantize W1, · · · ,Wn−1 and WT

n with the same F, δ,

and p. Let M = max{m0,m,mn}. Then, the quantized neural network fQ(x) =
Qn(σ (· · · σ(Q1x) · · · )) satisfies

‖ f (X) − fQ(X)‖

≤ 2
√
2δM2N− 1

m Ln−1‖X‖
n

∑

j=1

{
n

∏

i= j+1

σi

j−1
∏

l=1

(2
√
2δM2N− 1

m + σl)
}

(14)

for any data X ∈ R
m0 .

Proof By Lemma 5.1, we have ‖Wi − Qi‖ ≤ 2
√
2δimi

√
mi−1mi N

− 1
mi

i ≤
2
√
2δM2N− 1

m for i = 1, · · · , n − 1. For i = n, we have ‖Wn − Qn‖ =
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‖WT
n − QT

n ‖ ≤ 2
√
2δnmn−1

√
mn−1mnN

− 1
mn−1

n ≤ 2
√
2δM2N− 1

m . These estimates

yield ‖Qi‖ ≤ ‖Wi − Qi‖ + ‖Wi‖ ≤ 2
√
2δM2N− 1

m + σi . Therefore, from the proof
of Theorem 5.3, we get

‖ f (X) − fQ(X)‖ ≤ Ln−1‖X‖ ×
n

∑

j=1

{
n

∏

i= j+1

σi × ‖Wj − Q j‖ × ‖Q j−1‖ · · · ‖Q1‖
}

≤ Ln−1‖X‖
n

∑

j=1

{

2
√
2δM2N− 1

m

n
∏

i= j+1

σi

j−1
∏

l=1

(2
√
2δM2N− 1

m + σl)
}

= 2
√
2δM2N− 1

m Ln−1‖X‖
n

∑

j=1

{
n

∏

i= j+1

σi

j−1
∏

l=1

(2
√
2δM2N− 1

m + σl)
}

.

��

If we use a FUNTF for Rm with N elements where N ≥
(

2
√
2δM2

min{σ1,··· ,σn}
)m

, then we

have the following simplification.

Corollary 5.5 If we have N ≥
(

2
√
2δM2

min{σ1,··· ,σn}
)m

in Corollary 5.4, then

‖ f (X) − fQ(X)‖ ≤ √
2δM2N− 1

m Ln−1‖X‖
n

∏

i=1

σi

n
∑

j=1

2 j

σ j
,

for any input data X ∈ R
m0 .

Proof N ≥
(

2
√
2δM2

min{σ1,··· ,σn}
)m

implies 2
√
2δM2N− 1

m ≤ min{σ1, · · · , σn}. Hence we
have

n
∏

i= j+1

σi

j−1
∏

l=1

(2
√
2δM2N− 1

m + σl) ≤
n

∏

i= j+1

σi

j−1
∏

l=1

(σl + σl) = 2 j−1

σ j

n
∏

i=1

σi .

Applying this to (14) yields the result. ��
Note that the above results apply to general FUNTFs. However, certain families

of FUNTFs discussed in Section 3, which have uniformly bounded frame variations,
provide better error estimates. For instance, using harmonic frames {Hmi

Ni
}ni=1 and the

identity permutation to quantize weight matrices Wi ’s using Algorithm 1, then one
can easily prove a variant of Lemma 5.1:

‖Wi − Qi‖ ≤ δimi
√
mi−1

2Ni

(2π(mi + 1)√
3

+ 1
)

≤ δimi
√
mi−1

2Ni
× 8π + √

3

3
√
3

mi .
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The last inequality holds since we assume mi ≥ 3 for all i’s. Using this, we can
show (12) can be rewritten as an explicit upper bound for harmonic frames, which is
a stronger upper bound in terms of Ni ’s:

‖ f (X) − fQ(X)‖ ≤ Ln−1‖X‖ ×
n

∑

j=1

{ (8π + √
3)

6
√
3

δ jm j
√
m jm j−1N

−1
j ×

n
∏

i= j+1

σi

×
j−1
∏

l=1

(
(8π + √

3)

6
√
3

δlml
√
mlml−1N

−1
l + σl)

}

. (15)

That is, treating δi ’s as fixed constants, we obtain ‖ f (X)− fQ(X)‖ ≤ ∑n
i=1 O(N−1

i )

‖X‖. Similar results hold for FUNTFs where their frame variations are uniformly
bounded. These frames may help us to construct a quantized network with higher
accuracy.

5.2 Neural Networks with Residual Blocks

We now establish error estimates for residual networks. Following the assumptions in
Section 2, we omit biases for simplicity. We quantize all the weight matrices using the
same FUNTF F with N elements, the same permutation p of {1, 2, · · · , N } satisfying
(8), the same constant K , and the same step size δ as in Algorithm 1. Since Wi,1 and
Wi,2 have different structures, we apply Algorithm 1 to WT

i,1 and Wi,2 to compress
the residual network. The quantized weight matrices Qi,1’s are transposes of those
obtained by applying Algorithm 1 to Wi,1’s.

