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Two-SAMPLE CLINICAL TRIAL STATISTICS
Data format : (E;, T/, A, Z;, i=1,..., Na(1))
for analysis at times t,.
E; entry-times, N, arrival-counting, 7 accrual-horizon
X, failure time, C; indep. right-cens., Z; trt. gp.
(X;, C; cond. indep. given Z; & strat. variable V)

PROBLEM: test Hy: Syz(t|z) = Sx(t), 2=0,1
with multiple interim looks & experimentwise validity.

TEST STATISTIC : for look at t,, define

Yi(s) =X liz—o125, Y7(s) =Y (s)+Y((s) at-risk

] YT A s)
V(T A s)

asympt. indep. incr., with estimated variance V(t*) =

M(t) = — % [ K(s. Sx(s)){Z AT dijres

) YT A )Y (T As),

Reject if Ul > p(t,),  Accept if < alt,)



ABSTRACTED ASYMPTOTIC PROBLEM

Most methods rely on asymptotically Gaussian time-
indexed statistic-numerator n~"/2 M(t) with indep. incr.’s,
and variance function V(¢) to be estimated in real or
information time.

V(t) in Hy is functional of ( Sx, Sciz, Aa = E(Ny) )

p(1 — p)Aa(t — 5)Scz(]1)Scz(s]0)

Aa(t)(p(Sc2(s[1) + (1 = p)Sey2(s]0)) dFx(s)

| K*(Sx(s))

Control parameters: At each ¢t = t;, can choose

tht1y Qkt1s Dpt1

PROBLEM: To optimize expected Loss or Cost over
times and cutoffs while maintaining overall nominal sig-
nificance level.

MAIN COMPUTATIONAL METHOD of optimizing
boundaries is parametric search for parametric boundary
classes, or backward induction.



DECISION-THEORY INGREDIENTS

Actions: look-times ti, and boundaries b, = b(t)
for W/VY? — for now consider only upper rejection
boundary

Prior: (1) density for group-difference log hazard
ratio parameter ¢ (within semiparametric model).

Losses: costs of experimentation ¢(t,¢), wrong
decision (1), late correct decision c3(t,¥) |

these loss elements introduced in Leifer (2000) thesis.
Costs are economic within-trial, ethical within-trial,
and economic after-trial.

IN 2-LOOK TRIALS, ADAPTIVE ACTIONS ARE:

e t; constant depending on prior & losses

® FOHOWllp time tQ = tg(W(tl), tl) which if = tl
indicates imediate Reject or Accept, and

e final boundary: reject iff W(ty) > b(ts, t1, W(ty))



MORE ON DECISION THEORY PROBLEM

(I) state-of-nature parameter ¥ € R, target parameter
z =~(¥) (=1 in estimation, I[¢ < 0] in testing),
and prior prob. 7 on O

(IT) action-space

A=A{(ta): t=(t,... k)
0<t < <tx <T, a€~(O))

(IIT) observable process W = (W(zx), 0 < =z < T)
Wiener process with drift ¢, and suff. stat. W ()
for data up to stopping-time 7, and auxiliary ran-
domization r.v. U ~ Unif]0, 1] independent of W

(IV) strategies consist of: increasing nonnegative stopping-
time random variables 7 = (1q, ..., Tx)

0< << .- <17 <T a.s.
satisfying ‘causality’ restrictions on measurability,
i <zleo(n,i<j; W), u<z ;U),

and terminal action rv. a € y(©) meas. wrt
(W(x), x <tg) and U
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(V) a loss-function L(t,a,v,\) depending on look-

(VI)

NOTE:

times ¢ only as smooth fcn of terminal time #g,
with Lagrange multipliers Ag, A1

L(t,a,9,\) = Cltr,a,z)+Xadyo+ A (1—a)dy.y,
where 2 = Ijy<g;, Y1 >0 and

C(t,a,z) = c1(t,V) + Iz 2(0) + Ijegc3(t, V)
and ¢;(-,9) /7, cs3(t, V) < (V).

risk function to be minimized over d = (7,a) is

r(d,\) = [, Ey L(r, 0,9, 0) dm(9) (1)

For terminal time 7x = s and data history
(W(u), u < s), there exists unique optimal termi-
nal action ][W(S)zw(s)], with w() = w(-,)\o,)\l)
uniquely determined by

[ W02 6y 9 N, Ay) dm(6) = 0

where

Ao A1

91(y) = (c2(0)—c3(y, 0)) (2L1g<— 1)+ — Ljp—g) — — Ljp—p,]
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OPTIMIZING THE DECISION RULE

We know that at the final look-time, the best deci-
sion is to Reject when W (s) > w(s), w computed
uniquely from s, Ag, A1 .

