Chapter 2. Matrix Algebra
Keywords: Matrix multiplication, transpose of a matrix A^{T}, inverse matrix A^{-1}

(i) $A\left[\begin{array}{lll}b_{1} & \cdots & b_{n}\end{array}\right]=\left[\begin{array}{lll}A b_{1} & \cdots & A b_{n}\end{array}\right]$	(ii) $A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{rr}d & -b \\ -c & a\end{array}\right]$ for $2 \times 2 A$ with $a d-b c \neq 0$	(iii) $[A \mid I] \rightarrow\left[I \mid A^{-1}\right]$ for any square matrix A
(iv) $(A B)^{T}=B^{T} A^{T}$ for any matrices A, B	(v) $(A B)^{-1}=B^{-1} A^{-1}$ for invertible matrices A, B	(vi) $\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}$ for an invertible matrix A

Theorem 1. An $n \times n$ matrix A is invertible if and only if A is row equivalent to I_{n}.
Theorem 2. (Invertible Matrix Theorem) For an $n \times n$ matrix A, (a)-(l) are all equivalent
(i) A has n pivot (columns) $\Leftrightarrow(\mathrm{d}) \Leftrightarrow$ (e) \Leftrightarrow (f) (ii) A has n pivot (rows) \Leftrightarrow (g) \Leftrightarrow (h) \Leftrightarrow (i)

CHAPTER 3. DETERMINANTS

Keywords: Determinants, Cofactor Expansion across a row or a column, relationship between row operations and determinants, Cramer's Rule, Areas and volumes as determinants.

Defintion 3. Let A be an $n \times n$-matrix.
(a) The submatrix $A_{i j}$ is an $(n-1) \times(n-1)$ matrix obtained from A by deleting i th row and j th column.
(b) determinant of A is recursively defined as $a_{11} \operatorname{det} A_{11}-a_{12} \operatorname{det} A_{12}+\cdots+(-1)^{1+n} a_{1 n} \operatorname{det} A_{1 n}$

Theorem 5. If A is a triangular matrix, then $\operatorname{det} A$ is the product of the entries on the diagonal of A. Theorem 6. A square matrix A is invertible if and only if $\operatorname{det} A \neq 0$.
Theorem 7. $\operatorname{det} A=\operatorname{det} A^{T}$ and

$$
\operatorname{det}(A B)=(\operatorname{det} A)(\operatorname{det} B)
$$

Cramer's Rule Let A be invertible $n \times n$-matrix and $b \in \mathbb{R}^{n}$. Then the i th entry x_{i} of the unique solution is given by

$$
x_{i}=\frac{\operatorname{det} A_{i}(b)}{\operatorname{det} A}
$$

where $A_{i}(b)=\left[\begin{array}{lllll}a_{1} & \cdots & b & \cdots & a_{n}\end{array}\right]$.

Determinant and Volumes

(a) (Parallelogram) Let $v_{1}, v_{2} \in \mathbb{R}^{2}$. Then the area of the parallelogram formed by v_{1} and v_{2} is $\operatorname{det} A$ where $A=\left[\begin{array}{ll}v_{1} & v_{2}\end{array}\right]$.
(b) (Parallelopiped) Let $v_{1}, v_{2}, v_{3} \in \mathbb{R}^{3}$. Then the volume of the parallelopiped formed by v_{1}, v_{2}, v_{3} is $\operatorname{det} A$ where $A=\left[\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array}\right]$.

Defintion 4. The (i, j)-cofactor of A is

$$
C_{i j}=(-1)^{i+j} \operatorname{det} A_{i j}
$$

cofactor expansion across row i

$$
\operatorname{det} A=a_{i 1} C_{i 1}+\cdots+a_{i n} C_{i n}
$$

cofactor expansion down column j

$$
\operatorname{det} A=a_{1 j} C_{1 j}+\cdots+a_{n j} C_{n j}
$$

(a) $\operatorname{det} B=\operatorname{det} A$ if B is obtained by adding a multiple of another row.
(b) If B is obtained by interchanging two rows, then $\operatorname{det} B=-\operatorname{det} A$.
(c) If B is obtained by multipying k to a row, $\operatorname{det} B=k \operatorname{det} A$.

