## Solution to Selected STAT 650 HW1 Problems

Lefebvre \#12. By inspection of $P$, we have $P_{2}$ (hit 0 before 3$)=0$. From this it is easy to check that

$$
\begin{aligned}
x=P_{1}(\text { hit } 0 \text { before } 3) & =1 / 2+(1 / 4) P_{1}(\text { hit } 0 \text { before } 3)+(1 / 4) P_{2}(\text { hit } 0 \text { before } 3) \\
& =1 / 2+(1 / 4) x=2 / 3
\end{aligned}
$$

Lefebvre \#15. The tricky aspect of this problem is to understand the (only) sense in which the limit could exist. A further point is that initially there is no Markov Chain in the problem. If we let $Y_{k}=I[$ success in the k'th trial], then $X_{n}=Y_{n-1}+Y_{n-2}$. But $Y_{n}$ is not a Markov chain because its transition probabilities depend on 2 steps of memory and not just 1 . Thus, if $Z_{n}=\left(Y_{n}, Y_{n-1}\right) \in\{0,1\}^{2}$, then we verify that $Z_{n}$ is a Markov Chain with transition probabilities

$$
\begin{aligned}
P\left(Z_{n+1}=(a, b) \mid Z_{n}=(i, j)\right) & =P\left(Y_{n+1}=a \mid Y_{n}=b, Y_{n-1}=j\right) I_{[i=b]} \\
& =(b+j+1) /(b+j+2) I_{[i=b]}
\end{aligned}
$$

Now consider whether $p_{n}=\left(Y_{n-1}+Y_{n-2}+1\right) /\left(Y_{n-1}+Y_{n-2}+2\right)$ could converge with probability 1 or in probability. For this to hold, there would have to be some random variable $W$ such that

$$
\text { for all } \quad \epsilon>0, \quad P\left(\left|Y_{n-1}+Y_{n-2}-W\right|>\epsilon\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

Clearly $W$ would have to be integer-valued, but this limiting condition is impossible because (since the $p_{k}$ values are always bounded between $1 / 2$ and $3 / 4$ ), all configurations for $\left(Y_{n-1}, Y_{n-2}\right) \in\{0,1\}^{2}$ occur infinitely often. In other words, in spite of the way the problem is stated, the limit of $p_{n}$ cannot exist in probability (and therefore also not with probability 1).

But as we learn in further work with Markov Chains, it makes sense to ask whether the random variables $p_{n}$ converge in distribution, and there the answer is yes. If we regard the Markov chain $Z_{n}$ above, and look at its transition matrix (with states written in the order $(0,0),(1,0),(0,1),(1,1))$

$$
P=\left(\begin{array}{rrrr}
1 / 2 & 1 / 2 & 0 & 0 \\
0 & 0 & 1 / 3 & 2 / 3 \\
1 / 3 & 2 / 3 & 0 & 0 \\
0 & 0 & 1 / 4 & 3 / 4
\end{array}\right)
$$

There is a unique invariant or stationary probability for this irredicible Markov Chain, given by $\pi=(2,3,3,8) / 16$, which gives the respective limiting probabilities that $Z_{n}$ is respectively equal to $(0,0),(1,0),(0,1),(1,1)$. And it follows from this that the limiting $(n \rightarrow \infty)$ probability distribution for $Y_{n-1}+Y_{n-2}$ has probability mass function $(1 / 8) \delta_{0}+(3 / 8) \delta_{1}+(1 / 2) \delta_{2}$, which means that the limiting probability distribution for $p_{n}$ has probability mass function $(1 / 8) \delta_{1 / 2}+(3 / 8) \delta_{2 / 3}+(1 / 2) \delta_{3 / 4}$.

Serfling \#17. It is straightforward to calculate that

$$
P\left(X_{n+1}=j \mid X_{n}=i, X_{t}=i_{t} \text { for } t<n\right)=\sum_{k=1}^{i} I_{[j=i]}+p_{j} I_{[j>i]}
$$

Then the sequence $\tau_{n}$ remains finite with probability 1 (which is necessary in order that $X_{n}^{\prime}$ be well-defined) only if there are infinitely many positive values $p_{k}$, in which case

$$
P\left(X_{n+1}^{\prime}=j \mid X_{n}^{\prime}=i, X_{t}^{\prime}=i_{t} \text { for } t<n\right)=I_{[j>i]} p_{j} I_{[j>i]} / \sum_{k=i+1}^{\infty} p_{k}
$$

If there is a largest value $k=k_{*}$ for which $p_{k}>0$ then $X_{n}^{\prime}$ is not well-defined for $n>1$, and the Markov chain $X_{n}$ has all states other than $k_{*}$ transient, with $k_{*}$ absorbing (i.e., a singleton recurrent class). If there is no such largest $k$, then all states for both chains are transient.

Extra Problem (I) Here the solution steps are to find two conditional densities and put them together into an unusual kind of "mixed-type" joint probability distribution, as follows. Let $p=P(X<Y)=0.5 \int_{0}^{2} e^{-x} d x=\left(1-e^{-2}\right) / 2$, and calculate

$$
f_{X, Y \mid X<Y}(x, y)=\frac{1}{2 p} I_{[0<x<\min (2, y)]} e^{-y}, \quad f_{Y \mid Y \leq X}(y)=\frac{I[0<y<2]}{2(1-p)}(2-y) e^{-y}
$$

leading to the joint probability distribution that can be written in the form (for positive infinitesimal $d z, d w$ )

$$
\begin{gathered}
P(\min (X, Y) \in[z, z+d z), Y-\min (X, Y) \in[w, w+d w))= \\
I_{[z \in(0,2)]} d z\left(I_{[w>0]} p f_{X, Y \mid X<Y}(z, z+w) d w+I_{[w=0]}(1-p) f_{Y \mid Y \leq X}(z)\right)
\end{gathered}
$$

