Stat 400, Test 3 Solutions

\#1. (a) Upper endpoint $\bar{X}+z_{.1} s / \sqrt{n}=.75+1.282(.12) / 15=0.760$,
(b) $\bar{X} \pm z_{.08 / 2} s / \sqrt{n}$, with $z_{.04}=1.751$ because from the normal table, $\Phi(1.75)=0.9599, \Phi(1.76)=0.9608$. So $\mathrm{CI}=(0.736,0.764)$.
\#2. The number T out of 1000 favoring Dean is (approximately, if sampling were done with replacement) Binom(1000, .35). So answer is:

$$
1-P\left(\left|\frac{T}{1000}-.35\right|<.02\right)=1-\left(2 \Phi\left(\frac{.02}{\sqrt{.35(.65) / 1000}}\right)-1\right)=2(1-\Phi(1.326))=.185
$$

\#3. (a) For the histogram, each count of 1 contributes a unit of $h=$ $1 /(20 \cdot 6)=0.00833$ to the height of the histogram bars. The five classintervals have the following counts and bar-heights:

Interval	$48.5-54.5$	$54.5-60.5$	$60.5-66.5$	$66.5-72.5$	$72.5-78.5$
Count	1	4	6	5	4
Bar-height	.00833	.0333	.05	.04167	.0333

(b) Median $=.6495$, and $2 / 3$ quantile is 67.8 .
\#4. Here (a) and (b) could be done using what you know about one-sided z- and t- confidence-intervals, or from first principles, as follows.
(a) We know that $\mu \in(-\infty, \bar{Y}+1.83 s / \sqrt{10}$ is a one-sided 0.95 level confidence interval because $t_{9,05}=1.83$, and $\mu \in(\bar{Y}-1.38 s / \sqrt{10}, \infty)$ is a one-sided 0.90 level confidence interval because $t_{9,10}=1.38$. Thus the probability that one or the other of these two interval conditions is violated is $.05+.1=.15$ and the desired probability is $1-.15=0.85$. This could also be done by recognizing the requested probability as
$P(-1.83 \leq(\bar{Y}-\mu) /(s / \sqrt{n}) \leq 1.38)=P\left(t_{9} \leq 1.38\right)-P\left(t_{9} \leq-1.83\right)=.9-.05$
(b) This is just like the previous part, except that we must find the probabilities replacing $0.05,0.1$ for the normal instead of t_{9} distribution. By the simpler 'method 2', the requested probability is
$P(-1.83 \leq(\bar{Y}-\mu) /(\sigma / \sqrt{n}) \leq 1.38)=\Phi(1.38)-\Phi(-1.83)=.9162-.0336=0.8826$
(c) Prediction interval: $\bar{Y} \pm t_{9,005} s \sqrt{1+\frac{1}{n}}=3.2 \pm 3.2500 .9 / \sqrt{1.1}=(.13,6.27)$.