Now let ¢; be fixed and imagine W (t1)/\/t; = x
observed. Can express conditional expected final loss at
time t; + s in form

ro(ty, x,s) = /R(tl,x,s,ﬁ) dm (1)

— / efrvir—8t/2 {ao(ti +5,9) + ai(ts +s,9)-

(1 By (w“l*jg_x h —19\/5)) Y dn(0)

where
A
CL()(t, 19) = (t, 19) + Co (19) ][19>0] + 7T_1 ][9:91] +C3 (t, 19) ][19§0]

Backward Induction Idea: if we can uniquely
optimize ry(t1,x,s) in s = s(t;,x) uniquely (a.e. x),
and then choose ¢; uniquely to minimize

1

Nor e~ T=VI/2 oy dm (1)
/o

//R(tl,x, s(ty, x), V)



OPTIMIZING, CONTINUED

then we would have specified the unique nonrandom-
ized optimal decision rule through the constant ¢; and
functions s(ti,x), w(t; + ).

BUT for these general loss functions there is no hope
of explicit formulas, and even showing unique optima is
complicated by the form of optimal s which will gener-
ally be 0 on the complement of some interval.

This behavior is unavoidable, reflecting the neces-
sity to stop after one look at the data at time t; if
the observed statistic value W (t1) is too extreme !

We show this next is a computed example.



Optimal Boundary in 2-Look Example

Data: W(t) = B(t;) + 9, i = 1,2 t; is fixed
in advance, continuation-time ty —¢; > 0 is chosen as
function of W (ty) .

Loss for stopping at 7 with Rejection indicator z :

Cl<7', 19) + Cg(T, 19) + Z(CQ(ﬁ) — Cg(T, 19)) (2][19§0] — 1)

Problem to find min-risk test under prior m(dv), with
sig. level < a and type II error at v < (5.

Under regularity conditions on loss elements (piece-
wise smoothness, ¢y > ¢3, ¢ /" oo ) and prior 7(dd)
assigning positive mass to neighborhoods of 0, ¥, > 0 :

can show that optimal procedures are nonrandomized
(w.p.1 after smallrandom perturbation of ¢; ) and unique,
rejecting for W(tg) Z b2<t1, tQ, W(tl)) \/V(tQ)

Example. o =.025, §=.1, 91 =log(1.5),
time scaled so 7, = 1. Optimized t; = 42 - 7p,.

e’ = hazard ratio | 0.9 | 1.0 | 1.25| 1.5 | 1.75
1.51 - 7({¥}) [02[1.0] 02 |0.1]0.01
c(t, ) t |t |t |t ]t
co(V) 200 | 100 | 50 |250| 500




Total Trial Time

0.8

0.6 1

0.4 -

0 1 2
0.56 normalized first-look statistic U ¢ 2.56



Second Look Critical Value

1.95;

1.9 ;

1.85;

1.8 ;

1.75;

1.0 1.5 2.0
0.56 normalized first-look statistic U ¢ 2.56



0.56 (lower bdy of cont. reg.)
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LEMMA ON UNIQUE RANDOM-FUNCTION MINIMA

Lemma 1 (extending Bulinskaya 1961) Let K be a
fixed compact interval in R, and suppose that g1, go
are fized smooth real-valued functions on K, with
infx go > 0. Let ((-) =((-,w) be a random process
on K with sample paths a.s. in C*(K) such that for
all 6 >0, the joint density of (((s1), ('(s1), ((s2), ('(s2))
(with respect to Lebesque measure, on R?Y) is uni-

formly bounded, uniformly over all si, s € K for
which |s1 — s3] > 0. Then
(i) With probability 1 (w), there do not exist dis-
tinct elements s1, sy € K such that the sample path
of the function p(s) = gi1(s) + g2(s)((s) satisfies
p'(s1) = p'(s2) =0 along with p(s1) = p(s2), and
(7i) Under the assumptions above, with probability

1, the number of zeroes of p' on K s finite, and
p"(s) #0 at all values of s for which p'(s) = 0.

Corollary. Analogous result for minima wrt s with
functions ¢;(t1,x,s) holds a.e. in (t1,x,w).

Via IMPLICIT FUNCTION THEOREM for minimizer
s = s(ty,z) find s a.e. smooth in its arguments, a.s.
for argument w .
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FURTHER STEPS TO ESTABLISH A.S. UNIQUE RULE

Want to substitute s = s(t1,z) and integrate out
standardized variable x = W(ty)/\/t1 to get smooth
time-t; risk ri(t1) except that this function s is only
a.e. defined and smooth.

Introduce technical assumption for small ¢ > 0 that
o >t +e¢ whenever to >t
(No real loss in generality: can likely prove it directly.)
Remaining proof-step to prove r1(t;) smooth: for
V ~ Unif][0, €) indep. of other data,

7“1<t1) = min(E(Tg(tl,W(tl)/\/ﬂ, O+),

W(tl + V) W(tl + V)
t V
th+V ’S<1+ ’ th+V

E( 1oty +V, )))

Last expectations with respect to measure on (¢, W(-))
given by 4 Py(dW)dm(1)).

Overall results hold a.s. (w) for a.e. (A, \1).
But that seems to be enough.
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