Theorem 5.6 Let g(x) be a residual neural network with n residual blocks (2). Let

λ = max
i=1,··· ,n

{

max{‖Wi,2‖, ‖Wi,1‖}
}

, r = max
i=1,··· ,n ri .

Let gQ(x) be the quantized residual neural network of g(x) (4) from Algorithm 1.
Then for any input X ∈ R

k, we have

‖g(X) − gQ(X)‖ ≤ 4δk
√

r(k + 3)(δk
√

r(k + 3) + λ)N− 1
k ‖X‖

×
n−1
∑

j=0

(λ2 + 1) j
(

(2δk
√

r(k + 3)N− 1
k + λ)2 + 1

)n−1− j
. (16)

Proof For simplicity, let A = 4δk
√
r(k + 3)(δk

√
r(k + 3) + λ)N− 1

k and B =
(2δk

√
r(k + 3)N− 1

k + λ)2 + 1. Let y0(x) = y0,Q(x) = x and define yi (x) =
z[i] ◦ σ · · · ◦ σ ◦ z[1](x), and yi,Q(x) = z[i]Q ◦ σ · · · ◦ σ ◦ z[1]Q (x) for i = 1, · · · , n. We
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shall show that

‖yi (X) − yi,Q(X)‖ ≤ A‖X‖
i−1
∑

j=0

(λ2 + 1) j Bi−1− j , (17)

for i = 1, · · · , n. Note that we have recurrence relations:

yi (X) = Wi,2(σ (Wi,1(σ (yi−1(X))))) + σ(yi−1(X)), (18)

yi,Q(X) = Qi,2(σ (Qi,1(σ (yi−1,Q(X))))) + σ(yi−1,Q(X)). (19)

By using the triangle inequality repeatedly, we obtain:

‖yi (X) − yi,Q(X)‖
≤ ‖Wi,2(σ (Wi,1(σ (yi−1(X))))) − Qi,2(σ (Qi,1(σ (yi−1,Q(X)))))‖

+ ‖σ(yi−1(X)) − σ(yi−1,Q(X))‖
≤ ‖Wi,2(σ (Wi,1(σ (yi−1(X))))) − Wi,2(σ (Qi,1(σ (yi−1(X)))))‖

+ ‖Wi,2(σ (Qi,1(σ (yi−1(X))))) − Qi,2(σ (Qi,1(σ (yi−1(X)))))‖
+ ‖Qi,2(σ (Qi,1(σ (yi−1(X))))) − Qi,2(σ (Qi,1(σ (yi−1,Q(X)))))‖
+ ‖σ(yi−1(X)) − σ(yi−1,Q(X))‖. (20)

Since σ is ReLU, we have ‖σ(x) − σ(y)‖ ≤ ‖x − y‖ and ‖σ(x)‖ ≤ ‖x‖ for any
vectors x, y ∈ R

k . Using this fact, the first term in (20) is bounded by:

‖Wi,2(σ (Wi,1(σ (yi−1(X))))) − Wi,2(σ (Qi,1(σ (yi−1(X)))))‖
≤ ‖Wi,2‖‖Wi,1 − Qi,1‖‖yi−1(X)‖ ≤ λ‖Wi,1 − Qi,1‖‖yi−1(X)‖.

The second term in (20) is bounded by:

‖Wi,2(σ (Qi,1(σ (yi−1(X))))) − Qi,2(σ (Qi,1(σ (yi−1(X)))))‖
≤ ‖Wi,2 − Qi,2‖‖σ(Qi,1(σ (yi−1(X))))‖ ≤ ‖Wi,2 − Qi,2‖‖Qi,1‖‖yi−1(X)‖.

The third term in (20) is bounded by:

‖Qi,2(σ (Qi,1(σ (yi−1(X))))) − Qi,2(σ (Qi,1(σ (yi−1,Q(X)))))‖
≤ ‖Qi,2‖‖Qi,1‖‖yi−1(X) − yi−1,Q(X)‖.

Finally, the fourth term in (20) is bounded by:

‖σ(yi−1(X)) − σ(yi−1,Q(X))‖ ≤ ‖yi−1(X) − yi−1,Q(X)‖.

