STAT 401 - Section 0201

FINAL EXAM - December 17, 2009

Instructions: Show all work related to your solution. Credit may be deducted for numerical answers unsupported by valid reasoning or calculations. You may use calculators as needed.

[25=15+20+10] 1. Let (x_1, \ldots, x_n) be a sample from a population with probability density function (pdf)

$$f(x;\theta) = \frac{3}{2}\theta x^2, -1 \le x \le 0, = \frac{3(2-\theta)}{2}x^2, \ 0 \le x \le 1$$

and $f(x;\theta) = 0$ for $x \notin [-1,1]$. Here θ , $0 < \theta < 1$ is a parameter.

- (i) Write the likelihood function (mind that the pdf is given by different expressions for positive and negative x's).
- (ii) Find the maximum likelihood estimator $\hat{\theta}$ of θ and show that it is unbiased.
- (iii) Find the variance of $\hat{\theta}$.
- [25+10] 2. The sample mean \bar{x} and standard deviation (sd) s calculated from a (small) random sample of size n=17 drawn from a normal population with unknown mean μ and sd σ are 31.8 and 2.9, respectively.
- (i) Calculate a 90% confidence interval for μ .
- (ii) Calculate a 90% confidence interval for σ .
- [15+30] 3. A group of equally skilled students was given two problems. The time (in min) it takes a student to solve the first problem is a normally distributed random variable with mean μ_1 and sd σ . For the second problem the parameters are μ_2 and σ . Assume that the students solved the problems independently. Here are two (small) samples of size m=4 for the first problem and n=5 for the second:

- (i) State the null hypothesis and the alternative to prove or disprove the claim that the second problem is more difficult than the first.
- (ii) Perform the test using the level $\alpha = 0.05$.

[20+20] 4. Four samples, each of size 7 from normal populations with means μ_1 , μ_2 , μ_3 , μ_4 and common variance σ^2 resulted in

$$\bar{x}_{1.} = 4.5, \bar{x}_{2.} = 5.1, \bar{x}_{3.} = 3.4, \bar{x}_{4.} = 3.0; s_1^2 = 0.98, s_2^2 = 1.16, s_3^2 = 1.10, s_4^2 = 0.88.$$

- (i) Do the data contradict the hypothesis $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4$? Use the significance level $\alpha = 0.05$.
- (ii) If H_0 is accepted, stop here. Otherwise, perform multiple comparisons with $\alpha = 0.05$.

[15+15] 5. A sample of n = 18 pairs (x_i, y_i) of random variables resulted in the following summary statistics:

$$\sum x_i = 1950, \sum x_i^2 = 211, 450, \sum y_i = 48.0, \sum y_i^2 = 230.6, \sum x_i y_i = 5230.9.$$

- (i) If the simple regression model were it to the data, calculate the equation of the least squares line you would use to predict Y from X.
- (ii) Calculate the sample correlation coefficient.

[20] 6. Assume that the response Y is related to the strength x by

$$Y(x) = 2.5 + 1.2x + \epsilon$$

where the error ϵ has a normal distribution with mean zero and sd $\sigma = 0.3$. Calculate the probability that the average of independent measurements Y(2), Y(3), Y(4) is between 6.0 and 6.3

- [10+10+15] 7. Two coins are tossed together and the total number of heads in each toss (i. e., 0, 1 or 2) is recorded.
- (i) State the null hypothesis that one coin is fair (and the other has an unknown probability θ of falling head).
- (ii) If in n tosses 0, 1 and 2 occurred n_0 , n_1 and n_2 times, respectively, calculate the maximum likelihood estimator of θ .
- (iii) For n = 50, $n_0 = 10$, $n_1 = 22$, $n_2 = 18$ use the chi-square statistic to test the null hypothesis at $\alpha = 0.05$ level.