CHAPTER 6.6 "LEAST-SQUARES LINE"
Given an experimental data

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)
$$

we want to find a line $y=\beta_{0}+\beta_{1} x$ that best fits the data. In particular, we want β_{0} and β_{1} such that

$$
\begin{array}{ll}
\beta_{0}+\beta_{1} x_{1}= & y_{1} \\
\vdots & \\
\beta_{0}+\beta_{1} x_{n}= & y_{n}
\end{array}
$$

This is same as trying to solve the linear system

$$
\underbrace{\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right]}_{=A} \underbrace{\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]}_{=\beta}=\underbrace{\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]}_{=b}
$$

In many real life applications, $A \beta=b$ is inconsistent. The least-squares solution $\left[\begin{array}{ll}\beta_{0} & \beta_{1}\end{array}\right]^{T}$ defines a line $y=\beta_{0}+\beta_{1} x$ which we call least-squares line that best fits the data point $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$. To recall, $\left[\begin{array}{ll}\beta_{0} & \beta_{1}\end{array}\right]^{T}$ is the solution to the equation $A^{T} A \beta=$ $A^{T} b$.

Chapter 7.1 Diagonalization of Symmetric
 Matrices

Defintion 1. A matrix A is symmetric if $A=A^{T}$. Equivalently, the matrix has arbitrary entries along the main diagonal, and its entries are symmetric with respect to the main diagonal.
Defintion 2. A is orthogonally diagonalizable if there exists an orthogonal matrix $P\left(P^{-1}=P^{D}\right)$ and a diagonal matrix D such that $A=P D P^{T}$.
Theorem 3 (Spectral Theorem). Let A be an symmetric $n \times n$-matrix. Then
(a) A has n real eigenvalues, counting multiplicities.
(b) The dimension of the eigenspace for each eigenvalue λ equals the multiplicity of λ as a root of the characteristic equation. (i.e. diagonalizable)
(c) The eigenspaces are mutually orthogonal, in the sense that eigenvectors corresponding to different eigenvalues are orthogonal.
Furthermore, an $n \times n$-matrix A is symmetric if and only if A is orthogonally diagonalizable.
How do we orthogonally diagonalize an $n \times n$-matrix A ? You can do this when you can find an orthonormal basis consisting $\left\{u_{1}, \ldots, u_{n}\right\}$ of eigenvectors of A (not always possible). Let

$$
Q=\left[\begin{array}{lll}
u_{1} & \cdots & u_{n}
\end{array}\right]
$$

which is an orthogonal matrix. Then

$$
A=Q D Q^{T}
$$

where D is the diagonal matrix with eigenvalues corresponding to $\left\{u_{1}, \ldots, u_{n}\right\}$. What is amazing about the spectral theorem is that it says that for a symmetric matrix A, you can always find an orthonormal basis of eigenvectors of A.