From the four inequalities above, we obtain:

‖yi (X) − yi,Q(X)‖ ≤ {λ‖Wi,1 − Qi,1‖ + ‖Wi,2 − Qi,2‖‖Qi,1‖} × ‖yi−1(X)‖
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+ {‖Qi,2‖‖Qi,1‖ + 1} × ‖yi−1(X) − yi−1,Q(X)‖. (21)

From the proof of Lemma 5.1 and Lemma 5.2, using ‖A‖ = ‖AT ‖ we

have ‖Wi,1 − Qi,1‖, ‖Wi,2 − Qi,2‖ ≤ 2δk
√
r(k + 3)N− 1

k and ‖Qi,1‖, ‖Qi,2‖ ≤
2δk

√
r(k + 3)N− 1

k + λ. Applying these to (21), we have:

‖yi (X) − yi,Q(X)‖ ≤ 2δk
√

r(k + 3)N− 1
k (λ + 2δk

√

r(k + 3)N− 1
k + λ)‖yi−1(X)‖

+
(

(2δk
√

r(k + 3)N− 1
k + λ)2 + 1

)

‖yi−1(X) − yi−1,Q(X)‖
= A‖yi−1(X)‖ + B‖yi−1(X) − yi−1,Q(X)‖. (22)

From the recurrence relations (18) and (19), one can easily check that

‖yi (X)‖ = ‖Wi,2(σ (Wi,1(σ (yi−1(X))))) + σ(yi−1(X))‖
≤ ‖Wi,2‖‖Wi,1‖‖‖yi−1(X)‖ + ‖yi−1(X)‖ ≤ (λ2 + 1)‖yi−1(X)‖. (23)

Using (23) repeatedly, we obtain ‖yi (X)‖ ≤ (λ2 + 1)i‖y0(X)‖ = (λ2 + 1)i‖X‖,
which together with (22) implies:

‖yi (X) − yi,Q(X)‖ ≤ A‖yi−1(X)‖ + B‖yi−1(X) − yi−1,Q(X)‖
≤ A(λ2 + 1)i−1‖X‖ + B‖yi−1(X) − yi−1,Q(X)‖. (24)

To prove (17), we proceed by induction. When i = 1, (24) yields:

‖y1(X) − y1,Q(X)‖ ≤ A(λ2 + 1)0‖X‖ + B‖y0(X) − y0,Q(X)‖ = A‖X‖.

Therefore, (17) holds when i = 1. Now, let’s assume that (17) holds for i = t .
When i = t + 1, by (24) and induction hypothesis, we have

‖yt+1(X) − yt+1,Q(X)‖ ≤ A(λ2 + 1)t‖X‖ + B‖yt (X) − yt,Q(X)‖

≤ A‖X‖{(λ2 + 1)t + B
t−1
∑

j=0

(λ2 + 1) j Bt−1− j } = A‖X‖
t

∑

j=0

(λ2 + 1) j Bt− j .

Hence, (17) holds. Note that g(x) = yn(x) and gQ(x) = yn,Q(x). Taking i = n in
(17) completes the proof. ��

While the general structure of residual blocks consists of rectangularmatricesWi,1’s
andWi,2’s, some literature [16, Chapter 3.8.2] defines this structure using k×k square
weight matrices. In this special case, Algorithm 1 can be applied directly toWi,1’s and
Wi,2’s without requiring a transpose. The following Corollary addresses the scenario
where ri = k for all k = 1, · · · , n.
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Corollary 5.7 Let g(x) be a residual neural network with n residual blocks (2) where
ri = k for all k = 1, · · · , n.. Let

λ = max
i=1,··· ,n

{

max{‖Wi,2‖, ‖Wi,1‖}
}

.

Let gQ(x) be the quantized residual neural network of g(x) (4) from Algorithm 1.
Then for any input X ∈ R

k, we have

‖g(X) − gQ(X)‖ ≤ 4δk
√

k(k + 3)(δk
√

k(k + 3) + λ)N− 1
k ‖X‖

×
n−1
∑

j=0

(λ2 + 1) j
(

(2δk
√

k(k + 3)N− 1
k + λ)2 + 1

)n−1− j
. (25)

Theorem 5.6 shows that a smaller step size δ and larger N improve the accuracy
of a quantized neural network. Treating δ as a fixed constant, we can view the upper
bound in (16) as O(N−1/k)‖X‖, similar to the interpretation in Section 5.1. This result
applies to general FUNTFs. However, for FUNTFs with uniformly bounded variation,

the terms N− 1
k in (16) can be replaced by N−1, further reducing the reconstruction

error.

6 Numerical Results

In this section, we present numerical results that illustrate the effectiveness of our pro-
posed algorithm.We begin by evaluating the accuracy of quantized networks obtained
via Algorithm 1 on the MNIST classification task. Our experiments are conducted
on two neural network architectures: a 3-layer FNN and a network with 2 residual
blocks. Each network is trained independently 10 times and subsequently quantized
using various values of N and δ, where N denotes the number of elements in the
FUNTF employed. We report the average accuracy and standard deviation across dif-
ferent pairs (δ, N ), and numerically confirm consistency with the theoretical results
established in Section 5. Next, we show how Algorithm 1 can benefit under extreme
quantization settings from 1-bit quantization on the same neural network architec-
tures. Finally, we demonstrate the performance of our method on a more realistic
setting using the ResNet-18 architecture for CIFAR-10 classification. We compare the
test accuracies of quantized networks with other PTQ benchmark and highlight the
benefits of incorporating frame redundancy in Algorithm 1.