Let A be an invertible $n \times n$ matrix. Then ${ }^{(1)}$

$$
\begin{aligned}
A^{-1} & =\frac{1}{\operatorname{det} A} \operatorname{adj} A \\
& =\frac{1}{\operatorname{det} A}\left[\begin{array}{cccc}
C_{11} & C_{21} & \cdots & C_{n 1} \\
C_{12} & C_{22} & \cdots & C_{n 2} \\
\vdots & \vdots & \ddots & \vdots \\
C_{1 n} & C_{2 n} & \cdots & C_{n n}
\end{array}\right]
\end{aligned}
$$

(a) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation with standard matrix A. If S is a region in \mathbb{R}^{2} with finite area. Then
area of $T(S)=|\operatorname{det} A| \cdot$ area of S
(b) $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation with standard matrix A. If S is a region in \mathbb{R}^{3} with finite volume. Then
volume of $T(S)=|\operatorname{det} A| \cdot$ volume of S

[^0]
Chapter 4: Vector Spaces

Keywords: vector space, subspace, basis, null, column, and row spaces, dimension, coordinate vectors, change-of-coordinate matrix, rank-nullity theorem.

Defintion 8. A vector space is a nonempty set V of objects called vectors with two operations addition and mutlipliaction by scalars (real numbers) with ten properties in pg. 202-203.
Defintion 9. A subspace of a vector space V is a subset W of V such that (i) $0 \in W$, (ii) is closed under addition, and (iii) is closed under scalar multiplication.
Defintion 10. A linear transformation $T: V \rightarrow$ W is a function such that $T(u+v)=T(u)+T(v)$ and $T(c u)=c T(u)$.

Defintion 13. A set of vectors $\left\{v_{1}, \ldots, v_{p}\right\}$ in V is linearly independent if the linear dependence relation $c_{1} v_{1}+\cdots+c_{p} v_{p}=0$ has only trivial solution.
Theorem 14. $\left\{v_{1}, \ldots, v_{p}\right\}$ with $v_{1} \neq 0$ is linearly dependent if and only if some $v_{j}(j>1)$ is a linear combination of v_{1}, \ldots, v_{j-1}.
Defintion 15. A indexed set \mathscr{B} of vectors in a vector space V is called a basis if (i) \mathscr{B} is linearly independent and (ii) Span $\mathscr{B}=V$.
Defintion 16. If a vector space V is spanned by a finite set, then V is said to be finite-dimensional and the number of vectors in a basis is called a dimension of V. ${ }^{\text {(3) }}$

[^1]Example 11. The set \mathbb{R}^{n} of column vectors with n entries and the set \mathbb{P}_{n} of polynomials of degree at most n are vector spaces. ${ }^{(2)}$ Also, a subspace of a vector space is a vector space.
Example 12. Let $v_{1}, \ldots, v_{p} \in V$. Then the span

$$
\operatorname{Span}\left\{v_{1}, \ldots, v_{p}\right\}=\left\{c_{1} v_{1}+\cdots+c_{p} v_{p} \mid c_{i} \in \mathbb{R}\right\}
$$

of $\left\{v_{1}, \ldots, v_{n}\right\}$ is a subspace of V. This is called the subspace of V generated by $\left\{v_{1}, \ldots, v_{p}\right\}$.
${ }^{(2)}$ The addition and scalar multiplications of \mathbb{R}^{n} and \mathbb{P}_{n} are defined differently.

Theorem 17. (Spanning Set Theorem) Let $S=$ $\left\{v_{1}, \ldots, v_{p}\right\}$ be a subset of V and let $W=\operatorname{Span} S$. Then (i) if $v_{k} \in S$ is a linear combination of the remaining vectors in S, then the set $\left\{v_{1}, \ldots, \nu / k, \ldots, v_{p}\right\}$ formed by removing v_{k} from S still spans W and (ii) if $S \neq\{0\}$, then a subset of S is a basis of W.

