Stat 440 Lecture: Domain Attributes, Problem Solutions, & Ratio Estimators

- (A). Recap definitions of Domains, associated Domain attributes and their population and sample means & variances
- (B). Discussion of Problem Solutions for HW2:Ch. 4 #1 (used on quiz) and last problem (3).
- (C). Math explaining why domain ratio estimators can be (much) better than simpler estimators using known denominators.

Domains & Attribute Means and Variances

Domains are subpopulations whose size or characteristics are generally not known in advance of a survey

Consider SRS sample S in population U with domain D with sizes $|S|=n, \ |U|=N, \ |D|=N_D$ and attributes of interest $y_i, \ i=1,\ldots,N$

To study means and variances of y_i within D define domain attributes $z_i = y_i I_{[i \in D]}$

we relate the mean and variance of $\,z_i\,$ over $S,U\,$ to those of $\,y_i\,$

Domains & Means and Variances, cont'd

$$\bar{z}_U = \frac{1}{N} \sum_{i=1}^{N} y_i I_{[i \in D]} = \frac{N_D}{N} \cdot \frac{1}{N_D} \sum_{i \in D} y_i = \frac{N_D}{N} \bar{y}_D$$

Using the notation $n_D = \sum_{i \in S} I_{[i \in D]} = |D \cap S|$, similarly

$$\bar{z}_S = \frac{1}{n} \sum_{i \in S} y_i I_{[i \in D]} = \frac{1}{n} \sum_{[i \in D \cap S]} y_i = \frac{n_D}{n} \bar{y}_{D \cap S}$$

$$s_{z,U}^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (z_{i} - \bar{z}_{U})^{2} = \frac{1}{N-1} \left[\sum_{i=1}^{N} y_{i}^{2} I_{[i \in D]} - N(\bar{z}_{U})^{2} \right]$$
$$= \frac{1}{N-1} \left[\sum_{i \in D} (y_{i} - \bar{y}_{D})^{2} + N_{D} \bar{y}_{D}^{2} - \frac{N_{D}^{2}}{N} \bar{y}_{D}^{2} \right]$$

Therefore
$$s_{z,U}^2 = \frac{N_D - 1}{N - 1} s_{y,D}^2 + \frac{N_D (N - N_D)}{N (N - 1)} \bar{y}_D^2$$

and similarly
$$s_{z,S}^2 = \frac{n_D - 1}{n - 1} s_{y,D \cap S}^2 + \frac{n_D (n - n_D)}{n (n - 1)} \bar{y}_{D \cap S}^2$$

Domain Means & Variances, Binary y_i

There is an important special case of the domain mean and variance formulas, when the attribute $y_i = I_{[i \in A]}$ is binary

Use similar notation as before, with $z_i = y_i I_{[i \in D]} = I_{[i \in D \cap A]}$:

$$N\bar{y}_U = N_A = |A|, \quad n\bar{y}_S = \sum_{i \in S} I_{[i \in A]} = |A \cap S| = n_A$$

Then $\bar{z}_U=N_{A\cap D}/N$, $\bar{z}_S=n_{A\cap D}/n$ and variances are based on $s_{y,U}^2=\frac{N_A(N-N_A)}{N(N-1)},$ $s_{y,S}^2=\frac{n_A(n-n_A)}{n(n-1)}$

In this case, formulas derived for variances of z's become:

$$s_{z,U}^2 = \frac{N_D - 1}{N - 1} s_{y,D}^2 + \frac{N_D (N - N_D)}{N (N - 1)} \bar{y}_D^2 = \frac{N_{A \cap D} (N - N_{A \cap D})}{N (N - 1)}$$

and similarly with $s_{z,S}^2$ and little n's

HW Problem Solutions

On this slide discuss Ch. 4 #1 (the Quiz problem)

Target of estimation: total number of trees in study area

Sampling units: plots (assume accurate count of trunks,

i.e. trees, in sampled plots).

Attribute: y_i = number of trees in plot i, for i = 1, ..., N = 900

Goal: 95% CI of specified half-width $\leq \delta = 1000$ from SRS:

$$N\left[\bar{y}_S \pm z_{.025} \left(\frac{1}{n} - \frac{1}{N}\right)^{1/2} s_{y,U}\right], \quad s_{y,U}^2 = \sigma^2 \approx 45$$

Method: $\frac{1}{n} - \frac{1}{900} \le (1000/900)^2/(45 \cdot 1.96^2)$

Formula: $n \ge \left[\frac{1}{900} + (1000/900)^2/(45 \cdot 1.96^2)\right]^{-1} = 121.27$

As in HW Ch. 4 #2, note without fpc answer is $n \ge 141$.

HW2 problem (3)

2-part problem, done separately: sample size needed for the D=M domain with analogous formula for D=F. The larger of the 2 required sample sizes is the overall answer.

For **D=M**: N = 20,000, $N_D = 10,500$, $s_{y,D} \approx 2.7$, $\bar{y}_D \approx 5$.