6.1 Feedforward Network with 3 Layers

We trained 10 3-layer FNNs with architecture f (x) = h[3] ◦ σ ◦ h[2] ◦ σ ◦ h[1](x)
where σ denotes the ReLU activation, h[1] : R

784 → R
256, h[2] : R

256 → R
256,

and h[3] : R
256 → R

10 are affine maps as in (1) without bias terms. The MNIST
images were normalized by dividing each pixel value by 255. Training was carried
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Table 1 Frame Quantization for FNN with 3 layers. The test accuracy for the pretrained neural network is
97.72 ± 0.21%.

N δ = 1/16 δ = 1/8 δ = 1/4 δ = 1/2 δ = 1

256 97.53 ± 0.24% 97.03 ± 0.35% 93.39 ± 1.92% 63.76 ± 4.54% 22.85 ± 3.67%

320 97.62 ± 0.19% 97.35 ± 0.29% 95.47 ± 1.34% 84.93 ± 4.66% 50.30 ± 8.24%

384 97.65 ± 0.25% 97.46 ± 0.28% 95.99 ± 1.59% 90.68 ± 3.80% 62.48 ± 6.54%

448 97.68 ± 0.22% 97.55 ± 0.24% 96.92 ± 0.59% 93.75 ± 2.03% 76.66 ± 5.25%

512 97.68 ± 0.25% 97.57 ± 0.25% 97.20 ± 0.30% 95.71 ± 1.36% 86.97 ± 1.92%

out for 10 epochs using the Adam optimizer with its default hyper-parameters, a
mini-batch size of 64, and the categorical cross-entropy loss function. After training,
each network was quantized with the harmonic frame H256

N . We quantized each FNN
using N ∈ {256, 320, 384, 448, 512} and δ ∈ {1/16, 1/8, 1/4, 1/2, 1}. The numerical
results are summarized in Table 1. As expected, quantizing with smaller δ and larger
N generally led to higher test accuracy.

We now demonstrate the connection between theory and numerical results. Since
we are using harmonic frames with the same N and δ for quantizing each layer, the
error bound (15) can be represented as ‖ f (X)− fQ(X)‖ ≤ CδN−1‖X‖,whereC is a
positive constant depending only on the FNN f . In Figure 1 we present the worst-case
error. The worst-case error decreases as N increases or δ decreases, but it may be large
if the worst-case scenario corresponds to large ‖X‖. To remove the dependence on X
and to focus on the dependence of N and δ, we compute the average and represent
the error bound as EX‖ f (X) − fQ(X)‖ ≤ C × E‖X‖ × δN−1. Note that E‖X‖ is
now a constant depending only on the MNIST dataset, so by taking logarithm on both
sides, we can write log EX [‖ f (X)− fQ(X)‖× N/δ] ≤ K , for some constant K > 0.
In Figure 2, we present the values of log EX [‖ f (X) − fQ(X)‖ × N/δ]. We can see
that the values are bounded and behave approximately constant as N grows. These
numerical results imply that our theoretical error bound is tight in terms of δ and N .

6.2 Network with 2 Residual Blocks

We trained 10 neural networks with architecture g(x) = h[2] ◦ σ ◦ z[2] ◦ σ ◦ z[1] ◦ σ ◦
h[1](x) where σ denotes the ReLU activation, h[1] : R784 → R

256 and h[2] : R256 →
R
10 are affine maps in (1), and z[1], z[2] : R256 → R

256 are residual blocks in (2)
having form of

z[1](x) = W1,2σ(W1,1x + b1) + x, z[2](x) = W2,2σ(W2,1x + b2) + x,

with square weight matrices W1,1,W1,2,W2,1,W2,2 ∈ R
256×256 and bias vectors

b1, b2 ∈ R
256. Again, the MNIST images were nomalized by dividing each pixel

value by 255. Training was carried out for 5 epochs using the Adam optimizer with its
default hyper-parameters, a mini-batch size of 64, and the categorical cross-entropy
loss function. After training, each network was quantized with the harmonic frame
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Fig. 1 Worst-case error ‖ f (X) − fQ(X)‖ for FNN with 3 layers.

