Stat 400 In-Class Test $2 \quad$ Fall, 2003
Instructions: Do as much of the test as you can; point values are indicated, with 100 the maximum score. You may use calculators, a notebook sheet of notes, and the normal table handed out with the test. Give reduced numerical answers only in problems 1(a), 3(b), and 4(a): elsewhere, numerical expressions which are readily evaluated on a calculator are good enough. (But do not leave the answer in the form of an integral or abstract symbol). Justify your steps wherever you can: I will be much more generous with partial credit wherever you explain clearly what you are doing.

1. (25 pts.) Suppose that a certain continuous random variable X, has density proportional to $1 /(1+x)^{3}$ for $x \geq 0$ (and is 0 for negative x.)
(a) Find the probability that X is either <1 or >3 (a single number). (Give reduced numerical answer.)
(b) Find the probability density of the random variable $(1+X)^{2}$.
2. (25 pts.) Each of 1000 real numbers is rounded to the nearest integer. If the round-off errors $V_{i}, \quad 1 \leq i \leq 1000$, can be treated as independent Unif $[-0.5,0.5]$ r.v.'s, then what is the approximate probability that the total of the rounded numbers differs from the total of the original (un-rounded) numbers by at most 20 ?
3. (30 pts.) After generating 4800 independent Unif[0,1] random numbers U_{1}, \ldots, U_{4800}, we count the number M of them which have values $\leq 1 / 4$, i.e.,

$$
M=\sum_{i=1}^{4800} I_{\left[U_{i} \leq 0.25\right]}
$$

Here the notation I_{A} denotes 1 if A is true, and 0 if A is false.
(a) What type of random variable is M ?
(b) What is the approximate numerical probability that $M \leq 1280$?
(c) What is the approximate value of $\frac{1}{4800} \sum_{i=1}^{4800} U_{i}^{4}$?
4. (25 pts.) Suppose that two discrete random variables X, Y have joint probability mass function given by the entries in the table

$\mathrm{Y}=$	-3	-1	0	4
$\mathrm{X}=-1$	0.06	0.05	0.09	0.10
$\mathrm{X}=1$	0.09	0.08	0.12	0.11
$\mathrm{X}=2$	0.05	0.07	0.09	0.09

(a) Find the probability that $X>Y$.
(b) Find the marginal probability mass function of X and the expectation of Y.
(c) Are X, Y independent? Justify your answer.
5. (15 pts.) Let V, W be independent $\mathcal{N}(2,5)$ random variables. Find $E\left((V+2 W)^{2}\right)$.

Hint: one way to find this is to relate it to the mean and variance of the random variable $V+2 W$.