Theorem 18. (a) If a vector space V has a basis \mathscr{B} with n vectors, then any set in V containing more than n vectors must be linearly dependent. Also, every basis of V must consist of exactly n vectors. (b) Every vector can be written uniquely as a linear combinations of vectors in \mathscr{B}.
Theorem 19. Let W be a subspace of a finitedimensional vector space. Then $\operatorname{dim} W \leq \operatorname{dim} V$. Theorem 20. For $\operatorname{dim} V=n$, (i) any linearly independent set of V with n-elements or (ii) any spanning set of V with n-elements is a basis.

Let A be a $m \times n$-matrix. Write $A=\left[\begin{array}{lll}a_{1} & \cdots & a_{n}\end{array}\right]$ where a_{i} s are the column vectors of A. Also, let r_{1}, \ldots, r_{m} be its row vectors. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be the linear transformation defined by A.

Subspace	A basis $^{(4)}$	Dimension
Nul $A=\left\{x \in \mathbb{R}^{n} \mid A x=0\right\}$ $=\operatorname{Ker}(T)$ subspace of \mathbb{R}^{n}	\mathscr{B} is the set of vectors appearing in the general solution in parametric vector form	nullity $A=\operatorname{dim~Nul~} A$
Col $A=\operatorname{Span}\left\{a_{1}, \ldots, a_{n}\right\}$ $=\operatorname{Range}(T)$ subspace of \mathbb{R}^{m}	$\mathscr{B}=\{$ pivot columns of $A\}$	rank $A=\operatorname{dim}$ Col A
Row $A=\operatorname{Span}\left\{r_{1}, \ldots, r_{n}\right\}$ is a subspace of \mathbb{R}^{n}	\mathscr{B} is the set of nonzero row vectors of an echelon form B of A	Row $A=$ Row B $A \rightarrow B$ row. eq.

Theorem 21 (Rank-Nullity).
rank $A+$ nullity A
$=\#$ of cols. of A
Defintion 22. The standard basis is the set $\left\{e_{1}, \ldots, e_{n}\right\}$ in \mathbb{R}^{n} where e_{i} is the vector whose entries are all zero except 1 at the i th entry.

Defintion 23. $\mathscr{B}=\left\{b_{1}, \ldots, b_{n}\right\}$ be a basis.

$$
[x]_{\mathscr{B}}=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]
$$

given $x=c_{1} b_{1}+\cdots+c_{n} b_{n}$, is called coordinate vector of x relative to \mathscr{B}.

Defintion 24. $\mathscr{B}=\left\{b_{1}, \ldots, b_{n}\right\}$, $\mathscr{C}=\left\{c_{1}, \ldots, c_{n}\right\}$ be bases of V.

$$
\underset{\mathscr{C} \leftarrow \mathscr{B}}{P}=\left[\begin{array}{lll}
{\left[b_{1}\right]_{\mathscr{C}}} & \cdots & {\left[b_{n}\right]_{\mathscr{C}}}
\end{array}\right]
$$

is called the change-of-coordinates
matrix from \mathscr{B} to \mathscr{C}. Also,

$$
\left[c_{1} \cdots c_{n} \mid b_{1} \cdots b_{n}\right] \rightarrow\left[\begin{array}{l|c}
I_{n} & \underset{\mathscr{C} \leftarrow \mathscr{B}}{P}
\end{array}\right]
$$

[^2]
Chapter 5. Eigenvalues and Eigenvectors

Keywords: Eigenvectors, Eigenvalues, algebraic multiplicity, geometric multiplicity, Characteristic Polynomial, Similarity, Diagonalization, Matrix Representation, Complex Eigenvalues.

