Sample Short-Answer Problems on Poisson Process, STAT 650

Problem 1. Suppose that $N_j(t)$ are independent Poisson processes for j = 1, 2, with respective rates 1, 4.

(a) Find the probability that 6 of the first 8 jumps in the superposed process $N(t) = N_1(t) + N_2(t)$ are jumps in the $N_2(t)$ process.

(b) Find the probability that 2 jumps occur in the N_2 process occur before the first jump in the N_1 process.

(c). Find the expected total waiting time until the first jump in $N_1(t)$ following the 3rd jump in $N_2(t)$.

Problem 2. Let N(t) be a Poisson(1) process and X_i , i = 1, 2, ... be a sequence of independent discrete random variables independent of N(t), taking respective values 0, 1, 2 with probabilities 0.2, 0.5, 0.3. Find the probability that $\sum_{i=1}^{N(5)} I_{[X_i=1]} = \sum_{j=1}^{N(5)} I_{[X_i=2]} = 3$.

Problem 3. Suppose that $\epsilon_i \sim \text{Binom}(1, 2/n)$ is an iid sequence for $i = 1, 2, \ldots$ and X_i , $i = 1, 2, \ldots$ be another, independent iid sequence of discrete random variables independent of N(t), taking respective values 0, 1, 2 with probabilities 0.2, 0.5, 0.3. Find

$$\lim_{n \to \infty} P\Big(\sum_{j=1}^{3n} I_{[X_j=1]} \epsilon_i = 5, \sum_{j=1}^{2n} I_{[X_j=2]} \epsilon_i = 2\Big)$$

Problem 4. Suppose that N(t) is a Poisson process with rate λ , and let $T_k = \min\{t : N(t) = k\}$ for $k \ge 1$. Find $E\left[\sum_{j=1}^n T_j^2 \mid N(t) = n\right]$.