Sample Problems for In-Class Stat 650 Test

(1). Suppose that the transition matrix \mathbf{P} of a homogeneous Markov chain on the state-space $S=\{0,1,2, \ldots\}$ has the following three properties (for all $k \geq 0$): (i) $p_{k 0} \geq 1 /(2 k+2)$, (ii) $p_{k, k+1}>0$, and
(iii) $p_{k, j}=0$ whenever $j>k+10$. Then use standard results about Markov chains to show that every state is recurrent.

Hint: use the conditions to obtain an upper bound on

$$
P\left(X_{k+1} \neq 0 \mid X_{1}, X_{2}, \ldots, X_{k} \neq 0\right)
$$

(2). Consider the homogeneous Markov chain with states 1, 2, 3, 4 and one-step transition matrix

$$
P=\left(\begin{array}{cccc}
0 & 0.5 & 0 & 0.5 \\
0 & 0.3 & 0.7 & 0 \\
0 & 0.4 & 0.6 & 0 \\
0.2 & 0 & 0.4 & 0.4
\end{array}\right)
$$

(a) Find $E\left(\inf \left\{n \geq 1: X_{n}=3\right\} \mid X_{0}=3\right)$.
(b) Find $P\left(X_{n}\right.$ hits 3 before $\left.2 \mid X_{0}=1\right)$. The event [X_{n} hits 3 before 2] is defined formally as the event $\left[\inf \left\{n \geq 1: X_{n}=3\right\}<\inf \left\{n \geq 1: X_{n}=2\right\}\right]$.
(3). Using any formulas or theorems from the book or from class, prove the recurrence and null-recurrence of the homogeneous discrete-state Markov chain with state-space equal to the integers and with one-step transition probabilities

$$
p_{j k}=\frac{1}{3} \cdot\left\{I_{[|k-j| \leq 1]}\right\}
$$

(4). Suppose that a HMC on a countable state-space S has a transition matrix P such that, for some probability vector \mathbf{v} with all positive entries v_{i},

$$
v_{i} P_{i j}=v_{j} P_{j i}
$$

Show that this HMC is recurrent.
Hint: calculate the expected number of visits to a fixed state i in the first n transition steps when the chain is started with the distribution \mathbf{v}, i.e. when $P\left(X_{0}=j\right)=v_{j} \quad$ for all j.
(5). For the HMC with states $S=\{1,2,3\}$ and transition matrix

$$
P=\left(\begin{array}{ccc}
0 & 1 / 3 & 2 / 3 \\
1 / 3 & 2 / 3 & 0 \\
1 / 3 & 1 / 3 & 1 / 3
\end{array}\right)
$$

(a) Find $\lim _{n \rightarrow \infty} P_{31}^{n}$.
(b) For a chain with this transition matrix, find the long-term proportion of visits to state 3 which occur immediately after a visit to 2 . That is, find

$$
\lim _{N \rightarrow \infty} \frac{\#\left\{n=1, \ldots, N: \quad X_{n-1}=2, X_{n}=3\right\}}{\#\left\{n=1, \ldots, N: X_{n}=3\right\}}
$$

(6). For the HMC with states $1, \ldots, 5$ and transition matrix

$$
P=\left(\begin{array}{ccccc}
1 / 2 & 1 / 2 & 0 & 0 & 0 \\
1 / 3 & 0 & 0 & 1 / 3 & 1 / 3 \\
0 & 0 & 1 / 4 & 3 / 4 & 0 \\
0 & 0 & 1 / 2 & 1 / 2 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

find $\lim _{n \rightarrow \infty} P_{1 k}^{n}$ for all $k=1, \ldots, 5$.
(7). Explain (with brief justification or counterexample) whether each of the following statements is true or false.
(i) For each finite-state aperiodic irreducible HMC, there is a finite power of the transition matrix all entries of which are positive.
(ii) Every discrete-state birth-death HMC is reversible.
(iii) The limit of P^{n} for every irreducible finite-state chain exists.
(iv) For an irreducible aperiodic HMC with countable states, the invariant distribution is unique whenever one exists.
(v) If P and Q are irreducible transition matrices on the same state space and $P_{i 0} \geq Q_{i 0}$ for all i, with $P_{i j} /\left(1-P_{i 0}\right)=Q_{i j} /\left(1-Q_{i 0}\right)$ whenever $i, j \neq 0$, then recurrence of the chain with transition Q implies recurrence for the chain with transition P.

