Stat 400 Test 2 Solutions

1. Since $f(x)=c(1+x)^{-3}, x \geq 0$ for some constant c, we have

$$
1=\int_{0}^{\infty} \frac{c}{(1+x)^{3}} d x=-\left.\frac{c}{2(1+x)^{2}}\right|_{0} ^{\infty}=\frac{c}{2}
$$

So $c=2$, , and for $x \geq 0, \quad F_{X}(x)=\int_{0}^{x} \frac{2}{(1+y)^{3}} d y=1-\frac{1}{(1+x)^{2}}$. (a) Ans. $F_{X}(1)+1-F_{X}(3)=1-\frac{1}{4}+\frac{1}{16}=0.8125$. (b) Here $Y=g(X)=(1+X)^{2}$, so $g^{-1}(y)=\sqrt{y}-1, y \geq 1$. Then $F_{Y}(y)=F_{X}(\sqrt{y}-1)=1-y^{-1}, y \geq 1$, and $f_{Y}(y)=y^{-2}, y \geq 1$.
2. The total roundoff error is $\sum_{i=1}^{1000} V_{i}$, since if each unrounded number is called Y_{i}, then by definition the rounded number is $Y_{i}+V_{i}$, and the difference between the total of the rounded numbers and the total of the unrounded numbers is $\sum_{i=1}^{1000}\left(Y_{i}+V_{i}\right)-\sum_{i=1}^{1000} Y_{i}=\sum_{i=1}^{1000} V_{i}$. Now $V_{i} \sim$ Unif[-.5,.5] implies that $\mu_{V}=E V_{i}=0, \sigma_{V}^{2}=\operatorname{Var}\left(V_{i}\right)=\frac{1}{12}$, and

$$
P\left(\left|\sum_{i=1}^{1000} V_{i}\right| \leq 20\right)=P\left(-.02 \leq \frac{1}{1000} \sum_{i=1}^{1000} V_{i} \leq .02\right)
$$

which by the Central Limit Theorem is $\approx \Phi\left(\frac{.02}{\sqrt{1 / 12000}}\right)-\Phi\left(\frac{-.02}{\sqrt{1 / 12000}}\right)=$ $2 \Phi(2.19)-1=.9714$.
3. (a) Since M is the sum of 4800 iid coin-toss random variables (with values 0 or 1), each with the same probability $\int_{0}^{.25} d u=0.25$ of value 1 , it is a $\operatorname{Binom}(4800, .25)$ r.v.
(b). By the normal approximation to the binomial, $P(M \leq 1280) \approx$ $\Phi((1280-4800(.25)+.5) / \sqrt{4800(.25)(.75)})=\Phi(80.5 / 30)=0.9963$.
(c) By Law of Large Numbers, $\frac{1}{4800} \sum_{i=1}^{4800} U_{i}^{4} \approx E\left(U_{1}^{4}\right)=\int_{0}^{1} u^{4} d u=1 / 5$.
4. (a). Direct combination of joint pmf values $p_{X, Y}(x, y)$ with $x>y$ gives answwer 0.56. (b) Marginal pmf's are given by $p_{Y}(-3)=.2=$ $p_{Y}(-1), p_{Y}(0)=.3=p_{Y}(4), p_{X}(-1)=p_{X}(2)=.3, p_{X}(1)=.4, \quad$ and $E(Y)=(0+4)(.3)+(-3-1)(.2)=0.4$. (c) Not independent, e.g. because $p_{X, Y}(2,-3)=.05 \neq .06=p_{X}(2) p_{Y}(-3)$.
5. Recall for any r.v. X that $E\left(X^{2}\right)=\mu_{X}^{2}+\sigma_{X}^{2}$. Here $X=V+2 W$, $\mu_{X}=2+2(2)=6, \sigma_{X}^{2}=5+\left(2^{2}\right) 5=25$, so $E X^{2}=6^{2}+25=61$.

