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Solution to Selected STAT 650 HW1 Problems

Lefebvre #12. By inspection of P , we have P2(hit 0 before 3) = 0. From this it
is easy to check that

x = P1(hit 0 before 3) = 1/2 + (1/4)P1(hit 0 before 3) + (1/4)P2(hit 0 before 3)

= 1/2 + (1/4)x = 2/3

Lefebvre #15. The tricky aspect of this problem is to understand the (only)
sense in which the limit could exist. A further point is that initially there is no
Markov Chain in the problem. If we let Yk = I[success in the k’th trial], then
Xn = Yn−1+Yn−2. But Yn is not a Markov chain because its transition probabilities
depend on 2 steps of memory and not just 1. Thus, if Zn = (Yn, Yn−1) ∈ {0, 1}2,
then we verify that Zn is a Markov Chain with transition probabilities

P (Zn+1 = (a, b) |Zn = (i, j)) = P (Yn+1 = a |Yn = b, Yn−1 = j) I[i=b]

= (b+ j + 1)/(b+ j + 2) I[i=b]

Now consider whether pn = (Yn−1 +Yn−2 + 1)/(Yn−1 +Yn−2 + 2) could converge
with probability 1 or in probability. For this to hold, there would have to be some
random variable W such that

for all ε > 0, P (|Yn−1 + Yn−2 −W | > ε)→ 0 as n→∞

Clearly W would have to be integer-valued, but this limiting condition is impossible
because (since the pk values are always bounded between 1/2 and 3/4), all config-
urations for (Yn−1, Yn−2) ∈ {0, 1}2 occur infinitely often. In other words, in spite
of the way the problem is stated, the limit of pn cannot exist in probability (and
therefore also not with probability 1).

But as we learn in further work with Markov Chains, it makes sense to ask
whether the random variables pn converge in distribution, and there the answer is
yes. If we regard the Markov chain Zn above, and look at its transition matrix (with
states written in the order (0, 0), (1, 0), (0, 1), (1, 1))

P =


1/2 1/2 0 0

0 0 1/3 2/3
1/3 2/3 0 0

0 0 1/4 3/4
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There is a unique invariant or stationary probability for this irredicible Markov
Chain, given by π = (2, 3, 3, 8)/16, which gives the respective limiting probabilities
that Zn is respectively equal to (0, 0), (1, 0), (0, 1), (1, 1). And it follows from this
that the limiting (n→∞) probability distribution for Yn−1 + Yn−2 has probability
mass function (1/8)δ0 + (3/8)δ1 + (1/2)δ2, which means that the limiting probability
distribution for pn has probability mass function (1/8)δ1/2 + (3/8)δ2/3 + (1/2)δ3/4.

Serfling #17. It is straightforward to calculate that

P (Xn+1 = j |Xn = i, Xt = it for t < n) =

i∑
k=1

I[j=i] + pj I[j>i]

Then the sequence τn remains finite with probability 1 (which is necessary in order
that X ′n be well-defined) only if there are infinitely many positive values pk, in which
case

P (X ′n+1 = j |X ′n = i, X ′t = it for t < n) = I[j>i] pj I[j>i]/
∞∑

k=i+1

pk

If there is a largest value k = k∗ for which pk > 0 then X ′n is not well-defined for
n > 1, and the Markov chain Xn has all states other than k∗ transient, with k∗
absorbing (i.e., a singleton recurrent class). If there is no such largest k, then all
states for both chains are transient.

Extra Problem (I) Here the solution steps are to find two conditional densities
and put them together into an unusual kind of “mixed-type” joint probability distri-
bution, as follows. Let p = P (X < Y ) = 0.5

∫ 2
0 e
−xdx = (1− e−2)/2, and calculate

fX,Y |X<Y (x, y) =
1

2p
I[0<x<min(2,y)] e

−y , fY |Y≤X(y) =
I[0 < y < 2]

2(1− p)
(2− y)e−y

leading to the joint probability distribution that can be written in the form (for
positive infinitesimal dz, dw)

P (min(X,Y ) ∈ [z, z + dz), Y −min(X,Y ) ∈ [w,w + dw)) =

I[z∈(0,2)] dz
(
I[w>0] p fX,Y |X<Y (z, z + w) dw + I[w=0] (1− p) fY |Y≤X(z)

)
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