Defintion 1. Let A be an $n \times n$ matrix. If there exists a (real) scalar λ and a non-zero vector $v \in \mathbb{R}^{n}$ such that $A \nu=\lambda \nu$, then λ is called an eigenvalue of A and ν is called an eigenvector of A corresponding to λ.

What is the set E_{λ} of eigenvectors (and zero vector)? We have $E_{\lambda}=\operatorname{Null}(A-\lambda I)$ because

$$
\begin{aligned}
v \in E_{\lambda} & \Leftrightarrow A v=\lambda v \quad \Leftrightarrow \quad A v=\lambda I v \\
& \Leftrightarrow A v-\lambda I v=0 \quad \Leftrightarrow \quad(A-\lambda I) v=0 \\
& \Leftrightarrow v \in \operatorname{Null}(A-\lambda I)
\end{aligned}
$$

We call E_{λ} the eigenspace of A for λ. The dimension of the eigenspace E_{λ} is called the geometric multiplicty (geo. mul.) of λ.
Theorem 2. The eigenvalues of a triangular matrix are the diagonal entries.
Theorem 3. Let v_{1}, \ldots, v_{r} be eigenvectors of pair-wise distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$. Then

$$
\left\{v_{1}, \ldots, v_{r}\right\}
$$

is a linearly independent set.

Defintion 7. A $n \times n$ matrix A is diagonalizable if A is similar to a diagonal matrix, i.e. $A=P D P^{-1}$ for some invertible matrix P and a diagonal matrix D.
Theorem 8. Let A be $n \times n$ matrix.
A is diagonalizable $\Leftrightarrow A$ has n L.I. eigenvectors

Steps to Diagonalization.

(i) Find the eigenvalue of A.
(ii) Find basis for each eigenspaces.
(iii) Construct P from the vectors in (ii).
(iv) Construct D from the corresponding eigenvalues.

The eigenvector and eigenspace of linear transformation is defined the same way from $T(\nu)=\lambda \nu$.

Let $T: V \rightarrow V$ be a linear transformation. Let $\mathscr{B}=$ $\left\{b_{1}, \ldots, b_{n}\right\}$ be a basis of an n-dim. vector space V. Define the matrix representation of T with respect to \mathscr{B} by

$$
[T]_{\mathscr{B}}=\left[\begin{array}{lll}
{\left[T\left(b_{1}\right)\right]_{\mathscr{B}}} & \cdots & {\left[T\left(b_{n}\right)\right]_{\mathscr{B}}}
\end{array}\right]
$$

Then for any $x \in V$, we have

$$
[T(x)]_{\mathscr{B}}=[T]_{\mathscr{B}}[x]_{\mathscr{B}}
$$

Theorem 9. Let P be the matrix whose columns are given by a basis \mathscr{B}. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation given by $T(x)=A x$. Then $[T]_{\mathscr{B}}=P^{-1} A P$. In particular, $A=P[T]_{\mathscr{B}} P^{-1}$.

Defintion 4. The polynomial

$$
\operatorname{det}(A-\lambda I)
$$

in variable λ is called the characteristic polynomial of A. If λ is a root of the characteristic polynomial of A, then λ is an eigenvalue of A. The multiplicity as a root is called the algebraic multiplicity (alg. mul.).
Defintion 5. A is similar to B if there is an invertible matrix P such that $A=P B P^{-1}$. If A is similar to B, B is also similar to A.
Theorem 6. If A and B are similar, they have the same characteristic polynomial, hence the same eigenvalues with the same multiplicities.
©Two matrices with the same eigenvalues do not have to be similar. For example,

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

Theorem 10. A $n \times n$ matrix with n distinct eigenvalues is diagonalizable.
Proof. This follows from Theorem 3 and Theorem 8
Theorem 11. Let A be $n \times n$ matrix with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{p}$.
(a) geo. mul. of $\lambda_{k} \leq$ alg. mul. of λ_{k} for $1 \leq k \leq p$.
(b) A diagonalizable \Leftrightarrow sum of geo. mul. equals $n \Leftrightarrow$ alg. mul. of $\lambda_{k}=$ geo. mul. of λ_{k} for all $1 \leq k \leq p$.
(c) A diagonalizable and \mathscr{B}_{k} is a basis for $E_{\lambda_{k}}$, then $\mathscr{B}_{1} \cup \cdots \cup \mathscr{B}_{p}$ forms an eigenvector basis for \mathbb{R}^{n}. (1)