Fig. 2 log EX [‖ f (X) − fQ(X)‖ × N/δ] for FNN with 3 layers

H256
N . We quantized each neural network using N ∈ {256, 320, 384, 448, 512} and

δ ∈ {1/16, 1/8, 1/4, 1/2, 1}. We report our results in Table 2. Similar to the results
for quantizing FNNs, quantizing with smaller δ and larger N yielded test accuracy
close to that of the original unquantized network. This demonstrates the impact of δ

and N in Algorithm 1, which is consistent with the theoretical explanations given in
Section 5.
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Table 2 FrameQuantization forNeuralNetworkwith 2ResidualBlocks. The test accuracy for the pretrained
neural network is 97.72 ± 0.20%.

N δ = 1/16 δ = 1/8 δ = 1/4 δ = 1/2 δ = 1

256 97.44 ± 0.28% 96.17 ± 0.67% 77.20 ± 6.23% 15.61 ± 2.89% 9.68 ± 2.55%

320 97.52 ± 0.32% 97.09 ± 0.35% 92.54 ± 1.19% 41.03 ± 6.94% 11.67 ± 2.58%

384 97.60 ± 0.19% 97.23 ± 0.27% 95.12 ± 0.62% 66.27 ± 8.36% 17.84 ± 2.83%

448 97.64 ± 0.22% 97.37 ± 0.28% 96.35 ± 0.42% 85.28 ± 3.53% 28.96 ± 6.04%

512 97.66 ± 0.20% 97.54 ± 0.25% 97.00 ± 0.29% 92.30 ± 3.11% 45.80 ± 10.09%

Table 3 1-Bit Frame Quantization for FNN with 3 layers

N 1000 2000 3000 4000 5000 6000 7000

Average 36.18% 74.09% 88.47% 94.62% 96.04% 96.83% 97.29%

Standard Deviation 7.65 4.71 1.82 0.44 0.82 0.36 0.25

6.3 1-Bit Quantization

1-bit quantization of neural network, in other words, binarization of neural network,
refers to a method of compressing weights or even activations into 1-bit numbers. For
example, [11] quantized the weights of the neural networks to {−1, 1}. Mathematical
theories were also developed in 1-bit �� quantization for bandlimited signals [18]
and approximation capabilities of 1-bit neural networks [19].

In our method, since we are storing qijk’s appearing in the quantized expansions, we

will say 1-bit quantization is obtained when all qijk’s are in {−a, a} for some positive
number a > 0. Note that once we choose appropriate K ∈ N and step size δ > 0, our
method forces qijk’s as elements of the midrise quantization alphabet Aδ

K (7). If we

recall the structure of Aδ
K = {(−K + 1

2 )δ, (−K + 3
2 )δ, · · · ,− 1

2δ,
1
2δ, · · · , (K − 1

2 )δ},
one can easily see that Aδ

K achieves a form of {−a, a} if and only if K = 1.
Therefore, in our experiments for 1-bit quantization, we set K = 1 for all layers

and found the uniform step size δ that satisfies (9) for i = 1, · · · , n. For both neural
networks in the previous experiments, setting δ = 8 enables us to set K = 1. Our
1-bit quantization results can be found in Table 3 and Table 4.

Now we shall explain how our algorithm can benefit in storage while maintaining
the accuracy. Consider 1-bit quantization for a neural networkwith 3 layers.We use the
harmonic frame H256

N to quantize the first and second weight matricesW1 andW2, the
total bits that we need to store the quantized matrices Q1 and Q2 is 1×784×N +1×
256×N = 1040N bits. The total bits that we need to represent the weight matricesW1
andW2 are 32×256×784+32×256×256 = 8192×1040 bits. Suppose that we use
N = 7000. Then the total bits that we can save is 8192×1040−1040N = 1192×1040
bits, but we have an average accuracy of 97.29% for the quantized networks, where the
average accuracy for the trained neural networks is 97.72%. So we can even benefit
in storage for a 1-bit quantization case with a small sacrifice in terms of accuracy.
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Table 4 1-Bit Frame Quantization for Neural Network with 2 Residual Blocks

N 1000 2000 3000 4000 5000 6000 7000

Average 14.12% 31.52% 66.93% 86.47% 92.88% 95.28% 96.30%

Standard Deviation 2.52 6.56 5.69 4.04 1.44 0.64 0.50

Table 5 Test accuracy of b-bit quantized ResNet-18 on CIFAR-10, using Frame Quantization with redun-
dancy ratio r ∈ {1, 1.1, 1.2, 1.3} and GPFQ with calibration set of size c ∈ {128, 256}.

