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These are notes from my presentation in my commutative algebra class at the University
of Maryland, taught by Professor Thomas Haines. They cover a large part, but not all, of
what I presented.

1 An infinite dimensional Noetherian ring

This result is taken from Atiyah MacDonald section 11, exercise 4.
Let R = k[X1, X2, . . . ] be the polynomial ring in countably many variables over a field

k. Let mi be a sequence of integers such that m1 = 0, m2 ≥ 1, and mi+1 −mi > mi −mi−1.
Let pi = (Xmi+1, . . . , Xmi+1

). Let S = R \
⋃
pi.

Theorem 1. S−1R is a Noetherian ring of infinite dimension.

It is clear that this ring has infinite dimension, since ht(S−1pi) grows unboundedly as i
does. To show that this ring is Noetherian, we will need the following lemma.

Lemma 1. Suppose A is a ring satisfying

1. ∀m ⊂ A maximal, Am is Noetherian

2. ∀x 6= 0 in A, the set {m ⊂ A maximal | x ∈ m} is finite

Then A is Noetherian.

Proof. Let I ⊂ A be an ideal. I will show that I is finitely generated. Let x0 ∈ I, let
m1, . . . ,mr be the maximal ideals containing I, and let mr+1, . . . ,mr+s be the maximal ideals
containing x0 but not I. Then ∃xj (1 ≤ j ≤ s) such that xj ∈ I, xj 6∈ mr+j. Since each Ami

is Noetherian, IAmi
are all finitely generated, so ∃xs+1, . . . , xt ∈ A whose images generate

each of the Ami
(1 ≤ i ≤ r).

Let I0=(x0, x1, . . . , xt). Then ∀m maximal in A, I0Am = IAm, so we have that I0 = I, so
I is finitely generated, so A is Noetherian.

To use this lemma, we need a characterization of the maximal ideals of S−1R. It turns
out that the S−1pi are exactly the maximal ideals of S−1R. To see this, recall that ideals of
S−1R correspond to ideals of R contained in

⋃
pi, and use the following fact.

Claim. If I ⊆
⋃

pi is an ideal of R, then I ⊆ pi for some i.
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Proof. If I = (0), this is immediate, so assume I 6= (0). Fix N ∈ Z>0. Note that

I ⊆
∞⋃
i=1

pi ⊆
N⋃
i=1

pi ∪ (XmN+1+1, XmN+1+2, . . . )

On the right of this inclusion relation, we have a finite union of prime ideals, so by prime
avoidance, I ⊆ pi for some i ≤ N , or I ⊆ (XmN+1+1, XmN+1+2, . . . ).

Suppose for the sake of contradiction that I 6⊆ pi for any i. Then we have that

I ⊆
∞⋂
N=1

(XmN+1+1, XmN+1+2, . . . ) = (0)

But we assumed that I 6= (0), so this is a contradiction, and I ⊆ pi for some i.

Thus we have that the S−1pi are exactly the maximal ideals of S−1R, as mentioned above.
Now we can prove the theorem, by checking that S−1R satisfies conditions 1 and 2 from the
lemma.

Proof. To check condition 1, observe that

(S−1R)S−1pi = Rpi
∼= k(X1, . . . , Xmi

, Xmi+1+1, . . . )[Xmi+1, . . . Xmi+1
]

is a finite polynomial ring over a field, and is thus Noetherian.
To check condition 2, it suffices to check that an element of R can be in only finitely

many pi, which is immediate.

So S−1R is Noetherian and infinite dimensional.

2 A one dimensional ring whose polynomial ring is

three dimensional

This example is taken from this math stackexchange post, with a few additional details filled
in.

Let k be a field, and let A be the subring of k(t)[[Y ]] given by f(0) ∈ k. By f(0) I mean
that Y is thought of as the variable in this ring, so the elements of A are power series with
constant term in k, and other coefficients in k(t). Then A has a unique nonzero prime ideal,
P = {f | f(0) = 0}. It’s clear that P is the unique maximal ideal, since it contains exactly
the non-unit elements of A. To see that it’s the only prime, I will show that any prime ideal
I containing a nonzero element must contain all non-unit elements. I would be interested to
know of a more elegant proof of this fact than the one I give here.

Proof that P is the unique prime ideal in A. Suppose a1Y
m + a2Y

m+1 + · · · ∈ I. Then
a−11 Y ∈ A, so Y m+1 + a2

a1
Y m+2 + · · · ∈ I. This element is u × Y m for some u ∈ A×, so

Y m ∈ I, so since we assumed I is prime, we have Y ∈ I. Then, for any a ∈ k(t), a2Y ∈ A, so
a2Y 2 = (aY )2 ∈ I, so by primality of I, aY ∈ I. So all elements of P are in I, so P = I.
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So A has dimension 1, but I will now show that A[X] has dimension 3.

Proof. Consider the maps

A[X]
ϕ−→ k(t)[[Y ]]

ψ−→ k(t)

where ϕ(X) = t, and ψ(Y ) = 0. The kernel K of ϕ is prime, since the image of ϕ is an
integral domain. Also, K ⊆ P [X], since P [X] is the kernel of ψ ◦ ϕ. Notice also that
Y X − tY ∈ K, so K 6= (0), and Y 6∈ K, so K 6= P [X]. So we have a chain of prime ideals
(0) ( K ( P [X] ( P [X] + (X) of length 3. So the dimension of A[X] is 3 (see Atiyah
Macdonald section 11 exercise 6).
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