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Matrix Regression
For space of d1 × d2 matrices, the one possible inner product is defined as

〈〈A,B〉〉 = Trace(ATB) =
d1∑

j=1

d2∑
k=1

AjkBjk. The norm induced by the inner

product is ‖A‖F =

√√√√ d1∑
j=1

d2∑
k=1

(Ajk)2.

Consider the Matrix Regression: We observe
Zi = (Xi, yi), i = [n] = {1, 2, · · · , n} where Xi ∈ Rd1×d2 are covariates and
yi ∈ R are response variables.
For simplicity, assume we have linear link: yi = 〈〈Xi,Θ

∗〉〉+ wi, where wi
are noise variables.
For simplicity define the observation operator Xn : Rd1×d2 7→ Rn given by
[Xn(Θ)]i = 〈〈Xi,Θ〉〉, then the full regression can be written as

y = Xn(Θ
∗) + W
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Matrix Regression w/ Rank Constraints

Matrix regression: y = Xn(Θ
∗) + W.

In application, Θ∗ could be low-rank or approximated by a low rank
matrix. We could apply rank penalty, which will make the regression
problem non-convex.
Instead, we use a nuclear norm penalty and have

Θ̂ ∈ arg min
Θ∈Rd1×d2

{
1
2n ‖y −Xn(Θ)‖2

2 + λn‖Θ‖nuc

}
(1)

where ‖Θ‖nuc =

min(d1,d2)∑
j=1

σj(Θ), i.e., the sum of singular values of Θ.

We take a detour to Chapter 9, to understand the nature of Eq. 1.
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General Regularized M-estimator

Given an indexed family of probability distributions {Pθ : θ ∈ Ω} where θ
is the parameter to be estimated and Ω is the parameter space.
Consider an observed sample Zn = (Z1,Z2, . . . ,Zn), each of Zi ∈ Z where
Z is the sample space. Suppose Zi ∼ P = Pθ∗ , our goal is to estimate θ∗.
Wainwright defines the cost function, which I’ll refer to as the loss
function later, as Ln : Ω×Z⊗n 7→ R.
The risk (called population cost function by wainwright) is defined as
L(θ) = E (Ln(θ;Zn)).
The target parameter θ∗ is then θ∗ = argmin

θ∈Ω
L(θ).

Remark (language “stole” from Dr. Slud): in many settings, θ∗ lies in the
interior of Ω, and it is the calculus minimizer in the sense that
∇L(θ∗) = 0.
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General Regularized M-estimator

To ensure certain imposed structure of θ∗ (e.g., sparsity), we introduce
appropriate penalty and have

θ̂ ∈ argmin
θ∈Ω

{Ln (θ;Zn
1) + λnΦ(θ)} (2)

where λn is a user defined weight parameter, Φ is a proper chosen function
of θ, for example, the Lp norm.
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Back to Matrix Regression

Eq. 2 θ̂ ∈ argmin
θ∈Ω

{Ln (θ;Zn
1) + λnΦ(θ)}.

Eq. 1 Θ̂ ∈ arg min
Θ∈Rd1×d2

{
1
2n ‖y −Xn(Θ)‖2

2 + λn‖Θ‖nuc

}
The nuclear norm provides a natural relaxation of rank of the matrix in the
following sense: given Θ ∈ Rd1×d2 , perform the SVD: Θ = UDVT, where
D is a diagonal matrix with entries

σ1(Θ) ≥ σ2(Θ) ≥ · · · ≥ σmin(d1,d2)(Θ) ≥ 0

Note that the rank of Θ is the number of non-zero singular values:
rank(Θ) = |{j : σj(Θ) > 0}|.
The convex relaxation (particularly popular in SDP) of the rank
constraints tells us a proper Φ in Eq. 2 would be the nuclear norm – the ℓ1
norm of the vector of singular values of Θ.
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Analysis of the nuclear norm regularization

Earlier this semester, Chugang talked about the Lasso regression and a
general framework relates to “decomposable” regularizers.
We now quickly state relevant definitions and results from Ch. 9 of
Wainwright book, with the proof for none of them.
To start, we mention that our goal is to bound θ̂ − θ∗.