Pretrained Frame Quantization GPFQ

r = 1 r = 1.1 r = 1.2 r = 1.3 c = 128 c = 256

b = 3 90.46% 72.62% 76.63% 78.11% 87.56% 73.40% 67.70%

b = 4 90.46% 80.59% 88.6% 89.1% 89.78% 87.70% 88.30%

6.4 ResNet-18 Quantization

For a more realistic application scenario, we evaluated the performance of our frame-
basedquantization algorithmonaResNet-18model,where its architecture is supported
by Pytorch [33], trained for CIFAR-10 classification. The ResNet-18 architecture was
trained using the categorical cross-entropy loss function on the CIFAR-10 training set
with a mini-batch size of 128.We employed stochastic gradient descent with Nesterov
momentum, setting the learning rate to 0.1, momentum to 0.9, and weight decay to
5 × 10−4, over 200 training epochs. Input images were normalized to zero mean and
unit variance using the standard per-channel mean and standard deviation values for
CIFAR-10.

Following training, we applied Algorithm 1 to quantize the model under various
settings. Note that when quantizing a weight matrix W ∈ R

m×l using a FUNTF F
with cardinality |F | = N , the quantized representation involves storing a matrix C
which is a l × N matrix. Hence, assuming that each entry of W is originally stored in
32-bit precision and the level of quantization alphabet is set as K = 2b−1, the storage
required for C becomes a fraction bN

32m of the original storage required for W .
In our experiments, we fixed the redundancy ratio N/m = r uniformly across

layers and used the harmonic frame Hm
N for quantizing a weight matrix W ∈ R

m×l

using Algorithm 1, and evaluated the classification test accuracy of the quantized
models for various combinations of bit-widths b ∈ {3, 4} and redundancy ratios r ∈
{1, 1.1, 1.2, 1.3}. Only the convolutional and fully connected linear weights were
quantized; batch normalization weights and biases were kept in full precision, which is
consistent with standard PTQmethods. As a benchmark, we also conducted numerical
experiments using Greedy Path Following Quantization (GPFQ) [29], and compared
its test accuracy with that of our method. For GPFQ, we used a calibration dataset by
choosing either 128 or 256 images from the CIFAR-10 training dataset, following the
idea of using small calibration sets as described in [25]. The test accuracy results for
both Frame Quantization and GPFQ are presented in Table 5. The pretrained ResNet-
18 model achieved a baseline test accuracy of 90.46% prior to quantization.
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Table 6 1-Bit Frame Quantization for ResNet-18 with CIFAR-10 dataset

r 1 2 3 4 8 12 16

Test Accuracy 8.62% 27.21% 50.73% 80.3% 88.88% 89.48% 90.17%

Wenote that for both3-bit and4-bit quantization,while usingno redundancy (r = 1)
can achieve lower test accuracy than GPFQ, utilizing a small amount of redundancy of
r = 1.1 led to achieving better test accuracy on the CIFAR-10 dataset. This highlights
the effectiveness of incorporating redundancy of finite frames in Algorithm 1. To
further demonstrate the strength of redundancy, we examined an extreme setting,
1-bit quantization. Even under this lowest-bit representation, the quantized network
achieved test accuracyonCIFAR-10 that approached the original pretrainedResNet-18
accuracy of 90.46%, as the redundancy ratio r increased. The corresponding numerical
results are reported in Table 6.

The numerical results in Table 5 and Table 6 highlight several advantages of our
Frame Quantization algorithm. First, even without access to any training data for
calibration, introducing a small amount of redundancy enables the quantized net-
work to achieve higher test accuracy. Although this comes at the cost of slightly
increased storage, it offers benefits in scenarios where data privacy is a concern. Sec-
ond, the frame-based algorithm enables an accurate reconstruction of the original
neural network from extremely low-bit representations while offering storage sav-
ings. For example, r = 16 in Table 6 corresponds to a 1-bit represented ResNet-18,
which has test accuracy on CIFAR-10 close to that of the original pretrained net-
work, but using the half amount of storage. While this may not represent the most
storage-optimal form of 1-bit quantization, the frame-based representation is particu-
larly advantageous in settings where models must be transmitted in highly compressed
low-bit formats, an arrangement reminiscent of classical signal processing scenarios.

7 Conclusions and FutureWork

In this paper, we proposed a PTQ method with rigorous mathematical analysis of
error estimates between a neural network and its quantized network. We use frame
theory in neural network quantization for the first time. We also demonstrate that 1-bit
quantizationwith ourmethod has a benefit in storagewhilemaintaining accuracy close
to the original network. But still many open questions remain. Here, we list some of
them.

1. In this paper, we only focus on using FUNTFs for Rd . Designing a quantization
method using different types of frames would be a new task for the future.

2. Our method uses first-order �� quantization, but one may consider using higher-
order�� quantization. In this case, howmuch can we benefit from the error bound
in terms of the number of frame elements? Also, what quantization rule should be
used for higher-order schemes?

