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Two-Sample Clinical Trial Statistics

Data format : (Ei , T ∗
i , ∆∗

i , Zi , i = 1, . . . , NA(τ ) )
for analysis at times t∗.

Ei entry-times, NA arrival-counting, τ accrual-horizon

Xi failure time, Ci indep. right-cens., Zi trt. gp.

(Xi, Ci cond. indep. given Zi & strat. variable Vi)

T ∗
i = Xi ∧ Ci ∧ (t∗ − Ei) , ∆i = I[Xi≤Ci∧(t∗−Ei])

PROBLEM: test H0 : SX|Z(t|z) ≡ SX(t) , z = 0, 1

with multiple interim looks & experimentwise validity.

TEST STATISTIC : for look at t∗, define

Y ∗
z (s) =

∑

j
I[Zj=z, T ∗

j ≥s] , Y ∗(s) = Y ∗
1 (s)+Y ∗

0 (s) at-risk

M(t∗) = − ∑

i

∫
K(s, ŜX(s)){Zi−

Y ∗
1 (T ∗

i ∧ s)

Y ∗(T ∗
i ∧ s)

}∆∗
i dI[Ti≤s]

asympt. indep. incr., with estimated variance V̂ (t∗) =

∑

i

∫
K2(s, ŜX(s)){

Y ∗
1 (T ∗

i ∧ s)Y ∗
0 (T ∗

i ∧ s)

Y ∗(T ∗
i ∧ s)

}∆∗
i dI[Ti≤s]

Reject if M(t∗)√
V̂ (t∗)

≥ b(t∗), Accept if ≤ a(t∗)
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Abstracted Asymptotic Problem

Most methods rely on asymptotically Gaussian time-

indexed statistic-numerator n−1/2 M(t) with indep. incr.’s,

and variance function V (t) to be estimated in real or

information time.

V (t) in H0 is functional of ( SX, SC|Z, ΛA ≡ E(NA) )

∫
K2(SX(s))

p(1 − p)ΛA(t − s)SC|Z(s|1)SC|Z(s|0)

ΛA(t)(p(SC|Z(s|1) + (1 − p)SC|Z(s|0))
dFX(s)

Control parameters: At each t = tk, can choose

tk+1, ak+1, bk+1

PROBLEM: To optimize expected Loss or Cost over

times and cutoffs while maintaining overall nominal sig-

nificance level.

Main Computational Method of optimizing

boundaries is parametric search for parametric boundary

classes, or backward induction.
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Decision-Theory Ingredients

Actions: look-times tk∗ and boundaries bk∗ = b(t∗)

for W/V̂ 1/2 — for now consider only upper rejection

boundary

Prior: π(ϑ) density for group-difference log hazard

ratio parameter ϑ (within semiparametric model).

Losses: costs of experimentation c1(t, ϑ), wrong

decision c2(ϑ), late correct decision c3(t, ϑ) ,

these loss elements introduced in Leifer (2000) thesis.

Costs are economic within-trial, ethical within-trial,

and economic after-trial .

In 2-Look Trials, adaptive actions are:

• t1 constant depending on prior & losses

• Followup time t2 = t2(W (t1), t1) which if = t1
indicates imediate Reject or Accept, and

• final boundary: reject iff W (t2) ≥ b(t2, t1, W (t1))
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More on Decision Theory Problem

(I) state-of-nature parameter ϑ ∈ R , target parameter

z = γ(ϑ) (= ϑ in estimation, I [ϑ ≤ 0] in testing),

and prior prob. π on Θ

(II) action-space

A = {(t, a) : t = (t1, . . . , tK),

0 ≤ t1 ≤ · · · ≤ tK ≤ T, a ∈ γ(Θ)}

(III) observable process W = (W (x), 0 ≤ x ≤ T )

Wiener process with drift ϑ, and suff. stat. W (τ )

for data up to stopping-time τ , and auxiliary ran-

domization r.v. U ∼ Unif[0, 1] independent of W

(IV) strategies consist of: increasing nonnegative stopping-

time random variables τ = (τ1, . . . , τK)

0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τK ≤ T a.s.

satisfying ‘causality’ restrictions on measurability,

[τj ≤ x] ∈ σ(τi, i < j ; W (u), u ≤ x ; U),

and terminal action r.v. a ∈ γ(Θ) meas. wrt

(W (x), x ≤ tK) and U
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(V) a loss-function L(t, a, ϑ, λ) depending on look-

times t only as smooth fcn of terminal time tK ,

with Lagrange multipliers λ0, λ1

L(t, a, ϑ, λ) = C(tK, a, z) + λ0 a δϑ,0 + λ1 (1−a) δϑ,ϑ1

where z = I[ϑ≤0], ϑ1 > 0 and

C(t, a, z) = c1(t, ϑ) + I[z 6=a] c2(ϑ) + I[z=a] c3(t, ϑ)

and cj(·, ϑ) ↗, c3(t, ϑ) ≤ c2(ϑ).

(VI) risk function to be minimized over d = (τ , a) is

r(d, λ) =
∫

Θ
Eϑ L(τ, α, ϑ, λ) dπ(ϑ) (1)

NOTE: For terminal time τK = s and data history

(W (u), u ≤ s), there exists unique optimal termi-

nal action I[W (s)≥w(s)], with w(·) = w(·, λ0, λ1)

uniquely determined by
∫

eθw(y)−θ2y/2 g1(y, ϑ, λ0, λ1) dπ(θ) = 0

where

g1(y) = (c2(θ)−c3(y, θ)) (2I[θ≤0]−1)+
λ0

π0
I[θ=0]−

λ1

π1
I[θ=θ1]
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Optimizing the Decision Rule

We know that at the final look-time, the best deci-

sion is to Reject when W (s) ≥ w(s), w computed

uniquely from s, λ0, λ1 .