Zhirui Li (University of Maryland) RIT Slides November 20, 2024 7 / 34



Decomposable Regularizers

Assume the parameter space Ω ⊆ Rd is equipped with an inner product
〈·, ·〉, and ‖ · ‖ is a norm induced by this inner product. (Note again that
for space of d1 × d2 matrices, the inner product is the trace and the norm
is the matrix Frobenius norm.)
Take a pair of subspace M ⊆ M̄ ⊆ Rd, recall the orthogonal complement
of M̄ is M̄⊥ := {v ∈ Rd : 〈u, v〉 = 0, ∀u ∈ M̄}.

Decomposable Regularizers
Given a pair of subspaces M ⊆ M̄, a norm-based regularizer Φ is
decomposable with respect to (M, M̄⊥ ) if

Φ(α+ β) = Φ(α) + Φ(β) for all α ∈ M and β ∈ M⊥
.
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Decomposable Regularizers: Why?

Prop 9.13, Wainwright 2019
Let Ln : Ω 7→ R be a convex function, let the regularizer Φ : Ω → [0,∞)
be a norm, and let

(
M, M̄⊥) be a pair of subspace of Rd such that Φ is

decomposable on this pair. Given Φ∗ (∇Ln(θ
∗)) ≤ λn

2 , where Φ∗ is the
dual norm of Φ, we have

∆̂ = θ̂ − θ∗ ∈
{
∆ ∈ Ω : Φ

(
∆M⊥

)
≤ 3Φ

(
∆M
)
+ 4Φ

(
θ∗M⊥

)}

Note: ∇Ln(θ
∗) is frequently referred to as the score function.

The dual norm of Φ, Φ∗, is defined such that Φ∗(v) = sup
Φ(u)≤1

〈u, v〉.
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Curvature

In classical mathematical statistics, the curvature of the loss function is
captured by the Fisher’s information, and is used to quantify the variance
of MLE via Rao-Cramer Lower Bound.

In high dimensional settings, strict convexity in all directions are often
prohibited.

We follow Section 9.3 and discuss two restricted curvature conditions, and
corresponding results.
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Restricted Strong Convexity

Given any differentiable loss function, we look at the 1st order Taylor
Expansion error

En(∆) := Ln (θ
∗ +∆)− Ln (θ

∗)− 〈∇Ln (θ
∗) ,∆〉

Restricted Strong Convexity
For a given norm ‖ · ‖ and regularizer Φ(·), the loss function satisfies a
restricted strong convexity condition with radius R > 0, curvature κ > 0
and tolerance τ2

n if

En(∆) ≥ κ

2‖∆‖2 − τ2
nΦ

2(∆) for all ∆ ∈ BR(0)

Combined with the decomposability of the regularizers, the following
theorem achieves our goal (bounding θ̂ − θ∗)
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Restricted Strong Convexity

Theorem 9.19, Wainwright 2019
Assume that the loss function is convex, satisfies the restricted strong
convexity condition with parameters above, and Φ is decomposable over
(M, M̄⊥), then
(a) Any optimal solution satisfies the bound

Φ
(
θ̂ − θ∗

)
≤ 4

[
Ψ(M)

∥∥∥θ̂ − θ∗
∥∥∥+Φ(θ∗M⊥)

]
(b) If

(
M,M⊥) satisfies τ2

nΨ
2(M) ≤ κ

64 and εn
(
M,M⊥) ≤ R, we have∥∥∥θ̂ − θ∗

∥∥∥2
≤ ε2

n
(
M,M⊥)

where Ψ(S) = sup
u̸=0,u∈S

Φ(u)
‖u‖ and

ε2
n
(
M,M⊥) := 9λ

2
n

κ2 Ψ
2(M) +

8
κ

{
λnΦ(θ∗M⊥) + 16τ 2

nΦ
2 (θ∗M⊥)

}
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Φ∗-Norm Curvature Condition
An alternative way to look at the curvature of the loss function:

Φ∗-Norm Curvature Condition
The loss function satisfies Φ∗ curvature condition with curvature κ > 0,
tolerance τn ≥ 0 and radius R if

Φ∗(∇Ln(θ
∗ +∆)−∇Ln(θ

∗)) ≥ κΦ∗(∆)− τnΦ(∆)

for all ∆ ∈ {θ ∈ Ω : Φ∗(θ) ≤ R}.

