(Partial) Solutions to STAT 650 HW2 Problems

Serfozo \#25. Fix $i, j \in C \subset S$ with respective periods d_{i}, d_{j}, where C is an irreducible class. The problem tells us to define m, n as integers (the book says the smallest ones, but that does not matter) such that $p_{i j}^{n}, p_{j i}^{m}>0$, and let $a=p_{i j}^{n} p_{j i}^{m}$, which is also positive. Then for all $t \geq 0$, the multistep probability $p_{i i}^{t+n+m} \geq$ $p_{i j}^{n} p_{j j}^{t} p_{j i}^{m}=a p_{j j}^{t}$, and similarly $p_{j j}^{t+m+n} \geq a p_{i i}^{t}$. By definition of period, any $t \geq 0$ with $p_{j j}>0$ is divisible by d_{j}, and any $t \geq 0$ with $p_{i i}>0$ is divisible by d_{i}, and $m+n$ is divisible by both d_{i} and d_{j}. It follows that for any t with $p_{j j}^{t}>0, t+m+n$ and therefore also t is divisible by d_{i}, so that $d_{j} \geq d_{i}$ (since d_{j} is the gcd. Similarly, for any t with $p_{i i}^{t}>0, t+m+n$ and therefore t is divisible by d_{j}, so that $d_{j} \leq d_{i}$. Therefore $d_{i}=d_{j}$.

Serfozo \#36. With reference to Example 71 from p. 45 of the book, the meaning seems to be that each single 'time step' n indexes a single job processed, but that a job of type i might immediately follow another job of type i. In that case, presumably $v(i, i)=0$ for all i. The intended method of calculating γ given as a probability- 1 or in-probability limit of average costs is to check that if the chain is ergodic with stationary distribution π and starts in i_{0}, then

$$
E\left(\frac{1}{n} \sum_{t=1}^{n} v\left(X_{t-1}, X_{t}\right)\right)=\frac{1}{n} \sum_{t=1}^{n} \sum_{i, j \in S} p_{i_{0}, i}^{t} p_{i j} v(i, j) \rightarrow \sum_{i, j \in S} \pi_{i} p_{i j} v(i, j)
$$

since $p_{i_{0}, i}^{t} \rightarrow \pi_{i}$ as $t \rightarrow \infty$. The corresponding limiting per-job cost of switches from i is $\gamma(i)=\pi_{i} \sum_{j \in S} p_{i, j} v(i, j)$. To make the result of this problem rigorous, we will discuss in future classes the convergence with probability 1 of the averages $n^{-1} \sum_{t=1}^{n} v\left(X_{t-1}, X_{t}\right)$ as $n \rightarrow \infty$, and some additional requirement related to the uniform boundedness of the expectation of $v\left(X_{t-1}, X_{t}\right)$. For example if $\sum_{j \in S} p_{i j} v_{i, j} \leq C$ for some finite constant C not depending on i, then the limit w.p. 1 and in expectation can be made rigorous.

Serfozo \#37. The renewal age process of Example 20 was given in terms of partial sums $T_{k}=\sum_{a=1}^{k} \xi_{a}$ of iid discrete random variables ξ_{a} with distribution function F, by $X_{n}=n-\max \left\{T_{k-1}: k \geq 1, T_{k-1} \leq n\right\}$. The resulting transition probabilities (also given in Example 20) are as follows. If $X_{n}=0$, then $X_{n}=T_{k-1}$ for some $k \geq 1$, and $X_{n+1}=I_{\left[\xi_{k}>1\right]}$ which means $p_{0,1}=1-p_{0,0}=1-F(1)$. If $X_{n}=i>0$, then for some $k \geq 1 T_{k-1}=n-i$ and $\xi_{k}>i$, with $X_{n+1}=(i+1) I_{\left[\xi_{k}>i+1\right]}$, and $p_{i, i+1}=1-p_{i, 0}=P\left(\xi_{k}>i+1 \mid \xi_{k}>i\right)=(1-F(i+1)) /(1-F(i))$.

In this problem, if there is a finite maximum lifetime for the renewing devices, i.e., if there is a finite m_{*} such that $F\left(m_{*}\right)=1$, then the irreducible closed class of states is $S=\left\{0,1, \ldots, m_{*}-1\right\}$, and otherwise the state-space $S=\{0,1, \ldots\}$ is irreducible. Since $p_{0,0}>0$, the chain is aperiodic. To verify ergodicity, it suffices to check that the probability vector π stated in the problem is actually a stationary distribution.

Serfozo \#44. The problem does not define "state-space" and "location" precisely. If "location" is regarded as the edge most recently traversed, and this is synonymous with "state", then $|S|$ is the number of edges, and the problem is correct as stated. If instead you want to define the state space $S=G$ as the set of vertices or nodes of the graph, then the formula for stationary distribution is not correct because the sum of π_{i} entries does not sum to 1 . Indeed, as part of this problem you must verify the (easy) assertion that $\sum_{i \in G}\left|G_{i}\right|$ is exactly twice the number of edges in the graph.

Lefebvre \#20.The "ladder chain" described here is irreducible by inspection. The key in this problem is to realize that starting from state 0 , the stopping-time τ_{0} has probability mass function given for $k \geq 1$ by

$$
P_{0}\left(\tau_{0}=k\right)=\alpha_{0} \cdot \alpha_{1} \cdots \alpha_{k-1}\left(1-\alpha_{k}\right)
$$

where the product $\alpha_{0} \cdots \alpha_{k-1}$ is taken to be 1 when $k=0$. This equation implies that $P_{0}\left(\tau_{0} \geq k\right)=\prod_{t=0}^{k-1} \alpha_{t}$. The condition $P_{0}\left(\tau_{0}<\infty\right)$ for recurrence is simply that $P_{0}\left(\tau_{0} \geq k\right) \rightarrow 0$ as $k \rightarrow \infty$, and the criterion for positive-recurrence is that $\sum_{k=1}^{\infty} k \cdot P_{0}\left(\tau_{0}=k\right)=\sum_{k=1}^{\infty} P_{0}\left(\tau_{0} \geq k\right)<\infty$.