3. To the best of our knowledge, this is the first attempt to adopt frame theory to neural
network quantization. We were able to explain the accuracy and storage benefits,



49 Page 22 of 24 Journal of Fourier Analysis and Applications (2025) 31 :49

but we must admit that we do not immediately see a connection between using
frames and saving inference time. To develop a new frame quantization algorithm
that reduces inference time, we may need to use some specific frame.

4. Our method considers a uniformly spaced symmetric quantization alphabet. Alter-
natively, one can consider a nonuniform asymmetric quantization alphabet, whose
design would depend on the distributions of both the dataset and the pretrained
weight matrices.

5. While our method quantizes without data, which benefits in preserving privacy,
other PTQ methods commonly use a small batch of data to improve accuracy.
Therefore, developing a PTQ method based on data-adapted finite frames could be
an interesting direction.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Banner, R., Nahshan, Y., Soudry, D.: Post training 4-bit quantization of convolutional networks for
rapid-deployment. Adv. Neural Inf. Process. Syst. 32 (2019)

2. Bayer, D., Gröchenig, K.: Time–frequency localization operators and a Berezin transform. Integral
Equ. Oper. Theory 82, 95–117 (2015)

3. Bayer, D., Cordero, E., Gröchenig, K., Trapasso, S.I.: Linear perturbations of the Wigner transform
and the Weyl quantization. Advances in Microlocal and Time-Frequency Analysis, 79-120 (2020)

4. Benedetto, J.J., Powell, A.M., Yılmaz, Ö.: Second-order Sigma-Delta (��) quantization of finite
frame expansions. Appl. Comput. Harmon. Anal. 20(1), 126–148 (2006)

5. Benedetto, J.J., Powell, A.M., Yılmaz, Ö.: Sigma-delta (��) quantization and finite frames. IEEE
Trans. Inf. Theory 52(5), 1990–2005 (2006)

6. Benedetto, J.J., Oktay, O., Tangboondouangjit, A.: Complex Sigma-Delta quantization algorithms for
finite frames. Radon transforms, geometry, and wavelets 464, 27–49 (2008)

7. Benedetto, J.J., Oktay, O.: Pointwise comparison of PCM and �� quantization. Constr. Approx. 32,
131–158 (2010)

8. Bodmann, B.G., Paulsen, V.I.: Frame paths and error bounds for sigma-delta quantization. Appl.
Comput. Harmon. Anal. 22(2), 176–197 (2007)

9. Casazza, P.G., Kutyniok, G.: Finite frames: Theory and applications. Springer Science & Business
Media (2012)

10. Cordero, E., Gröchenig, K.: Time–frequency analysis of localization operators. J. Funct. Anal. 205(1),
107–131 (2003)

11. Courbariaux, M., Bengio, Y., David, Y-P.: Binaryconnect: Training deep neural networks with binary
weights during propagations. Adv. Neural. Inf. Process. Syst. 28 (2015)

12. Daubechies, I., DeVore, R.: Approximating a bandlimited function using very coarsely quantized data:
A family of stable sigma-delta modulators of arbitrary order. Ann. Math. 158(2), 679–710 (2003)

13. Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M. W., Keutzer, K.: A survey of quantization
methods for efficient neural network inference. Low-PowerComputerVision. Chapman andHall/CRC,
291-326 (2022)

http://creativecommons.org/licenses/by/4.0/


Journal of Fourier Analysis and Applications (2025) 31 :49 Page 23 of 24 49

14. Gröchenig, K.: Localization of frames, Banach frames, and the invertibility of the frame operator. J.
Fourier Anal. Appl. 10, 105–132 (2004)

15. Gröchenig, K.: Foundations of time-frequency analysis. Springer Science & Business Media (2013)
16. Grohs, P., Kutyniok, G.: Mathematical aspects of deep learning. Cambridge University Press (2022)
17. Güntürk, C.S.: Approximating a bandlimited function using very coarsely quantized data: improved

error estimates in sigma-delta modulation. J. Am. Math. Soc. 17(1), 229–242 (2004)
18. Güntürk, C.S.: One-bit sigma-delta quantization with exponential accuracy. Commun. Pure Appl.

Math. 56(11), 1608–1630 (2003)
19. Güntürk, C. S., Li, W.: Approximation of functions with one-bit neural networks. arXiv preprint

arXiv:2112.09181 (2021)
20. Güntürk,C. S., Lammers,M., Powell,A., Saab,R.,Yılmaz, ö.: Sigmadelta quantization for compressed

sensing. 2010 44th Annual Conference on Information Sciences and Systems (CISS). IEEE. (2010)
21. Güntürk, C.S., Lammers, M., Powell, A., Saab, R., Yılmaz, Ö.: Sobolev duals for random frames and

�� quantization of compressed sensing measurements. Found. Comput. Math. 13, 1–36 (2013)
22. Guo, C., et al.: SQuant: On-the-fly data-free quantization via diagonal hessian approximation. arXiv

preprint arXiv:2202.07471 (2022)
23. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. Proc. IEEE Conf.