All theory developed so far works well to \mathbb{C}^{n}. Namely, we say that λ and v is a complex eigenvalue and a complex eigenvector of an $n \times n$ matrix A if there exists $\lambda \in \mathbb{C}$ and $v \in \mathbb{C}^{n}$ such that $A v=\lambda \nu$.
\bigcirc (This might not be covered during class) For a $n \times n$ matrix A, if λ is an eigenvalue of A with an eigenvector v of λ. Then $\bar{\lambda}$ is an eigenvector for the eigenvalue $\bar{\lambda}$ where $\bar{\bullet}$ denotes complex conjugation. Theorem 12. Let A be a real 2×2 matrix with a complex eigenvalue $\lambda=a-b i(b \neq 0)$ and an asssociated eigenvector $v \in \mathbb{C}^{2}$. Then
$A=P C P^{-1}$ with $P=\left[\begin{array}{ll}\operatorname{Re} v & \operatorname{Im} v\end{array}\right]$ and $C=\left[\begin{array}{rr}a & -b \\ b & a\end{array}\right]$

[^3]Keywords: inner product, dot product, length of a vector, distance between two vectors, orthogonality, orthogonal complement, orthogonal set/basis, orthogonal matrix, orthogonal projection, Gram-Schmidt, QR factorization.

Defintion 13. For $u, v \in \mathbb{R}^{n}$, the dot product (or the inner product) of u and v is $u^{T} v$ and is written $u \cdot v$. If $u=\left[u_{1}, \ldots, u_{n}\right]^{T}$ and $v=\left[v_{1}, \ldots, v_{n}\right]^{T}$, then $u \cdot v=$ $u_{1} v_{1}+\cdots+u_{n} v_{n}$.
Defintion 14. The length $\|v\|$ of a vector is defined by $\sqrt{v \cdot v}=\sqrt{v_{1}^{2}+\cdots+v_{n}^{2}}$. In particular, $\|v\|^{2}=v \cdot v$. For a scalar $c \in \mathbb{R}$, we have $\|c v\|=\mid c\| \| v \|$. If $\|\nu\|=1$, v is called a unit vector.
Defintion 15. The distance between u and v is defined by $\operatorname{dist}(u, v)=\|u-v\|=\|v-u\|$.

Defintion 19. The set $\left\{u_{1}, \ldots, u_{p}\right\}$ of vectors in \mathbb{R}^{n} is orthogonal set if every pair of distinct vectors are orthogonal. An orthogonal basis is a orthogonal set that is also a basis.
Theorem 20. Let $\left\{u_{1}, \ldots, u_{p}\right\}$ be a orthogonal set with all u_{i} nonzero vectors, then it is linearly independent.
Defintion 21. Let $W \subset \mathbb{R}^{n}$ be a subspace with orthogonal basis $\left\{w_{1}, \ldots, w_{p}\right\}$ and $y \in \mathbb{R}^{n}$. The projection $\operatorname{Proj}_{W} y$ of y onto W is defined by

$$
\operatorname{Proj}_{W} y=\frac{y \cdot w_{1}}{w_{1} \cdots w_{1}} w_{1}+\cdots+\frac{y \cdot w_{p}}{w_{p} \cdot w_{p}} w_{p}
$$