Survey SRS n out of N, target total $\sum_{i \in D} y_i = N_D \bar{y}_D = N \bar{z}_U$, for domain attribute $z_i = y_i I_{[i \in D]}$

Estimator is $N\bar{z}_S$ (later compare with ratio estimator $N\bar{y}_D$), with theoretical variance (from previous domain-attribute discussion)

$$N^{2} \left(\frac{1}{n} - \frac{1}{N}\right) \left[\frac{N_{D} - 1}{N - 1} s_{y,D}^{2} + \frac{N_{D} (N - N_{D})}{N (N - 1)} \bar{y}_{D}^{2} \right] \frac{s_{z,U}^{2}}{s_{z,U}^{2}}$$

HW2 problem (3), continued

So we want, for desired precision δ (= 800 in this problem)

$$z_{\alpha/2}^2 N^2 \left(\frac{1}{n} - \frac{1}{N}\right) \left[\frac{N_D - 1}{N - 1} s_{y,D}^2 + \frac{N_D (N - N_D)}{N (N - 1)} \bar{y}_D^2\right] \le \delta^2$$

Substituting, the inequality to solve is:

$$\frac{1}{n} \le \frac{1}{2e4} + \frac{800^2}{(1.96 \cdot 2e4)^2} / \left(\frac{10499}{19999} \cdot 2.7^2 + \frac{10500 \cdot 9500}{2e4 \cdot 19999} \cdot 25\right) = 9.139e - 5$$

Corresponding inequality for D = F domain has right-hand side

$$\frac{1}{n} \le \frac{1}{2e4} + \frac{800^2}{(1.96 \cdot 2e4)^2} / \left(\frac{9499}{19999} \cdot 3.0^2 + \frac{10500 \cdot 9500}{2e4 \cdot 19999} \cdot 25\right) = 8.963e - 5$$

So require $n \ge 1/\min(8.963e - 5, 9.139e - 5)$ or $n \ge 11, 157$. (Without fpc, > 20,000.) Next compare ratio estimator.

Intro to Ratio Estimator

SRS n out of N, attribute y_i , domain D with size N_D known

Target of estimation
$$r=\bar{y}_D=rac{\sum_{i=1}^N y_i\,I_{[i\in D]}}{\sum_{i=1}^N I_{[i\in D]}}=rac{\sum_{i=1}^N z_i}{\sum_{i=1}^N x_i}$$
 ,

for domain attributes $z_i = y_i I_{[i \in D]}, x_i = I_{[i \in D]}$

Ratio Estimator
$$\hat{r} = \frac{\bar{z}_S}{\bar{w}_S} = \frac{\sum_{i \in S} y_i I_{[i \in D]}}{\sum_{i \in S} I_{[i \in D]}}$$

Idea here is that random excess or too few random i's from D included in S balance each other in numerator and denominator.

Re-express
$$\hat{r} - r = \frac{1}{n_D} \sum_{i \in S} (y_i - r) I_{[i \in D]}$$
 as
$$\sqrt{n} (\hat{r} - r) = \frac{n}{n_D} \cdot \frac{1}{\sqrt{n}} \sum_{i \in S} (y_i - r) I_{[i \in D]}$$

Large-Sample Limiting Behavior of Ratio

The terms of the last expression satisfy large-sample limit theorems (Law of Large Numbers and Central Limit Theorem, respectively) that allow us to estimate the variance. First,

$$\frac{n_D}{n} - \frac{N_D}{N} = \frac{1}{n} \sum_{i \in D} (I_{[i \in S]} - \frac{n}{N})$$

is a sum of expectation 0 terms with variance $(1/n-1/N)\,s_{x,U}^2\to 0$ as n,N get large, implying $n_D/n-N_D/N\to 0$ in probability.

Similarly, again as an average of mean 0 terms with variance \rightarrow 0,

$$\frac{1}{n}\sum_{i\in S}(z_i-rx_i)\longrightarrow 0$$
 in probability

Also, for large n,N (when n/N tends to a limit $\lambda<1$ and $s_{y,D}^2,\,\bar{y}_D$ have limiting values),

$$\frac{1}{n} \sum_{i \in S} \left(z_i - rx_i \right) / \left[\left(\frac{1}{n} - \frac{1}{N} \right) s_{z-rx,U}^2 \right]^{1/2} \xrightarrow{\mathcal{D}} \mathcal{N}(0,1)$$

From this, we conclude that the ratio estimator \hat{r} has a limiting normal distribution with mean $r=\bar{y}_D$ and variance

$$(N/N_D)^2 \left(\frac{1}{n} - \frac{1}{N}\right) s_{z-rx,U}^2$$

The other estimator we previously used for $r=\bar{y}_D$ was $(N/N_D)\bar{z}_S$, and its variance is $(N/N_D)^2\left(\frac{1}{n}-\frac{1}{N}\right)s_{z,U}^2$, which is larger.

We compare these variances in some detail in our next class.