Comput. Vis. Pattern Recognit., 770-778 (2016)
24. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural networks. Adv.

Neural Inf. Process. Syst. 29 (2016)
25. Hubara, I., Nahshan, Y., Hanani, Y., Banner, R., Soudry, D. Accurate post training quantization with

small calibration sets. Int. Conf. Mach. Learn. PMLR, 4466-4475 (2021)
26. Krahmer, F., Saab, R., Yılmaz, Ö.: Sigma–delta quantization of sub-gaussian frame expansions and

its application to compressed sensing. Information and Inference: A Journal of the IMA 3(1), 40–58
(2014)

27. Kummer, L., Sidak, K., Reichmann, T., Gansterer, W.: Adaptive Precision Training (AdaPT): A
dynamic quantized training approach for DNNs. Proc. SIAM Int. Conf. Data Mining, 559-567 (2023)

28. Long, Z., Yin, P., Xin, J.: Recurrence of optimum for trainingweight and activation quantized networks.
Appl. Comput. Harmon. Anal. 62, 41–65 (2023)

29. Lybrand, E., Saab, R.: A greedy algorithm for quantizing neural networks. J. Mach. Learn. Res. 22(1),
7007–7044 (2021)

30. Maly, J., Saab, R.: A simple approach for quantizing neural networks. Appl. Comput. Harmon. Anal.
66, 138–150 (2023)

31. Nagel,M., Amjad, R. A., Van Baalen,M., Louizos, C., Blankevoort, T.: Up or down? adaptive rounding
for post-training quantization. Proc. 37th Int. Conf. Mach. Learn. PMLR, 7197-7206 (2020)

32. Nahshan, Y., Chmiel, B., Baskin, C., Zheltonozhskii, E., Banner, R., Bronstein, A.M., Mendelson, A.:
Loss aware post-training quantization. Mach. Learn. 110(11), 3245–3262 (2021)

33. Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning library. Adv. Neural
Inf. Process. Syst. 32, 8026–8037 (2019)

34. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: Xnor-net: Imagenet classification using binary
convolutional neural networks, pp. 525–542. Eur. Conf. Comput. Vis, Springer (2016)

35. Saab, R., Wang, R., Yılmaz, Ö.: Quantization of compressive samples with stable and robust recovery.
Appl. Comput. Harmon. Anal. 44(1), 123–143 (2018)

36. Wang, Y.: Sigma-Delta quantization errors and the traveling salesman problem. Adv. Comput. Math.
28, 101–118 (2008)

37. Wei, X., Gong, R., Li, Y., Liu, X., Yu, F.: Qdrop: Randomly dropping quantization for extremely
low-bit post-training quantization. arXiv preprint arXiv:2203.05740 (2022)

38. Yao, Z., Yazdani Aminabadi, R., Zhang, M., Wu, X., Li, C., He, Y.: Zeroquant: Efficient and affordable
post-training quantization for large-scale transformers. Adv. Neural Inf. Process. Syst. 35, 27168–
27183 (2022)

39. Yin, P., Zhang, S., Lyu, J., Osher, S., Qi, Y., Xin, J.: Binaryrelax: A relaxation approach for training
deep neural networks with quantized weights. SIAM J. Imaging Sci. 11(4), 2205–2223 (2018)

40. Zhang, J., Saab, R.: SPFQ: A Stochastic Algorithm and Its Error Analysis for Neural Network Quan-
tization. arXiv preprint arXiv:2309.10975 (2023)

41. Zhang, J., Zhou, Y., Saab, R.: Post-training quantization for neural networks with provable guarantees.
SIAM J. Math. Data Sci. 5(2), 373–399 (2023)

http://arxiv.org/abs/2112.09181
http://arxiv.org/abs/2202.07471
http://arxiv.org/abs/2203.05740
http://arxiv.org/abs/2309.10975


49 Page 24 of 24 Journal of Fourier Analysis and Applications (2025) 31 :49

42. Zhang, J., Kannan, H., Cloninger, A., Saab, R.: Sigma-Delta and distributed noise-shaping quantization
methods for random Fourier features. Information and Inference: A Journal of the IMA 13.1, iaad052
(2024)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.


	Frame Quantization of Neural Networks
	Abstract
	1 Introduction
	2 Preliminaries
	3 Frame Quantization
	4 Frame Quantization for Neural Networks
	5 Error Estimates
	5.1 Feedforward Networks
	5.2 Neural Networks with Residual Blocks

	6 Numerical Results
	6.1 Feedforward Network with 3 Layers
	6.2 Network with 2 Residual Blocks
	6.3 1-Bit Quantization
	6.4 ResNet-18 Quantization

	7 Conclusions and Future Work
	References