Now let t1 be fixed and imagine W (t1)/
√

t1 = x

observed. Can express conditional expected final loss at

time t1 + s in form

r2(t1, x, s) ≡
∫

R(t1, x, s, ϑ) dπ(ϑ)

=
∫

eθx
√

t1− θ2t1/2 {a0(t1 + s, ϑ) + a1(t1 + s, ϑ) ·


1 − Φ



w(t1 + s) − x

√
t1√

s
− ϑ

√
s





 } dπ(θ)

where

a0(t, ϑ) = c1(t, ϑ) + c2(ϑ) I[ϑ>0] +
λ1

π1
I[θ=θ1] + c3(t, ϑ) I[ϑ≤0]

Backward Induction Idea: if we can uniquely

optimize r2(t1, x, s) in s = s(t1, x) uniquely (a.e. x),

and then choose t1 uniquely to minimize

∫ ∫
R(t1, x, s(t1, x), ϑ)

1√
2π

e−(x−ϑ
√

t1)
2/2 dx dπ(ϑ)
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Optimizing, Continued

then we would have specified the unique nonrandom-

ized optimal decision rule through the constant t1 and

functions s(t1, x), w(t1 + s).

But for these general loss functions there is no hope

of explicit formulas, and even showing unique optima is

complicated by the form of optimal s which will gener-

ally be 0 on the complement of some interval.

This behavior is unavoidable, reflecting the neces-

sity to stop after one look at the data at time t1 if

the observed statistic value W (t1) is too extreme !

We show this next is a computed example.
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Optimal Boundary in 2-Look Example

Data: W (t) = B(ti) + ϑti, i = 1, 2 t1 is fixed

in advance, continuation-time t2 − t1 ≥ 0 is chosen as

function of W (t1) .

Loss for stopping at τ with Rejection indicator z :

c1(τ, ϑ) + c3(τ, ϑ) + z (c2(ϑ) − c3(τ, ϑ)) (2I[ϑ≤0] − 1)

Problem to find min-risk test under prior π(dϑ), with

sig. level ≤ α and type II error at ϑ1 ≤ β.

Under regularity conditions on loss elements (piece-

wise smoothness , c2 ≥ c3, c1 ↗ ∞ ) and prior π(dϑ)

assigning positive mass to neighborhoods of 0, ϑ1 > 0 :

can show that optimal procedures are nonrandomized

(w.p.1 after smallrandom perturbation of c1 ) and unique,

rejecting for W (t2) ≥ b2(t1, t2, W (t1))
√
V (t2).

Example. α = .025, β = .1, ϑ1 = log(1.5),

time scaled so τfix = 1. Optimized t1 = .42 · τfix.

eϑ = hazard ratio 0.9 1.0 1.25 1.5 1.75

1.51 · π({ϑ}) 0.2 1.0 0.2 0.1 0.01

c1(t, ϑ) t t t t t

c2(ϑ) 200 100 50 250 500
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Total Trial Time

normalized first-look statistic U 1

0 1 2 3

0.4

0.6

0.8

1

0.56 2.56



Second Look Critical Value

normalized first-look statistic U 1

1.0 1.5 2.0

1.75

1.8

1.85

1.9

1.95

2

0.56 2.56
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Lemma on Unique Random-Function Minima

Lemma 1 (extending Bulinskaya 1961 ) Let K be a

fixed compact interval in R, and suppose that g1, g2

are fixed smooth real-valued functions on K, with

infK g2 > 0. Let ζ(·) = ζ(·, ω) be a random process

on K with sample paths a.s. in C2(K) such that for

all δ > 0, the joint density of (ζ(s1), ζ ′(s1), ζ(s2), ζ ′(s2))

(with respect to Lebesgue measure, on R4) is uni-

formly bounded, uniformly over all s1, s2 ∈ K for

which |s1 − s2| ≥ δ. Then

(i) With probability 1 (ω), there do not exist dis-

tinct elements s1, s2 ∈ K such that the sample path

of the function ρ(s) ≡ g1(s) + g2(s)ζ(s) satisfies

ρ′(s1) = ρ′(s2) = 0 along with ρ(s1) = ρ(s2), and

(ii) Under the assumptions above, with probability

1, the number of zeroes of ρ′ on K is finite, and

ρ′′(s) 6= 0 at all values of s for which ρ′(s) = 0.

Corollary. Analogous result for minima wrt s with

functions gj(t1, x, s) holds a.e. in (t1, x, ω).

Via Implicit Function Theorem for minimizer

s = s(t1, x) find s a.e. smooth in its arguments, a.s.

for argument ω .
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Further Steps to Establish a.s. unique rule

Want to substitute s = s(t1, x) and integrate out

standardized variable x = W (t1)/
√

t1 to get smooth

time-t1 risk r1(t1) except that this function s is only

a.e. defined and smooth.

Introduce technical assumption for small ε > 0 that

t2 ≥ t1 + ε whenever t2 > t1

(No real loss in generality: can likely prove it directly.)

Remaining proof-step to prove r1(t1) smooth: for

V ∼ Unif[0, ε) indep. of other data,

r1(t1) = min (E(r2(t1, W (t1)/
√

t1, 0+) ,

E( r2(t1 + V,
W (t1 + V )√

t1 + V
, s(t1 + V,

W (t1 + V )√
t1 + V

) ))

Last expectations with respect to measure on (ϑ, W (·))
given by

∫
A Pϑ(dW )dπ(ϑ).

Overall results hold a.s. (ω) for a.e. (λ0, λ1).

But that seems to be enough.
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