10/2/25

Stat 440 Lecture: Domain Attributes,
Problem Solutions, & Ratio Estimators

(A). Recap definitions of Domains, associated Domain
attributes and their population and sample means & variances

(B). Discussion of Problem Solutions for HW2:
Ch. 4 #1 (used on quiz) and last problem (3).

(C). Math explaining why domain ratio estimators can be (much)
better than simpler estimators using known denominators.



Domains & Attribute Means and Variances

Domains are subpopulations whose size or characteristics are
generally not known in advance of a survey

Consider SRS sample S in population U with domain D
with sizes |S| =n, (U= N, |D|= Np
and attributes of interest y;, :=1,..., N

To study means and variances of y; within D

define domain attributes z; = y; Ij;cpy

we relate the mean and variance of z; over S,U to those of y;
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Domains & Means and Variances, cont’d

- __ 1 N N 1 __ Np —
2y = § Xi=1Yilliep] = N Np XieD¥% = N UD
Using the notation np = 3 cs Ijep) = [DN S|, similarly
— _ 1 _ 1 _n —
Zs = 5 2ies Yilliep] = 3 Lliepns] Yi = 52 Upns

SLU = N-T 2i=1 (zi — 2v)° = §—1 [Zi=1 Yi dliep) — N () }
= 1| Siep Wi — Up)? + Npvd — i3

2 _ Np—-1 2 Np (N—Np) =2
Therefore  s7,; = N7 s, p + ~R(nv_1) 9D

L __ np—1 2 np(n—np) -2
and similarly  s7 ¢ = S5 5) png T ~n(n_1) YDnS



Domain Means & Variances, Binary y;

There is an important special case of the domain mean and

variance formulas, when the attribute y, = I[iGA] IS binary

Use similar notation as before, with z; = y; I,cp) = Ijiepna)
Nyy = Na = A,  nys = Yies Ijjea) = [ANS| = ny

Then 2y = NAHD/N , zg = nAmD/n and

: 2 __ Ny(N—Nyu) 2 _ nyg(n—my)
variances are based on sy ;; = N(N=1) ° 538 = “n(n=1)

In this case, formulas derived for variances of z's become:

2 =DNp=1.2 | Np(N-Np)z2 _ Nanp(N—Nanp)
2,U N—-1 y,D N(N—-1) YD N(N-1)
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and similarly with s; g and little n’s



HW Problem Solutions

On this slide discuss Ch. 4 #1 (the Quiz problem)

Target of estimation: total number of trees in study area

Sampling units: plots (assume accurate count of trunks,
i.e. trees, in sampled plots).

Attribute: y; = number of trees in plotz, for:=1,..., N =900
Goal: 95% CI of specified half-width < § = 1000 from SRS:

N[’ljs + 2,025 (% - %)1/2

Method: 1 — 515 < (1000/900)2/(45 - 1.962)

2 — 52 ~
sij} , Syu=0 ~ 45

—1
Formula: n > [ﬁ 4+ (1000/900)2/(45 - 1.962)] = 121.27
As in HW Ch. 4 #2, note without fpc answer is n > 141.



HW?2 problem (3)

2-part problem, done separately: sample size needed for the
D = M domain with analogous formula for D = F'. The larger
of the 2 required sample sizes is the overall answer.

For D=M: N = 20,000, Np = 10,500, s, p~ 2.7, yp~5.

Survey SRS n out of N, target total > ,cp v; = Npyp = Nzy,
for domain attribute z;, = yil[ieD]

Estimator is Nzg (later compare with ratio estimator Nyp), with
theoretical variance (from previous domain-attribute discussion)

1 1\ (Np—1 Np (N = Np) _
NQ(E_N)IJ\?—l S0+ ]%(N—lf y%l
2,



HW?2 problem (3), continued

So we want, for desired precision § (= 800 in this problem)

1  1\Np-—1 Np (N — Np) _
2 2 D 2 | D D) =2 2
“a2 N (ﬁ - N>[ "y.D N (N —1) vp| <0

Substituting, the inequality to solve is:

1 1 8002 /(10499 2 10500 - 9500

< + .
n — 2e4  (1.96-2e4)2/ 119999 2e4 - 19999

25) = 9.139¢-5

Corresponding inequality for D = F' domain has right-hand side

1 1 8002 0499 10500 - 9500
< + /( 3.02 4+ 25) = 8.963e—5
n = 2e4  (1.96-2e4)2/ 119999 Ded . 19999

So require n >1/min(8.963e —5,9.139¢e—5) or n > 11,157.
(Without fpc, > 20,000.) Next compare ratio estimator.
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Intro to Ratio Estimator

SRS n out of N, attribute y;, domain D with size Np known

_ _ _ SNy Yi lie p] SV z
Target of estimation r = yp = & = &=t
>t Iiie D) Yis1 i

for domain attributes z; = y; Ij;ep), @ = Ijep

- - N . ’LI@
Ratio Estimator 7 = 28 = 2ics Y [ic D]
ws >_ies Lien

Idea here is that random excess or too few random 2's from D
included in S balance each other in numerator and denominator.

- _ 1
Re-express 7 —1r = & Yicg (yi —7) Ij;ep)  as

n
- \/— %(yz r) Ijiep

vn(r —r) =



Large-Sample Limiting Behavior of Ratio

The terms of the last expression satisfy large-sample limit the-
orems (Law of Large Numbers and Central Limit Theorem, re-
spectively) that allow us to estimate the variance. First,

ND 1 n

np .
TN a2 Uies T )

is a sum of expectation O terms with variance (1/n—1/N) s2 U
0 as n, N get large, implying np/n— Np/N — 0 in probability.

Similarly, again as an average of mean 0O terms with variance
— 0,

1
=3 (2 —rz;) — 0 in probability
N ics



Also, for large n, N (when n/N tends to a limit A < 1 and SS,D’ Tl
have limiting values),

% Z (ZZ - Twi) / K% B %) Sg—rx,U} i 2) N(C)’ 1)
€S

From this, we conclude that the ratio estimator r has a limiting
normal distribution with mean » = yp and variance

(N/ND)2 (% - %) Sg—rx,U

The other estimator we previously used for r = yp was (N/Np) zg,

and its variance is (N/Np)?2 (% — %) s2 ., which is larger.

We compare these variances in some detail in our next class.