With this we have
Theorem 9.24, Wainwright 2019

Suppose Φ is decomposable over (M,M⊥
), τnΨ

2(M) <
κ

32 and the event

{Φ∗(∇Ln(θ
∗)) ≤ λn

2 } ∩ {Φ∗(θ̂ − θ∗) ≤ R}:

Φ∗(θ̂ − θ∗) ≤ 3λn
κ
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Finding subspaces that ‖ · ‖nuc is decomposable

To apply the results above, the we need to find subspaces M ⊂ M of
Rd1×d2 such that ‖ · ‖nuc is decomposable over this pair.
Given Θ ∈ Rd1×d2 , let rowspan(Θ) ⊂ Rd2 and colspan(Θ) ⊂ Rd1 be the
row space and column space of Θ, respectively. For low-rank purpose, let
r ≤ min(d1, d2) be a positive integer, which will be the rank of our
estimator Θ̂.
Let U,V be r-dimensional subspace of vectors of appropriate dimensions.
Define

M(U,V) :=
{
Θ ∈ Rd1×d2 | rowspan(Θ) ⊆ V, colspan(Θ) ⊆ U

}
M⊥

(U,V) :=
{
Θ ∈ Rd1×d2 | rowspan(Θ) ⊆ V⊥, colspan(Θ) ⊆ U⊥

}
We will omit (U,V) when the context is clear. Also note that
M = (M⊥

)
⊥

.
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Finding subspaces that ‖ · ‖nuc is decomposable

Note that for the choice of the pair of subspaces, we have M ⊊ M.
To see this, let d′ = min(d1, d2), let U ∈ Rd1×d′

,V ∈ Rd2×d′ be matrices
with orthonormal columns. If we set U be the span of first r columns of U,
V be the span of first r columns of V.

For matrices A ∈ M,B ∈ M⊥, some easy linear algebra shows

A = U
[

∗A 0r×(d′−r)
0(d′−r)×r 0(d′−r)×(d′−r)

]
VT; B = U

[
0r×r 0r×(d′−r)

0(d′−r)×r ∗B

]
VT

Also, for any A ∈ M, A = U
[
∗A1 ∗A2
∗A3 0(d′−r)×(d′−r)

]
VT.

Note that ∗· means a block matrix with arbitrary entries, so indeed we
have M ⊊ M.
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Finding subspaces that ‖ · ‖nuc is decomposable

Finally, note that given A ∈ M,B ∈ M⊥, we have (where V−T is short
hand for (VT)−1)

‖A + B‖nuc =
∥∥U−1AV−T + U−1BV−T∥∥

nuc

=

∥∥∥∥[∗A 0
0 0

]
+

[
0 0
0 ∗B

]∥∥∥∥
nuc

=

∥∥∥∥[∗A 0
0 0

]∥∥∥∥
nuc

+

∥∥∥∥[0 0
0 ∗B

]∥∥∥∥
nuc

=

∥∥∥∥U
[
∗A 0
0 0

]
VT
∥∥∥∥
nuc

+

∥∥∥∥U
[
0 0
0 ∗B

]
VT
∥∥∥∥
nuc

= ‖A‖nuc + ‖B‖nuc
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Restricted Strong Convexity and Error Bounds

Our gerneral objective function, Eq 2, is pasted again

Θ̂ ∈ arg min
Θ∈Rd1×d2

{Ln(Θ) + λn‖Θ‖nuc }

To apply Theorem 9.13, the first assumption we need is
Φ∗(∇Ln(Θ

∗)) ≤ λn
2 . Here note that ‖ · ‖nuc = ‖ · ‖2.

By Prop. 9.13, we have that:
For λn ≥ 2‖∇Ln(Θ

∗)‖2, let ∆̂ = Θ̂−Θ∗, and ∆̂M̄ denote the projection
of ∆̂ onto M, then∥∥∥∆̂M̄⊥

∥∥∥
nuc

≤ 3
∥∥∥∆̂M

∥∥∥
nuc

+ 4 ‖Θ∗
M⊥‖nuc

Zhirui Li (University of Maryland) RIT Slides November 20, 2024 17 / 34



Restricted Strong Convexity and Error Bounds

When the loss is the standard L2 loss, the objective becomes Eq 1:

Θ̂ ∈ arg min
Θ∈Rd1×d2

{
1
2n ‖y −Xn(Θ)‖2

2 + λn‖Θ‖nuc

}
The the restricted strong convexity condition amounts to lower bounding

the term ‖Xn(∆)‖2
2

2n .