Theorem 24 (Gram-Schmidt). Let $\left\{x_{1}, \ldots, x_{p}\right\}$ be a basis for a nonzero subspace W of \mathbb{R}^{n}. Then we can construct an orthogonal basis $\left\{u_{1}, \ldots, u_{p}\right\}$ via

$$
\begin{aligned}
& u_{1}=x_{1} \\
& u_{2}=x_{2}-\frac{x_{2} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1} \\
& \vdots \\
& u_{p}=x_{p}-\frac{x_{p} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}-\cdots-\frac{x_{p} \cdot u_{p-1}}{u_{p-1} \cdot u_{p-1}} u_{p-1}
\end{aligned}
$$

and $\operatorname{Span}\left\{x_{1}, \ldots, x_{k}\right\}=\operatorname{Span}\left\{u_{1}, \ldots, u_{k}\right\}$ for $1 \leq k \leq p$. In addition, one can obtain orthonormal basis via normalization, i.e. $\left\{\frac{u_{1}}{\left\|u_{1}\right\|}, \ldots, \frac{u_{p}}{\left\|u_{p}\right\|}\right\}$.

Defintion 26. For $m \times n A$ and $b \in \mathbb{R}^{m}$, a least-squares solution of $A x=b$ is $\hat{x} \in \mathbb{R}^{n}$ such that $\|b-A \hat{x}\| \leq$ $\|b-A x\|$ for all $x \in \mathbb{R}^{n}$.

To find \hat{x}, we solve the normal equation for $A x=$ $b, A^{T} A x=A^{T} b$ which is always consistent. When $A^{T} A$ is invertible (this is not always the case), we have

$$
\hat{x}=\left(A^{T} A\right)^{-1} A^{T} b .
$$

Defintion 16. Two vectors u and v are orthogonal if $u \cdot v=0$. We sometimes denote it by $u \perp v$.
Theorem 17 (Pythagorean). If $u \perp v$, then

$$
\|u+v\|^{2}=\|u\|^{2}+\|v\|^{2}
$$

Defintion 18. For a subspace $W \subset \mathbb{R}^{n}$, a vector v is orthogonal to W if for all $w \in W, v \perp w$. The set of all vectos v that are orthogonal to W is called the orthogonal complement of W and is denoted by W^{\perp}. W^{\perp} is a subspace of \mathbb{R}^{n}.

$$
(\operatorname{Row} A)^{\perp}=\operatorname{Nul} A \quad \text { and } \quad(\operatorname{Col} A)^{\perp}=\operatorname{Nul} A^{T}
$$

Theorem 22. Let $W \subset \mathbb{R}^{n}$ be a subspace of \mathbb{R}^{n}. Let $y \in \mathbb{R}^{n}$. Then y can be uniquely written as

$$
y=\hat{y}+z
$$

where $\hat{y} \in W$ and $z \in W^{\perp}$. In fact, $\hat{y}=\operatorname{Proj}_{W} y=$ $U U^{T} y$ where U is the matrix whose columns are a orthonormal basis of W. Furthermore,
(a) $y \in W$ if and only if $y=\operatorname{Proj}_{W} y$.
(b) \hat{y} is the closest point to y in W in the sense that $\|y-\hat{y}\|<\|y-w\|$ for all $w \in W$.
Theorem 23. A matrix U is orthogonal (i.e. $U^{T} U=$ I) if and only if the columns of U form an orthonormal basis of \mathbb{R}^{n}. If U is square, U orthogonal if and only if $U^{T}=U^{-1}$.

Theorem 25 (QR Factorization). Let A be an $m \times n$ matrix with linearly independent columns. Then $A=$ $Q R$ where $Q=\left[\begin{array}{lll}u_{1} & \cdots & u_{n}\end{array}\right]$ is an $m \times n$ orthogonal matrix for some orthonormal basis $\left\{u_{1}, \ldots, u_{n}\right\}$ for $\operatorname{Col} A$, and R is an $n \times n$ upper triangular invertible matrix with positive entries on its diagonal with $R=Q^{T} A$.
If one chooses an arbitrary orthonormal basis of $\operatorname{Col} A, Q^{T} A$ may not be have positive diagonal entry. If the k th diagonal entry $r_{k k}$ of R is negative, we can replace both $r_{k k}$ and u_{k} by $-r_{k k}$ and $-u_{k}$ respectively.

