Sample Short-Answer Problems on Poisson Process, STAT 650

Problem 1. Suppose that $N_{j}(t)$ are independent Poisson processes for $j=1,2$, with respective rates 1,4 .
(a) Find the probability that 6 of the first 8 jumps in the superposed process $N(t)=N_{1}(t)+N_{2}(t)$ are jumps in the $N_{2}(t)$ process.
(b) Find the probability that 2 jumps occur in the N_{2} process occur before the first jump in the N_{1} process.
(c). Find the expected total waiting time until the first jump in $N_{1}(t)$ following the 3rd jump in $N_{2}(t)$.

Problem 2. Let $N(t)$ be a Poisson(1) process and $X_{i}, i=1,2, \ldots$ be a sequence of independent discrete random variables independent of $N(t)$, taking respective values $0,1,2$ with probabilities $0.2,0.5,0.3$. Find the probability that $\sum_{i=1}^{N(5)} I_{\left[X_{i}=1\right]}=\sum_{j=1}^{N(5)} I_{\left[X_{i}=2\right]}=3$.

Problem 3. Suppose that $\epsilon_{i} \sim \operatorname{Binom}(1,2 / n)$ is an iid sequence for $i=$ $1,2, \ldots$ and $X_{i}, i=1,2, \ldots$ be another, indepndent iid sequence of discrete random variables independent of $N(t)$, taking respective values $0,1,2$ with probabilities $0.2,0.5,0.3$. Find

$$
\lim _{n \rightarrow \infty} P\left(\sum_{j=1}^{3 n} I_{\left[X_{j}=1\right]} \epsilon_{i}=5, \quad \sum_{j=1}^{2 n} I_{\left[X_{j}=2\right]} \epsilon_{i}=2\right)
$$

Problem 4. Suppose that $N(t)$ is a Poisson process with rate λ, and let $T_{k}=\min \{t: N(t)=k\}$ for $k \geq 1$. Find $E\left[\sum_{j=1}^{n} T_{j}^{2} \mid N(t)=n\right]$.