With this, we assume

‖Xn(∆)‖2
2

2n ≥ κ

2‖∆‖2
F − c0

(d1 + d2)

n ‖∆‖2
nuc, for all ∆ ∈ Rd1×d2
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Restricted Strong Convexity and Error Bounds

We are ready to state Theorem 9.19 in the context of matrix regression:

Prop. 10.6, Wainwright 2019
Suppose that Xn satisfies the restricted strong convexity condition with
parameter κ > 0. Then conditioned on the event

{∥∥ 1
n
∑n

i=1 wiXi
∥∥

2 ≤ λn
2
}

,
any optimal solution to nuclear norm regularized least squares satisfies the
bound∥∥∥Θ̂−Θ∗

∥∥∥2

F
≤ 9

2
λ2

n
κ2 r + 1

κ

2λn

d′∑
j=r+1

σj (Θ
∗) +

32c0 (d1 + d2)

n

 d′∑
j=r+1

σj (Θ
∗)

2


for any r ≤ κn
128c0(d1+d2)

.
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Φ∗-Norm Curvature Condition

For the Φ∗-Norm Curvature Condition, the assumption in the context of
matrix regression with Φ being the nuclear norm becomes∥∥∥∥1

nX
∗
n Xn(∆)

∥∥∥∥
2
≥ κ‖∆‖2 − τn‖∆‖nuc for all ∆ ∈ Rd1×d2

And Theorem 9.24 becomes
Prop. 10.7, Wainwright 2019
Assume the Φ∗-Norm Curvature Condition above, consider a matrix Θ∗

with rank (Θ∗) < κ
64τn

. Then, conditioned on the event
{∥∥ 1

nX
∗
n
∥∥

2 ≤ λn
2
}

,
any optimal LS solution of Eq. 1 satisfies the bound∥∥∥Θ̂−Θ∗

∥∥∥
2
≤ 3

√
2λn
κ
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Applications: Multivariate Regression
We again take a detour to Ch. 9 and discuss the general setup of
multivariate regression.

Suppose we observe (zi, yi) ∈ Rp × RT, i ∈ [n]. Then write
Y ∈ Rn×T,Z ∈ Rn×p such that yi, zi are respectively their i-th row. For
simplicity assume the linear model

Y = ZΘ∗ + W

where Θ∗ ∈ Rp×T is the matrix of regression coefficients, and W is the
noise matrix.

Mentioned in the book, a naive approach would be to decompose the
problem into T sub-problems

Y∼,t = ZΘ∗
∼,t + W∼,t, t ∈ [T]

This approach lacks the consideration that columns may have interactions.
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Applications: Multivariate Regression
Instead, consider the M-estimator approach. Assume that S is a subset of
[n] such that Θ[S, :] is significant predictor, i.e., Θ is a row sparse matrix.
To ensure this row sparsity, we use

Φ(Θ) =

p∑
j=1

‖Θj,·‖2︸ ︷︷ ︸
ℓ1 norm of row-wise ℓ2 norm

Group Lasso: Let G = {G1,G2, · · · ,GT} be a disjoint partition of the
index set [d], i.e., {∪Gi = [d]} ∧ {Gi ∩ Gj = ∅, i 6= j}.
Given θ ∈ Rd, let
θG = {θ|i-th component of θ is 0 if i /∈ G; is θi if i ∈ G}.
For any given norm, the group lasso norm is defined as

Φ(θ) :=
∑
G∈G

‖θG‖, i.e., the ℓ1 norm of the ℓ2 norm with-in each group in G
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Applications: Multivariate Regression

The multivariate regression problem with low-rank constraint on Θ can
also be solved via the matrix regression.
To this end, write yi = 〈〈Xi,Θ

∗〉〉+ Wi, i = 1, 2, . . . , nT.
Let Ejl ∈ Rn×T = [1jl], Xjl = ZTEjl and yjl = [Y]jl.
The matrix regression problem is thus

yjl = 〈〈Xjl,Θ
∗〉〉+ Wjl

It’s easy to see in this case, the observation operator Xn(Θ∗) is simply
ZΘ∗.
So the model Y = ZΘ∗ + W is our model for the multivariate regression
problem.