Least-squares solution of $A x=b$ may not be unique. However, it is unique in the following situation.
Theorem 27. Let A be an $m \times n$ matrix with linearly independent columns. Then we have a QR factorization $A=Q R$. Then for each $b \in \mathbb{R}^{m}$, the equation $A x=b$ has a unique least-square solution,

$$
\hat{x}=R^{-1} Q^{T} b
$$

CHAPTER 6.6 "LEAST-SQUARES LINE"
Given an experimental data

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)
$$

we want to find a line $y=\beta_{0}+\beta_{1} x$ that best fits the data. In particular, we want β_{0} and β_{1} such that

$$
\begin{array}{ll}
\beta_{0}+\beta_{1} x_{1}= & y_{1} \\
\vdots & \\
\beta_{0}+\beta_{1} x_{n}= & y_{n}
\end{array}
$$

This is same as trying to solve the linear system

$$
\underbrace{\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right]}_{=A} \underbrace{\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]}_{=\beta}=\underbrace{\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]}_{=b}
$$

In many real life applications, $A \beta=b$ is inconsistent. The least-squares solution $\left[\begin{array}{ll}\beta_{0} & \beta_{1}\end{array}\right]^{T}$ defines a line $y=\beta_{0}+\beta_{1} x$ which we call least-squares line that best fits the data point $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$. To recall, $\left[\begin{array}{ll}\beta_{0} & \beta_{1}\end{array}\right]^{T}$ is the solution to the equation $A^{T} A \beta=$ $A^{T} b$.

Chapter 7.1 Diagonalization of Symmetric
 Matrices

Defintion 1. A matrix A is symmetric if $A=A^{T}$. Equivalently, the matrix has arbitrary entries along the main diagonal, and its entries are symmetric with respect to the main diagonal.
Defintion 2. A is orthogonally diagonalizable if there exists an orthogonal matrix $P\left(P^{-1}=P^{D}\right)$ and a diagonal matrix D such that $A=P D P^{T}$.
Theorem 3 (Spectral Theorem). Let A be an symmetric $n \times n$-matrix. Then
(a) A has n real eigenvalues, counting multiplicities.
(b) The dimension of the eigenspace for each eigenvalue λ equals the multiplicity of λ as a root of the characteristic equation. (i.e. diagonalizable)
(c) The eigenspaces are mutually orthogonal, in the sense that eigenvectors corresponding to different eigenvalues are orthogonal.
Furthermore, an $n \times n$-matrix A is symmetric if and only if A is orthogonally diagonalizable.
How do we orthogonally diagonalize an $n \times n$-matrix A ? You can do this when you can find an orthonormal basis consisting $\left\{u_{1}, \ldots, u_{n}\right\}$ of eigenvectors of A (not always possible). Let

$$
Q=\left[\begin{array}{lll}
u_{1} & \cdots & u_{n}
\end{array}\right]
$$

which is an orthogonal matrix. Then

$$
A=Q D Q^{T}
$$

where D is the diagonal matrix with eigenvalues corresponding to $\left\{u_{1}, \ldots, u_{n}\right\}$. What is amazing about the spectral theorem is that it says that for a symmetric matrix A, you can always find an orthonormal basis of eigenvectors of A.

[^0]: ${ }^{(1)}$ The (i, j)-entry of A^{-1} is $C_{j i}$ divided by $\operatorname{det} A$, NOT $C_{i j}$.

[^1]: ${ }^{(3)} \mathrm{A}$ basis of a vector space is not unique, but they all have the same number of vectors by Theorem 18

[^2]: ${ }^{(4)}$ There are infinitely many basis to a vector space. This is just one of them.

[^3]: ${ }^{(1)} \cup$ denotes set union. The union $\mathscr{B}_{1} \cup \cdots \cup \mathscr{B}_{p}$ is a new set that contains all elements of \mathscr{B}_{k} for $1 \leq k \leq p$.