Also, the Lease-Square loss has the form Ln(Θ) =
1
2n‖Y − ZΘ‖F
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Applications: Multivariate Regression

Cor. 10.14, Wainwright 2019
Suppose Θ∗ ∈ Rp×T has rank at most r, and the noise matrix W has i.i.d.
entries that are zero-mean and σ-sub-Gaussian. Let Σ̂ =

ZTZ
n be the

sample covariance matrix. Then any solution to least square objective with
λn = 10σ

√
γmax(Σ̂)

(√
p+T

n + δ

)
satisfies the bound

∥∥∥Θ̂−Θ∗
∥∥∥

2
≤ 30

√
2
σ

√
γmax(Σ̂)

γmin(Σ̂)

(√
p + T

n + δ

)
with probability at least 1 − 2e−2nδ2 . Moreover, we have∥∥∥Θ̂−Θ∗

∥∥∥
F
≤ 4

√
2r
∥∥∥Θ̂−Θ∗

∥∥∥
2

and
∥∥∥Θ̂−Θ∗

∥∥∥
nuc

≤ 32r‖‖Θ̂−Θ∗‖2.

γ(Σ̂) is the set of eigenvalues of Σ̂.
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Applications: Multivariate Regression
Proof:

∇Ln(Θ
∗+∆)−∇Ln(Θ

∗) =
1
nZT(y−Z(Θ∗+∆))− 1

nZT(y−ZΘ∗) =
ZTZ

n ∆ = Σ̂∆

For any u ∈ RT, we have ‖Σ̂∆u‖2 ≥ γmin(Σ̂)‖∆u‖2, thus

‖Σ̂∆‖2 = sup
∥u∥2=1

‖Σ̂∆u‖2 ≥ γmin(Σ̂) sup
∥u∥2=1

‖∆u‖2 = γmin(Σ̂)‖∆‖2

So the Φ∗ norm curvature condition
[‖∇Ln(Θ∗ +∆)−∇Ln(Θ∗)‖2 ≥ κ‖∆‖2 + τn‖∆‖nuc] is satisfied with
κ = γmin(Σ̂) and τn = 0.
Now in the theorem, λn has been specified, and we can show (detail
omitted)

P
[∥∥∥∥1

nZTW
∥∥∥∥

2
≥ 5σ

√
γmax(Σ̂)

(√
p + T

n + δ

)]
≤ 2e−2nδ2

Zhirui Li (University of Maryland) RIT Slides November 20, 2024 25 / 34



Applications: Multivariate Regression

Proof continued: So with probability at least 1 − 2e−2nδ2 , we have
‖∇Ln(Θ

∗)‖2 =

∥∥∥∥1
nZTW

∥∥∥∥
2
≤ λn

2 .

All conditions of Prop. 10.7 have been met, and the 2-norm bound
follows.

Now since rank(M) ≤ 2r, we know (where σi(·) denotes the i-the singular
value)

‖∆̂‖nuc =
n∑

i=1
σi(∆̂) ≤ 4

√
2r
( n∑

i=1
[σi(∆̂)]2

)1/2

= 4
√

2r‖∆̂‖F

Therefore,

‖∆̂‖2
F = 〈∆̂, ∆̂〉 ≤ ‖∆̂‖nuc‖∆̂‖2 ≤ 4

√
2r‖∆̂‖F‖∆̂‖2
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Applications: Low Rank Matrix Completion

Another application is Low Rank Matrix Completion. The goal is to
estimate Θ∗ ∈ Rd1×d2 based on noisy observations of some of its entries.
We need to assume Θ∗ is low rank, or can be well-approximated by a low
rank matrix.
To formulate the goal into a matrix regression problem, assume we observe
ỹi = Θ∗

a(i),b(i) +
wi√
d1d2

, i ∈ [n], where a(i), b(i) is the indices in Θ∗ of the

i-th observation and wi is the noise. The normalizing constant
√

d1d2
ensures E‖Xn(Θ

∗)‖2
2 = n‖Θ∗‖2

F.
Let Xi ∈ Rd1×d2 be the matrix with 0 everywhere except for
Xa(i),b(i) =

√
d1d2, and let yi =

√
d1d2ỹi, it is clear that

yi = 〈〈Xi,Θ
∗〉〉+ wi

Zhirui Li (University of Maryland) RIT Slides November 20, 2024 27 / 34



Applications: Low Rank Matrix Completion

In high dimensional setting, n << d1d2. The first issue arises when, for

example, ΘB =


1 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
... ... ... . . . ...
0 0 0 · · · 0

.

For this matrix, we have Xn(Θ
B) = 0 with high probability.

To mitigate this issue, the book suggested to impose the so-called matrix
incoherence condition, which ensures the singular vectors of Θ∗ are
relatively spread out (entries have absolute values close to each other).
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Applications: Low Rank Matrix Completion

Rigorously speaking, let Θ = UDVT be its SVD, then columns of U,V are
normalized. If the entries of such columns are perfectly spread out, then
each entry will have absolute value 1/

√
d1 for U and 1/

√
d2 for V.

As a result, rows of U will have Euclidean norm
√

r/d1. Note that UUT

has diagonal entries corresponding to the norm of rows of U, so the matrix
incoherence condition imposes

‖UUT − r
d1

I‖max ≤ µ

√
r

d1

where µ is called the incoherence parameter.

Analogous algebra motivates the other condition ‖VVT − r
d2

I‖max ≤ µ

√
r

d2
.
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Applications: Low Rank Matrix Completion

Another issue before we state the formal result is that the matrix
incoherence condition is not robust under noise. As an example, let
z =

[
0 1 1 · · · 1

]
∈ Rd, consider Z∗ = zTz

d , it can be shown Z∗ is
rank 1 (trivially) and satisfy the incoherence condition with properly
chosen µ (details omitted).

Let Γ∗ = (1 − δ)Z∗ + δΘB for some 0 < δ ≤ 1, we can verify
eT

1 =
[
1 0 0 · · · 0

]T is always an eigenvector of Γ∗ (trivial:
Z∗e1 = 0), so the incoherence condition is violated.

To address this issue, define the spikeness ratio

αsp(Θ) =

√
d1d2‖Θ‖max

‖Θ‖F
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Applications: Low Rank Matrix Completion

αsp(Θ) =

√
d1d2‖Θ‖max

‖Θ‖F

Since ‖Θ‖2
F =

d1∑
j=1

d2∑
k=1

Θ2
jk ≤ d1d2‖Θ‖2

max, we know αsp(Θ) ≥ 1.

Since ‖Θ‖max ≤ ‖Θ‖F, we know αsp(Θ) ≤
√

d1d2.

As a remark, for the matrix Γ∗, we have

αsp(Γ
∗
δ) ≤

(1 − δ) + δd
1 − 2δ
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Applications: Low Rank Matrix Completion

The following theorem gives a form of the restricted strong convexity
condition for the matrix completion problem:

Thm. 10.17, Wainwright 2019
Let Xn : Rd1×d2 → Rn be the random matrix completion operator formed
by n i.i.d. samples of rescaled mask matrices Xi. Then there are universal
positive constants (c1, c2) such that∣∣∣∣∣1n ‖Xn(Θ)‖2

2
‖Θ‖2

F
− 1
∣∣∣∣∣ ≤ c1αsp(Θ)

‖Θ‖nuc
‖Θ‖F

√
d log d

n +c2α
2
sp(Θ)

(√
d log d

n + δ

)2

for all non-zero Θ ∈ Rd1×d2 , with probability at least 1 − 2e− 1
2 d log d−nδ.
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Applications: Low Rank Matrix Completion
With the theorem above, we have the following result that follows from
Prop. 10.6
Cor. 10.18, Wainwright 2019
Consider the n observations of ỹi = Θ∗

a(i),b(i) +
wi√
d1d2

such that Θ∗ is with
rank at most r, elementwise bounded as ‖Θ∗‖max ≤ α/

√
d1d2, and i.i.d.

additive noise variables {wi}n
i=1 satisfy the Bernstein condition with

parameters (σ, b), i.e.,
∣∣∣E [(wi − E(wi))

k
]∣∣∣ ≤ k!

2 σ2bk−2, k ≥ 2.
Given a sample size n > 100b2

σ2 d log d, if we solve the least square objective
function with λ2

n = 25σ2d log d
n + δ2 for some δ ∈

(
0, σ2

2b

)
, then any optimal

solution Θ̂ satisfies the bound∥∥∥Θ̂−Θ∗
∥∥∥2

F
≤ c1 max

(
σ2, α2) r

(
d log d

n + δ2
)

with probability at least 1 − e− nδ2
16d − 2e− 1

2 d log d−nδ.
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Thank you!
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